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1. Introduction  

    A stroke is a serious cerebrovascular disorder that develops when blood stops 

flowing to a particular region of the brain depriving brain cells to receive oxygen and 

Abstract: Stroke stays among the world's foremost trigger of mortality and 

disability by annually affecting numerous people with severe medical 

outcomes. Medical diagnostics requires immediate correct stroke detection 

because delayed or incorrect stroke diagnosis can lead to severe neurological 

disabilities or death. In clinical environments, beyond achieving high 

diagnostic precision, it is imperative that models offer interpretability to 

foster clinician trust, support informed decision-making, and uphold 

accountability in AI-assisted healthcare interventions. Therefore, AI-driven 

stroke detection systems must balance predictive performance with 

transparency to ensure safe and reliable deployment. This study proposes an 

Explainable Stacked System for Stroke Detection (EXS3D), that used a 

Stacking Ensemble technique and transfer learning with multiple deep 

learning models (Res Net, Efficient Net, Dense Net) as base classifiers, whose 

outputs were combined through a meta-level Logistic Regression model. To 

enhance transparency, the system employed Grad-CAM for visual 

explainability of image-based features in base models, and SHAP and LIME 

frameworks to interpret the decision-making of the final meta model. The 

EXS3D system achieved an accuracy of 97.37%, with the meta-model 

outperforming individual base models in predictive performance. EXS3D 

exemplifies how explainable AI can be seamlessly integrated into ensemble 

learning for high-stakes domains like stroke detection. 
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essential nutrients. This has the potential to cause brain cells to start dying posing a 

high death risk while the survivors can experience long lasting symptoms like 

confusion, paralysis, dizziness, etc. affecting mobility, speech, cognition, and 

emotional well-being [1].  

    Basically, strokes fall into two major types: one is Ischemic stroke and the other is 

Hemorrhagic stroke. An Ischemic Stroke happens due to the obstruction of the blood 

vessels supplying blood to the brain and constitutes 87% of the total stroke 

incidences [2]. Ischemic stroke can result from arteriosclerosis, thrombus formation, 

embolism, arterial dissection, or systemic hypoperfusion, all causing diminished 

cerebral blood flow and subsequent ischemia [3]. Ischemic stroke disrupts autonomic 

reflexes, leading to impaired cardiovascular regulation, abnormal heart rate, and 

blood pressure fluctuations, thereby affecting overall physiological stability [4]. 

Hemorrhagic Stroke or Cerebral Hemorrhage is a result of bursting of a brain blood 

vessel that leads to blood accumulation and compression of the surrounding brain 

tissue [5]. Though Hemorrhagic Stroke accounts for only about 13% of the stroke 

cases but can cause serious damage to the brain and can also be fatal [5][6]. Most 

commonly it is caused by high blood pressure [6].  

    Stroke acts as a global cause of both premature death and long-lasting disability. 

Worldwide, one in every four individuals over 25 years of age is likely to experience a 

stroke during their lifetime [7]. As per World Health Organization, every year, 

around 15 million people are affected by the stroke globally, one-third among them 

dies while one third people face permanent disabilities, creating significant 

challenges for their families and communities [1]. The need of the hour is to detect 

the brain stroke at the earliest to avoid any serious complications due to the stroke. 

    AI and deep learning are transforming stroke detection by enabling faster, more 

accurate, and automated CT scan analysis compared to traditional manual methods. 

While radiologists rely on time-consuming and subjective inspection, CNN-based 

deep learning models can swiftly detect subtle patterns across thousands of scans [8]. 

These models enhance diagnostic speed and accuracy, supporting data-driven 

decisions. Additionally, Explainable AI (XAI) improves transparency, fostering trust 

in AI-driven stroke predictions [9]. 

