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Abstract: Stroke stays among the world's foremost trigger of mortality and
disability by annually affecting numerous people with severe medical
outcomes. Medical diagnostics requires immediate correct stroke detection
because delayed or incorrect stroke diagnosis can lead to severe neurological
disabilities or death. In clinical environments, beyond achieving high
diagnostic precision, it is imperative that models offer interpretability to
foster clinician trust, support informed decision-making, and uphold
accountability in Al-assisted healthcare interventions. Therefore, Al-driven
stroke detection systems must balance predictive performance with
transparency to ensure safe and reliable deployment. This study proposes an
Explainable Stacked System for Stroke Detection (EXS3D), that used a
Stacking Ensemble technique and transfer learning with multiple deep
learning models (Res Net, Efficient Net, Dense Net) as base classifiers, whose
outputs were combined through a meta-level Logistic Regression model. To
enhance transparency, the system employed Grad-CAM for visual
explainability of image-based features in base models, and SHAP and LIME
frameworks to interpret the decision-making of the final meta model. The
EXS3D system achieved an accuracy of 97.37%, with the meta-model
outperforming individual base models in predictive performance. EXS3D
exemplifies how explainable Al can be seamlessly integrated into ensemble
learning for high-stakes domains like stroke detection.
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1. Introduction
A stroke is a serious cerebrovascular disorder that develops when blood stops
flowing to a particular region of the brain depriving brain cells to receive oxygen and
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essential nutrients. This has the potential to cause brain cells to start dying posing a
high death risk while the survivors can experience long lasting symptoms like
confusion, paralysis, dizziness, etc. affecting mobility, speech, cognition, and
emotional well-being [1].

Basically, strokes fall into two major types: one is Ischemic stroke and the other is
Hemorrhagic stroke. An Ischemic Stroke happens due to the obstruction of the blood
vessels supplying blood to the brain and constitutes 87% of the total stroke
incidences [2]. Ischemic stroke can result from arteriosclerosis, thrombus formation,
embolism, arterial dissection, or systemic hypoperfusion, all causing diminished
cerebral blood flow and subsequent ischemia [3]. Ischemic stroke disrupts autonomic
reflexes, leading to impaired cardiovascular regulation, abnormal heart rate, and
blood pressure fluctuations, thereby affecting overall physiological stability [4].
Hemorrhagic Stroke or Cerebral Hemorrhage is a result of bursting of a brain blood
vessel that leads to blood accumulation and compression of the surrounding brain
tissue [5]. Though Hemorrhagic Stroke accounts for only about 13% of the stroke
cases but can cause serious damage to the brain and can also be fatal [5][6]. Most
commonly it is caused by high blood pressure [6].

Stroke acts as a global cause of both premature death and long-lasting disability.
Worldwide, one in every four individuals over 25 years of age is likely to experience a
stroke during their lifetime [7]. As per World Health Organization, every year,
around 15 million people are affected by the stroke globally, one-third among them
dies while one third people face permanent disabilities, creating significant
challenges for their families and communities [1]. The need of the hour is to detect
the brain stroke at the earliest to avoid any serious complications due to the stroke.

Al and deep learning are transforming stroke detection by enabling faster, more
accurate, and automated CT scan analysis compared to traditional manual methods.
While radiologists rely on time-consuming and subjective inspection, CNN-based
deep learning models can swiftly detect subtle patterns across thousands of scans [8].
These models enhance diagnostic speed and accuracy, supporting data-driven
decisions. Additionally, Explainable Al (XAI) improves transparency, fostering trust
in Al-driven stroke predictions [9].

This study proposes an Explainable Stacked System for Stroke Detection (EXS3D),
which applies Stacking Ensemble Learning with transfer learning, combining softmax
outputs from multiple pre-trained models as meta-learner inputs to improve
classification and generalization. The dataset comprising 2,501 CT images [10] is used
to train deep learning models for stroke classification. To enhance transparency and
clinical interpretability, Explainable AI (XAI) techniques are applied to interpret
model decisions.
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This document features the following structure: Section 2 explores related work
regarding Al-based stroke detection methods and the proposed methodology. Section
3discusses the evaluation results and the role of XAl techniques in enhancing model
transparency. Section 4 concludes with key findings and future directions for Al-
driven stroke detection.

2. Materials and methods

2.1 Related works

D. -H. Shih et al. [u1] developed a stroke forecasting system using stacking
approach in machine learning combined with Principal Component Analysis and
Factor Analysis for feature extraction. The model achieved 92.55% accuracy,
demonstrating the effectiveness of dimensionality reduction techniques. However,
the study highlighted challenges related to high-dimensional features, which increase
computational complexity and hinder learning efficiency.

M. A. Saleem et al. [12] developed an enhanced deep learning detection model for
ischemic strokes using combination of CNNs and LSTM networks. Higher
interpretability of predictions became possible through the Explainable Al
integration with the SHAP technique. The model delivered 95.9% accuracy despite
working with a dataset problemized by its high level of imbalance and noise which
might reduce model generalizability.

S. Sahriar et al. [13] explored the deep learning and transfer learning application for
stroke detection. By utilizing pretrained deep networks, the study achieved 80.5%
accuracy with a Transfer Learning Deep Neural Network (TL-DNN) model. However,
further optimizations were needed to enhance accuracy and reduce dependency on
labeled data.

M. J. Ferdous and R. Shahriyar [14] proposed an ensemble CNN model (ENSNET)
for stroke prediction, integrating pretrained networks such as InceptionVs,
MobileNetV2, and Xception. ENSNET achieved a high accuracy of 98.86%, surpassing
individual models. However, test evaluations revealed overfitting, suggesting the
need for regularization to enhance generalization.

R. Qasrawi et al. [15] described a combined deep learning ensemble model,
integrating a Stroke Precision Enhancement Model (SPEM) with intelligent lesion
detection techniques. Their approach significantly improved stroke classification
accuracy from 0.876 to 0.982 across stroke stages. However, the study emphasized
the need for larger dataset validation and improved integration into clinical
workflows.

D. Ushasree et al. [16] created an Enhanced Stroke Prediction System using
Stacking Methodology (ESPESM) with Random Forest as the meta-classifier. Their
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stacking model outperformed solo models, achieving a 98% accuracy. However, the
model training procedure used a restricted data collection., which may restrict its
real-world applicability.

A. Srinivas and ]. P. Mosiganti et al. [17] developed an ensemble machine learning
model which used soft-voting for detecting strokes. Their proposed system achieved
96.88% accuracy but lacked external validation on real-world clinical datasets,
limiting its potential for real-world applications.

J. Yu et al. [18] developed stroke prediction technology based on artificial
intelligence as they analyzed ECG and PPG bio-signals combined with deep learning
techniques (CNN + LSTM). Their approach achieved 99.15% accuracy, demonstrating
the effectiveness of time-series deep learning models. However, the absence of
external validation datasets raised concerns about the model's generalization to
unseen patient data.

Y.-A. Choi et al. [19] created stroke detection technology using deep learning
methods which included LSTM networks together with CNN-LSTM and Bidirectional
LSTM networks. The proposed model delivered 94% accuracy together with 6% false
positive rate and 5.7% false negative rate. However, the study noted that MRI/CT
imaging is expensive and time-consuming, making real-time deployment challenging.

Various detection methods incorporating machine learning and deep learning led
to promising results in stroke diagnosis according to existing research. The system
needs a robust stroke detection tool with explanatory capabilities and balanced
performance because it faces limitations from insufficient validation and
interpretability issues along with high complexity. The EXS3D model solves such
problems through an ensemble framework combination with explainable Al methods
that utilizes multiple diverse models to increase predictive accuracy while generating
understandable results for clinical assessment.

2.2 Methodology
Figure 1 illustrates the stages involved in model development.
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Figure 1: Stages in the proposed model
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2.2.1 Experimental Setup
The computational configurations and software utilities employed in the
formulation of the proposed framework are delineated in Table 1.