    This study proposes an Explainable Stacked System for Stroke Detection (EXS3D), 

which applies Stacking Ensemble Learning with transfer learning, combining softmax 

outputs from multiple pre-trained models as meta-learner inputs to improve 

classification and generalization. The dataset comprising 2,501 CT images [10] is used 

to train deep learning models for stroke classification. To enhance transparency and 

clinical interpretability, Explainable AI (XAI) techniques are applied to interpret 

model decisions. 
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    This document features the following structure: Section 2 explores related work 

regarding AI-based stroke detection methods and the proposed methodology. Section 

3discusses the evaluation results and the role of XAI techniques in enhancing model 

transparency. Section 4 concludes with key findings and future directions for AI-

driven stroke detection. 

 

2. Materials and methods 

2.1 Related works 

D. -H. Shih et al. [11] developed a stroke forecasting system using stacking 

approach in machine learning combined with Principal Component Analysis and 

Factor Analysis for feature extraction. The model achieved 92.55% accuracy, 

demonstrating the effectiveness of dimensionality reduction techniques. However, 

the study highlighted challenges related to high-dimensional features, which increase 

computational complexity and hinder learning efficiency. 

M. A. Saleem et al. [12] developed an enhanced deep learning detection model for 

ischemic strokes using combination of CNNs and LSTM networks. Higher 

interpretability of predictions became possible through the Explainable AI 

integration with the SHAP technique. The model delivered 95.9% accuracy despite 

working with a dataset problemized by its high level of imbalance and noise which 

might reduce model generalizability. 

S. Sahriar et al. [13] explored the deep learning and transfer learning application for 

stroke detection. By utilizing pretrained deep networks, the study achieved 80.5% 

accuracy with a Transfer Learning Deep Neural Network (TL-DNN) model. However, 

further optimizations were needed to enhance accuracy and reduce dependency on 

labeled data. 

M. J. Ferdous and R. Shahriyar [14] proposed an ensemble CNN model (ENSNET) 

for stroke prediction, integrating pretrained networks such as InceptionV3, 

MobileNetV2, and Xception. ENSNET achieved a high accuracy of 98.86%, surpassing 

individual models. However, test evaluations revealed overfitting, suggesting the 

need for regularization to enhance generalization. 

R. Qasrawi et al. [15] described a combined deep learning ensemble model, 

integrating a Stroke Precision Enhancement Model (SPEM) with intelligent lesion 

detection techniques. Their approach significantly improved stroke classification 

accuracy from 0.876 to 0.982 across stroke stages. However, the study emphasized 

the need for larger dataset validation and improved integration into clinical 

workflows. 

D. Ushasree et al. [16] created an Enhanced Stroke Prediction System using 

Stacking Methodology (ESPESM) with Random Forest as the meta-classifier. Their 



Scope 
Volume 15 Number 04 December 2025 

1413 www.scope-journal.com 

 

stacking model outperformed solo models, achieving a 98% accuracy. However, the 

model training procedure used a restricted data collection., which may restrict its 

real-world applicability. 

A. Srinivas and J. P. Mosiganti et al. [17] developed an ensemble machine learning 
model which used soft-voting for detecting strokes. Their proposed system achieved 
96.88% accuracy but lacked external validation on real-world clinical datasets, 
limiting its potential for real-world applications. 

J. Yu et al. [18] developed stroke prediction technology based on artificial 
intelligence as they analyzed ECG and PPG bio-signals combined with deep learning 
techniques (CNN + LSTM). Their approach achieved 99.15% accuracy, demonstrating 
the effectiveness of time-series deep learning models. However, the absence of 
external validation datasets raised concerns about the model's generalization to 
unseen patient data. 

Y.-A. Choi et al. [19] created stroke detection technology using deep learning 
methods which included LSTM networks together with CNN-LSTM and Bidirectional 
LSTM networks. The proposed model delivered 94% accuracy together with 6% false 
positive rate and 5.7% false negative rate. However, the study noted that MRI/CT 
imaging is expensive and time-consuming, making real-time deployment challenging. 

Various detection methods incorporating machine learning and deep learning led 
to promising results in stroke diagnosis according to existing research. The system 
needs a robust stroke detection tool with explanatory capabilities and balanced 
performance because it faces limitations from insufficient validation and 
interpretability issues along with high complexity. The EXS3D model solves such 
problems through an ensemble framework combination with explainable AI methods 
that utilizes multiple diverse models to increase predictive accuracy while generating 
understandable results for clinical assessment. 