Table 1Resources used in the project.

Resource Details
12th Gen Intel(R) Core(TM) i5-12500H 2.50
CPU
GHz

RAM 16 GB

GPU NVIDIA GEFORCE RTX 3050 Laptop
Soft

?Fovc\)flas re Jupyter Notebook, Visual Studio Code

2.2.2 Dataset Description

The dataset [10] used for stroke detection consisted of 2,501 CT images, with 950
stroke images and 1,551 normal images each measuring 650 x 650 pixels at 96 DPI
resolution. These images were sourced from Kaggle, a large repository for publicly
available datasets.

2.2.3 Data Preprocessing

To ensure effective training and evaluation, the dataset was stratified by class—
1,551 normal and 950 stroke CT images. Due to the inherent imbalance between
classes in the dataset, where non-stroke cases significantly outnumbered stroke cases,
under sampling of the majority class was employed to achieve a balanced distribution
of samples across both classes. Random under sampling was chosen to prevent the
model from becoming biased toward the dominant class and to ensure equitable
learning of minority class patterns. Alternative resampling strategies, such as SMOTE
and weighted loss adjustments, were explored; however, random under sampling
demonstrated stable convergence and superior generalization in our experimental
setup. This balanced dataset was evenly distributed into training set, validation set,
and testing set as detailed in Table 2. This approach mitigated class imbalance,
reduced model bias, and supported reliable pattern learning. The subsets were
organized into dedicated directories (train, val and test) compatible with Py Torch’s
Image Folder for streamlined data loading and label handling.

Before being fed into the model, all CT images originally grayscale with dimensions
650x650 at 96 DPI were reduced to 224x224 pixels and then converted into three
channel RGB format. To enhance model robustness and minimize over fitting, the
training data was augmented using a set of transformations: horizontal flipping with
a probability of 0.5, random brightness and contrast adjustments with a probability of
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0.2, and random rotations within a +20-degree range. These augmentations simulated
real-world variations in medical imaging.

Following augmentation, all images in the training and validation sets underwent
normalization through the application of Image Net statistical values including a
mean of [0.485, 0.456, 0.406] and standard deviation of [0.229, 0.224, 0.225] to ensure
compatibility with pre-trained convolutional neural networks. By performing class
balancing prior to training through random under sampling, the dataset provided an
equal number of examples for each class—g950 normal and 950 stroke images—
facilitating unbiased learning and consistent evaluation across all phases of the
training pipeline.

Table 2Balanced Dataset Distribution across Splits

Image Stroke | Normal | Total Split
Set Percentage
Train Set 143 143 286 70%
Val Set 712 712 1424 15%
Test Set 95 95 190 15%

2.2.4 Proposed Model Architecture

The proposed EXS3D model employed Stacking Ensemble Learning to enhance
classification accuracy and generalization by integrating multiple deep learning
architectures. Unlike single-model approaches, stacking captured diverse feature
representations, mitigating bias and over fitting. The framework comprised base
models that extract spatial and textural features, and a meta-learner that refined
predictions by learning optimal combinations of the base models' soft max outputs.

The EXS3D model utilized transfer learning by adapting pre-trained convolutional
neural networks(CNNs) for extraction of features for stroke detection. This approach
enhanced performance and reduced training time, particularly in data-limited
scenarios, by leveraging learned visual representations from large-scale datasets.

¢ Res Net-50: ResNet50 operates as a 50-layer deep CNN which solves degradation
problems by incorporating skip connections into residual learning structures to
help gradient propagation. The design of this architecture helps efficiently learn
difficult features which makes it an essential framework for many computer vision
projects because of performance excellence and generality.

e Dense Net-121: DenseNet-121 operates as a densely connected CNN sending
information from every preceding layer to each subsequent layer which allows
extended feature reuse and gradient transfer optimization. Stroke detection
benefits from DenseNet-121 because its short parametric structure enables learning
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from small medical image datasets as it improves detection accuracy and
generality.

o Efficient Net-Bo: EfficientNet-Bo is a lightweight CNN leveraging compound
scaling to balance depth, width, and resolution for optimal accuracy and efficiency.
Its low computational cost and high performance make it ideal for real-time stroke
detection, enabling fast, precise inference in resource-constrained clinical settings.

Following model is used as the meta model

Logistic Regression: Logistic Regression functions as an essential binary classification
technique which creates predictions through linear boundaries combined with
sigmoid functions. Logistic Regression serves as a meta-model in stacking ensemble
to combine diverse base learner predictions for making the final decision that
achieves better accuracy and robustness.

2.2.5 XAI Integration

Explainable Artificial Intelligence (XAI) comprises techniques that enhance the
transparency and interpretability of Al model decisions, fostering trust and
accountability in critical fields like healthcare. In this study, XAl is integrated into the
EXS3D framework to provide visual insights into model predictions, ensuring that
decisions are based on medically relevant regions of brain CT scans—an essential
requirement for reliable stroke diagnosis.

Grad-CAM served as our tool to add interpretability to base deep learning models
by showing which image areas drive the prediction outcome. The technique
generated maps for each CT image class to ensure the model examines meaningful
anatomical areas. This method assists clinicians in developing confidence through
validation of how the deep learning model interacts with CT images to prevent
dependency on incorrect correlations.

The interpretation of the final meta-model (Logistic Regression) used SHAP and
LIME as model-agnostic XAl techniques. LIME provided local explanations through
approximation of individual instances while SHAP distributes values to features using
game theory. These interpretive tools enhance worldwide along with local
interpretability capabilities which improves transparency as well as trust in the
ensemble model's operations of making decisions.

3. Results and Discussion

The results of our model are shown in this part along with a comparison with base
models. Our work concentrated on utilising Stacking Ensemble Method for creating a
reliable model for early Stroke detection. Four CNN pre-trained models were served
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as the base models whose outputs were fed into Logistic Regression Classifier serving
as meta model.

3.1. Evaluation Metrics

For assessing the performance of our model, Multiple metrics formed the basis of
our model evaluation:
e Accuracy: It is the metric that provides us with a holistic evaluation of the accuracy

rate of our model.
TP+TN
(1)

Accuracy = ———
Y = TPITN+FP+FN

e Precision: It indicates the frequency with which the model correctly predicts a

positive case.
TP
TP+FP

(2)

Precision =

e Recall: It is concerned with identifying all relevant positive instances, ensuring that
no true positives are missed, even if it means occasionally including false positives.

TP
TP+FN (3)

Recall =

e Fi1-Score: The Fi-score combines precision and recall through harmonic mean
calculations in order to determine a balanced evaluation offering a fair assessment

of model performance thus working well for unbalanced classes.
2*Precision*Recall
(4)

F1 — Score = —
Precision+Recall

e AUC-Score: The AUC (Area under the Curve) score represents model’s
discrimination capability among the classes throughout multiple threshold levels,
with higher values indicating better discriminatory performance.

The proposed EXS3D demonstrates strong classification performance, achieving
97.37% accuracy, 98.91% precision, 95.79% recall value and Fi-score of 97.33%. These
metrics indicate a balanced and reliable model, effectively minimizing false positives
and false negatives. The experimental outcomes find additional support from Figure 2
which shows the confusion matrix.
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Figure2 Confusion Matrix

3.2 Receiver Operating Characteristic (ROC) Curve Analysis

The AUC-ROC curve shows a trade-off zone between true positives and false
positives during model discriminative ability assessment. As shown in Figure 3, meta
model achieves an excellent AUC score of 0.996, indicating near-perfect classification
performance. This underscores the EXS3D model’s robustness and reliability in
accurately distinguishing between Stroke and Normal cases.