2.2 Methodology 

Figure 1 illustrates the stages involved in model development. 

 
Figure 1: Stages in the proposed model 
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2.2.1 Experimental Setup 

The computational configurations and software utilities employed in the 

formulation of the proposed framework are delineated in Table 1. 

 

Table 1Resources used in the project. 

Resource Details 

CPU 
12th Gen Intel(R) Core(TM) i5-12500H   2.50 

GHz 

RAM 16 GB 

GPU NVIDIA GEFORCE RTX 3050 Laptop 

Software 

Tools 
Jupyter Notebook, Visual Studio Code 

2.2.2 Dataset Description 

The dataset [10] used for stroke detection consisted of 2,501 CT images, with 950 

stroke images and 1,551 normal images each measuring 650 × 650 pixels at 96 DPI 

resolution. These images were sourced from Kaggle, a large repository for publicly 

available datasets. 

 

2.2.3 Data Preprocessing 

To ensure effective training and evaluation, the dataset was stratified by class—
1,551 normal and 950 stroke CT images. Due to the inherent imbalance between 

classes in the dataset, where non-stroke cases significantly outnumbered stroke cases, 

under sampling of the majority class was employed to achieve a balanced distribution 

of samples across both classes. Random under sampling was chosen to prevent the 

model from becoming biased toward the dominant class and to ensure equitable 

learning of minority class patterns. Alternative resampling strategies, such as SMOTE 

and weighted loss adjustments, were explored; however, random under sampling 

demonstrated stable convergence and superior generalization in our experimental 

setup. This balanced dataset was evenly distributed into training set, validation set, 

and testing set as detailed in Table 2. This approach mitigated class imbalance, 

reduced model bias, and supported reliable pattern learning. The subsets were 

organized into dedicated directories (train, val and test) compatible with Py Torch’s 

Image Folder for streamlined data loading and label handling. 

Before being fed into the model, all CT images originally grayscale with dimensions 

650×650 at 96 DPI were reduced to 224×224 pixels and then converted into three 

channel RGB format. To enhance model robustness and minimize over fitting, the 

training data was augmented using a set of transformations: horizontal flipping with 

a probability of 0.5, random brightness and contrast adjustments with a probability of 
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0.2, and random rotations within a ±20-degree range. These augmentations simulated 

real-world variations in medical imaging. 

Following augmentation, all images in the training and validation sets underwent 

normalization through the application of Image Net statistical values including a 

mean of [0.485, 0.456, 0.406] and standard deviation of [0.229, 0.224, 0.225] to ensure 

compatibility with pre-trained convolutional neural networks. By performing class 

balancing prior to training through random under sampling, the dataset provided an 

equal number of examples for each class—950 normal and 950 stroke images—
facilitating unbiased learning and consistent evaluation across all phases of the 

training pipeline. 

 

Table 2Balanced Dataset Distribution across Splits 

Image 

Set 
Stroke Normal Total 

Split 

Percentage 

Train Set 143 143 286 70% 

Val Set 712 712 1424 15% 

Test Set 95 95 190 15% 

2.2.4 Proposed Model Architecture 

The proposed EXS3D model employed Stacking Ensemble Learning to enhance 

classification accuracy and generalization by integrating multiple deep learning 

architectures. Unlike single-model approaches, stacking captured diverse feature 

representations, mitigating bias and over fitting. The framework comprised base 

models that extract spatial and textural features, and a meta-learner that refined 

predictions by learning optimal combinations of the base models' soft max outputs. 

The EXS3D model utilized transfer learning by adapting pre-trained convolutional 

neural networks(CNNs) for extraction of features for stroke detection. This approach 

enhanced performance and reduced training time, particularly in data-limited 

scenarios, by leveraging learned visual representations from large-scale datasets.  

• Res Net-50: ResNet50 operates as a 50-layer deep CNN which solves degradation 

problems by incorporating skip connections into residual learning structures to 

help gradient propagation. The design of this architecture helps efficiently learn 

difficult features which makes it an essential framework for many computer vision 

projects because of performance excellence and generality. 