True Positive Rate

Receiver Operating Characteristic (ROC) Curve

1.0 -
-
-
rd
-
’I
0.8 1 Ll
s
Fd
-
s
-
L.
0.6 »
.
td
-
-
&
0.4 b
. ”
’
-
-
F
-
0.2 4 7
rd
s
s
-
#
004 ¥ ROC curve (AUC = 0.996)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

1418

Figure 3 AUC-ROC Curve

www.scope-journal.com



Scope
Volume 15 Number o4 December 2025

3.3 Precision-Recall Trade-off

With class imbalance addressed through a Random Under sampling, the Precision-
Recall (PR) curve is analyzed to assess performance on the underrepresented class. As
shown in Figure 4, the model got a high average precision (AP) of 0.997, maintaining
strong precision across various recall values. The position of the curve close to the
top-right corner shows the model performs effective positive stroke detection along
with low numbers of incorrect detections.

Precision-Recall Curve
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Precision

0.7 4

0.6

0.5 1 —— AP =0.997

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 4 Precision-Recall Curve (PR Curve)

3.4 Comparative Evaluation of Classifiers

To verify the efficiency of the proposed EXS3D model, its performance was
benchmarked against its underlying base classifiers. Table 3 illustrates a comparative
analysis of individual base models Resnetso, Efficient Net, DenseNet121 along with
the final stacked ensemble architecture, i.e., the EXS3D model, evaluated across
multiple performance metrics.

As presented in Table 3, the EXS3D model consistently outperforms individual
base classifiers across all major evaluation metrics Accuracy, Precision, Recall, and Fi-
score. The EXS3D model achieved the highest value in Accuracy (97.37%) and F1-
score (97.00%), reflecting superior and balanced performance. Although ResNet
attains perfect Precision (100%), its low Recall (78.00%) indicates missed true
positives. EXS3D, in contrast, maintains high Precision (99.00%) and Recall (95.00%).
While EfficientNet and DenseNet exhibit strong Recall (95.00% and 97.00%), they fall
short in Accuracy and Fi-score. These results highlight the robustness of EXS3D’s
ensemble strategy, effectively leveraging base model strengths while compensating
for their limitations. The performance trend is visually supported by the bar plot in
Figure 5.
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The AUC-ROC analysis (Figure 6) further underscores the excellent performance
of the EXS3D model. Possessing the highest AUC value of 0.996 (near 1.0), EXS3D
demonstrates strong class discrimination and an optimal sensitivity-specificity
balance. While EfficientNet and DenseNet also perform well, their AUC margins are
narrower, indicating reduced confidence in borderline classifications. ResNet, though
precise, shows the lowest AUC, reflecting limited consistency in detecting positive
cases. These results affirm the advantage of ensemble learning in EXS3D for achieving
more reliable class separation.

In contrast, the stacking model outperformed all individual base models by
achieving an accuracy of 84.04%, with precision of 0.83, recall value of 0.75, and F1-
score of 0.79. The notable improvement in recall underscores the model's enhanced
ability in identifying stroke cases correctly. By combining multiple models, the
stacking approach improved generalization, reduced bias, and boosted overall
classification performance, demonstrating that ensemble learning is more effective
for stroke detection than single deep learning models.

Table 3: Comparison between the base models as well as the EXS3D model

Model
oce Accuracy | Precision | Recall | Fi-score
Name
Resnet 88.95% 1.0 0.78 0.88
Dense net 92.63% 0.89 0.97 0.93

Efficient Net | 96.32% 0.98 0.95 0.96

EXS3D o

. 0. 0. 0.
Model 973770 99 95 97
Los Comparison of Model Metrics

I Precision
Recall
100 1 . Fi-Score

080 1

oS4

o7

PReshet DenseNel Efficsentiet Proposed EXS3D Model

Figure 5 Bar Plot for Comparison between base models and EXS3D model
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3.5 Explainability Analysis using XAI

To further enhance the transparency and trustworthiness of the proposed EXS3D
framework, various explainable Al (XAI) techniques were employed on base models
and the meta model.