 

• Dense Net-121: DenseNet-121 operates as a densely connected CNN sending 

information from every preceding layer to each subsequent layer which allows 

extended feature reuse and gradient transfer optimization. Stroke detection 

benefits from DenseNet-121 because its short parametric structure enables learning 
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from small medical image datasets as it improves detection accuracy and 

generality. 

 

• Efficient Net-B0: EfficientNet-B0 is a lightweight CNN leveraging compound 

scaling to balance depth, width, and resolution for optimal accuracy and efficiency. 

Its low computational cost and high performance make it ideal for real-time stroke 

detection, enabling fast, precise inference in resource-constrained clinical settings. 

 

Following model is used as the meta model  

Logistic Regression: Logistic Regression functions as an essential binary classification 

technique which creates predictions through linear boundaries combined with 

sigmoid functions. Logistic Regression serves as a meta-model in stacking ensemble 

to combine diverse base learner predictions for making the final decision that 

achieves better accuracy and robustness. 

 

2.2.5 XAI Integration 

Explainable Artificial Intelligence (XAI) comprises techniques that enhance the 

transparency and interpretability of AI model decisions, fostering trust and 

accountability in critical fields like healthcare. In this study, XAI is integrated into the 

EXS3D framework to provide visual insights into model predictions, ensuring that 

decisions are based on medically relevant regions of brain CT scans—an essential 

requirement for reliable stroke diagnosis. 

Grad-CAM served as our tool to add interpretability to base deep learning models 

by showing which image areas drive the prediction outcome. The technique 

generated maps for each CT image class to ensure the model examines meaningful 

anatomical areas. This method assists clinicians in developing confidence through 

validation of how the deep learning model interacts with CT images to prevent 

dependency on incorrect correlations. 

The interpretation of the final meta-model (Logistic Regression) used SHAP and 

LIME as model-agnostic XAI techniques. LIME provided local explanations through 

approximation of individual instances while SHAP distributes values to features using 

game theory. These interpretive tools enhance worldwide along with local 

interpretability capabilities which improves transparency as well as trust in the 

ensemble model's operations of making decisions. 

 

3. Results and Discussion 

The results of our model are shown in this part along with a comparison with base 

models. Our work concentrated on utilising Stacking Ensemble Method for creating a 

reliable model for early Stroke detection. Four CNN pre-trained models were served 
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as the base models whose outputs were fed into Logistic Regression Classifier serving 

as meta model. 

 

3.1. Evaluation Metrics 

For assessing the performance of our model, Multiple metrics formed the basis of 

our model evaluation: 

• Accuracy: It is the metric that provides us with a holistic evaluation of the accuracy 

rate of our model. Accuracy = TP+TNTP+TN+FP+FN                                                                       (1) 

 

• Precision: It indicates the frequency with which the model correctly predicts a 

positive case. Precision =  TPTP+FP                                                                                   (2) 

 

• Recall: It is concerned with identifying all relevant positive instances, ensuring that 

no true positives are missed, even if it means occasionally including false positives. Recall =  TPTP+FN                                                                                   (3) 

 

• F1-Score: The F1-score combines precision and recall through harmonic mean 

calculations in order to determine a balanced evaluation offering a fair assessment 

of model performance thus working well for unbalanced classes. F1 − Score =  2∗Precision∗RecallPrecision+Recall                                                                  (4) 

 

• AUC-Score: The AUC (Area under the Curve) score represents model’s 

discrimination capability among the classes throughout multiple threshold levels, 

with higher values indicating better discriminatory performance. 

 

The proposed EXS3D demonstrates strong classification performance, achieving 

97.37% accuracy, 98.91% precision, 95.79% recall value and F1-score of 97.33%. These 

metrics indicate a balanced and reliable model, effectively minimizing false positives 

and false negatives. The experimental outcomes find additional support from Figure 2 

which shows the confusion matrix. 
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Figure2 Confusion Matrix 

 

3.2 Receiver Operating Characteristic (ROC) Curve Analysis 

The AUC-ROC curve shows a trade-off zone between true positives and false 

positives during model discriminative ability assessment. As shown in Figure 3, meta 

model achieves an excellent AUC score of 0.996, indicating near-perfect classification 

performance. This underscores the EXS3D model’s robustness and reliability in 

accurately distinguishing between Stroke and Normal cases. 

 
Figure 3 AUC-ROC Curve 
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3.3 Precision-Recall Trade-off 

With class imbalance addressed through a Random Under sampling, the Precision-

Recall (PR) curve is analyzed to assess performance on the underrepresented class. As 

shown in Figure 4, the model got a high average precision (AP) of 0.997, maintaining 

strong precision across various recall values. The position of the curve close to the 

top-right corner shows the model performs effective positive stroke detection along 

with low numbers of incorrect detections. 

 
Figure 4 Precision-Recall Curve (PR Curve) 

 

3.4 Comparative Evaluation of Classifiers 

To verify the efficiency of the proposed EXS3D model, its performance was 

benchmarked against its underlying base classifiers. Table 3 illustrates a comparative 

analysis of individual base models Resnet50, Efficient Net, DenseNet121 along with 

the final stacked ensemble architecture, i.e., the EXS3D model, evaluated across 

multiple performance metrics.  

As presented in Table 3, the EXS3D model consistently outperforms individual 

base classifiers across all major evaluation metrics Accuracy, Precision, Recall, and F1-

score. The EXS3D model achieved the highest value in Accuracy (97.37%) and F1-

score (97.00%), reflecting superior and balanced performance. Although ResNet 

attains perfect Precision (100%), its low Recall (78.00%) indicates missed true 

positives. EXS3D, in contrast, maintains high Precision (99.00%) and Recall (95.00%). 

While EfficientNet and DenseNet exhibit strong Recall (95.00% and 97.00%), they fall 

short in Accuracy and F1-score. These results highlight the robustness of EXS3D’s 

ensemble strategy, effectively leveraging base model strengths while compensating 

for their limitations. The performance trend is visually supported by the bar plot in 

Figure 5. 
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The AUC-ROC analysis (Figure 6) further underscores the excellent performance 

of the EXS3D model. Possessing the highest AUC value of 0.996 (near 1.0), EXS3D 

demonstrates strong class discrimination and an optimal sensitivity-specificity 

balance. While EfficientNet and DenseNet also perform well, their AUC margins are 

narrower, indicating reduced confidence in borderline classifications. ResNet, though 

precise, shows the lowest AUC, reflecting limited consistency in detecting positive 

cases. These results affirm the advantage of ensemble learning in EXS3D for achieving 

more reliable class separation. 

In contrast, the stacking model outperformed all individual base models by 

achieving an accuracy of 84.04%, with precision of 0.83, recall value of 0.75, and F1-

score of 0.79. The notable improvement in recall underscores the model's enhanced 

ability in identifying stroke cases correctly. By combining multiple models, the 

stacking approach improved generalization, reduced bias, and boosted overall 

classification performance, demonstrating that ensemble learning is more effective 

for stroke detection than single deep learning models. 

 

Table 3: Comparison between the base models as well as the EXS3D model 

Model 

Name 
Accuracy Precision Recall F1-score 

Resnet 88.95% 1.0 0.78 0.88 

Dense net 92.63% 0.89 0.97 0.93 

Efficient Net 96.32% 0.98 0.95 0.96 

EXS3D 

Model 
97.37% 0.99 0.95 0.97 

 

 
Figure 5 Bar Plot for Comparison between base models and EXS3D model 
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Figure 6 AUC ROC Curves for base models and EXS3D Model 

 

3.5 Explainability Analysis using XAI 

To further enhance the transparency and trustworthiness of the proposed EXS3D 

framework, various explainable AI (XAI) techniques were employed on base models 

and the meta model. 