Grad-CAM was used in visualizing the decision-making of base models—Res Net,
Efficient Net, and Dense Net—by generating class-specific heat maps from individual
brain CT scans. This technique highlights regions influencing stroke predictions by
utilizing gradients from the final convolutional layers. As shown in Figure 7, Res Net
(Figure 7(a)) emphasizes the left region, Efficient Net (Figure 7(b)) focuses centrally,
and Dense Net (Figure 7(c)) attends to relevant but dispersed areas. These heat maps
confirm the models' attention to clinically significant regions, supporting the stacking
model’s interpretability and reliability.

Grad-CAM for resnet, Predicted: 1 Grad-CAM for efficientnet, Predicted: 1

Grad-CAM for densenet, Predicted: 1

(a) (b) (c)

Figure 7 Grad-CAM visualizations for an instance using Base Models

SHAP analysis helped reveal the world-wide impact of base models upon the
logistic regression final prediction. According to SHAP summary analysis results in
Figure 8. Dense Net demonstrates the maximum average effect on model outputs
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which Efficient Net and Res Net follow closely behind. Figure g represents the SHAP
waterfall plot that depicts a single diagnosis where all three component models
contribute positively to classify the patient as having a stroke. Dense Net attributes
+1.62 to the output while Efficient Net assigns +1.42 and Res Net gives +1.23 according
to SHAP values. The explanations of ensemble decision-making validate its process
and demonstrate which base models provide the most critical information.
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Figure 8 SHAP Summary Plot
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Figure 9 SHAP Waterfall Plot

The meta-classifier received individual explanations from LIME regarding stroke
and non-stroke predictions on specific instances. All base models with high outputs
at 0.98, 0.99, and 0.95 for Dense Net and Res Net and Efficient Net influenced
positively the meta-classifier decision (Figure 10). The models produced low output
values to indicate stroke is unlikely in negative case scenarios (Figure 11). The LIME
model successfully demonstrates base model contributions which improves system
transparency as well as healthcare practitioners' trust in the system during clinical
applications.

The integration of XAl techniques enhances the interpretability of our stroke
detection model. These visual and feature-based explanations confirm that the
models rely on clinically significant cues for decision-making. This not only builds
confidence in the model’s predictions but also ensures transparency for medical
practitioners. Overall, XAl adds a crucial layer of trust, making the system more
reliable and human-interpretable.
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Figure 11 LIME Visualization for Negative Stroke(Normal Case) Prediction

4. Conclusion

This research creates a stroke diagnostic system which combines deep models with
transfer learning and explains the process using XAl techniques to analyze brain CT
images to detect stroke conditions. A combination of Res Net, Dense Net and
Efficient Net as base models and logistic regression as meta-model reached an
accuracy of 97.37 in the proposed EXS3D framework. XAI tools Grad-CAM and SHAP
and LIME generated understandable visual and feature-level analyses through
medical-relevant region identification which led to effective stroke detection
patterns.

Our findings highlight the critical role of explain ability in deep learning for
healthcare. XAl integration can enhance transparency and support clinical validation
by revealing decision-making processes. Furthermore, the ensemble approach
improved classification performance and mitigated over fitting, making the system a
robust and reliable solution for automated stroke detection.

Despite the promising performance of the proposed EXS3D model, certain
limitations should be acknowledged. The dataset used in this study was relatively
small in size, and the employment of under sampling technique may have resulted in
the loss of potentially valuable information from the majority class (normal class).
Additionally, the model has not yet undergone any clinical validation on real-world
stroke data, which is crucial for assessing its diagnostic reliability and practical
applicability.
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Future research will focus on addressing these limitations by incorporating larger,

more diverse datasets and collaborating with clinical experts to evaluate the

framework on real-world MRI and CT datasets, enabling assessment of its diagnostic

reliability and integration into hospital decision-support systems.The addition of

transformer-based vision models represents a potential future research objective for

increasing data set generalization. Implementing Al models in practice in healthcare

institutions can facilitate quick stroke recognition and assist in an interactive

decision-making system, which will offer clinicians practical information that will

increase diagnostic accuracy.
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