Grad-CAM was used in visualizing the decision-making of base models—Res Net, 

Efficient Net, and Dense Net—by generating class-specific heat maps from individual 

brain CT scans. This technique highlights regions influencing stroke predictions by 

utilizing gradients from the final convolutional layers. As shown in Figure 7, Res Net 

(Figure 7(a)) emphasizes the left region, Efficient Net (Figure 7(b)) focuses centrally, 

and Dense Net (Figure 7(c)) attends to relevant but dispersed areas. These heat maps 

confirm the models' attention to clinically significant regions, supporting the stacking 

model’s interpretability and reliability. 

 

   (a)                                                (b)                                            (c) 

Figure 7 Grad-CAM visualizations for an instance using Base Models 

SHAP analysis helped reveal the world-wide impact of base models upon the 

logistic regression final prediction. According to SHAP summary analysis results in 

Figure 8. Dense Net demonstrates the maximum average effect on model outputs 
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which Efficient Net and Res Net follow closely behind. Figure 9 represents the SHAP 

waterfall plot that depicts a single diagnosis where all three component models 

contribute positively to classify the patient as having a stroke. Dense Net attributes 

+1.62 to the output while Efficient Net assigns +1.42 and Res Net gives +1.23 according 

to SHAP values. The explanations of ensemble decision-making validate its process 

and demonstrate which base models provide the most critical information. 

 
Figure 8 SHAP Summary Plot 

 
Figure 9 SHAP Waterfall Plot 

The meta-classifier received individual explanations from LIME regarding stroke 

and non-stroke predictions on specific instances. All base models with high outputs 

at 0.98, 0.99, and 0.95 for Dense Net and Res Net and Efficient Net influenced 

positively the meta-classifier decision (Figure 10). The models produced low output 

values to indicate stroke is unlikely in negative case scenarios (Figure 11). The LIME 

model successfully demonstrates base model contributions which improves system 

transparency as well as healthcare practitioners' trust in the system during clinical 

applications. 

The integration of XAI techniques enhances the interpretability of our stroke 

detection model. These visual and feature-based explanations confirm that the 

models rely on clinically significant cues for decision-making. This not only builds 

confidence in the model’s predictions but also ensures transparency for medical 

practitioners. Overall, XAI adds a crucial layer of trust, making the system more 

reliable and human-interpretable. 
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Figure 10 LIME Visualization for Positive Stroke Prediction 

 
Figure 11 LIME Visualization for Negative Stroke(Normal Case) Prediction 

4. Conclusion 

This research creates a stroke diagnostic system which combines deep models with 

transfer learning and explains the process using XAI techniques to analyze brain CT 

images to detect stroke conditions. A combination of Res Net, Dense Net and 

Efficient Net as base models and logistic regression as meta-model reached an 

accuracy of 97.37 in the proposed EXS3D framework. XAI tools Grad-CAM and SHAP 

and LIME generated understandable visual and feature-level analyses through 

medical-relevant region identification which led to effective stroke detection 

patterns. 

Our findings highlight the critical role of explain ability in deep learning for 

healthcare. XAI integration can enhance transparency and support clinical validation 

by revealing decision-making processes. Furthermore, the ensemble approach 

improved classification performance and mitigated over fitting, making the system a 

robust and reliable solution for automated stroke detection. 

Despite the promising performance of the proposed EXS3D model, certain 

limitations should be acknowledged. The dataset used in this study was relatively 

small in size, and the employment of under sampling technique may have resulted in 

the loss of potentially valuable information from the majority class (normal class). 

Additionally, the model has not yet undergone any clinical validation on real-world 

stroke data, which is crucial for assessing its diagnostic reliability and practical 

applicability.  
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Future research will focus on addressing these limitations by incorporating larger, 

more diverse datasets and collaborating with clinical experts to evaluate the 

framework on real-world MRI and CT datasets, enabling assessment of its diagnostic 

reliability and integration into hospital decision-support systems.The addition of 

transformer-based vision models represents a potential future research objective for 

increasing data set generalization. Implementing AI models in practice in healthcare 

institutions can facilitate quick stroke recognition and assist in an interactive 

decision-making system, which will offer clinicians practical information that will 

increase diagnostic accuracy. 
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