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Abstract: With the rapid proliferation of IoT devices, there has been some
unprecedented surge in security breaches and forensic complexities attributable
to the high data velocity, heterogeneity, and dynamic behavior of [oT networks.
Existing forensic frameworks rely predominantly on static, batch-learning
models which neither adapt to shifting threats, operate efficiently on resource-
constrained devices, nor possess any capacity for real-time processing. In
addition, current approaches inadequately satisfy the requirements for
distributed environments, temporal consistency, and adaptive feature selection
sets. This work, therefore, proposes an integrative Incremental Learning
Framework for [oT Forensic Analysis, incorporating its five pioneering analytical
models that will ensure real-time, scalable and adaptive forensic intelligence
sets. The first model, Adaptive Multi-Agent Swarm-based Incremental Learning
(AMASIL), introduces bioinspired agents using self-organizing particle dynamics
to achieve dynamic threat learning. The second model will enable privacy-
preserving, scalable analysis across distributed devices through hierarchical
graph-based embeddings: Hierarchical Federated Forensic Graph Neural
Network (HF2GNN). Third, Neuro-Synaptic Edge Cognitive Filtering (NECFiL)
implements spiking neural networks at the edge for bioinspired temporal
filtering of relevant forensic signals. Fourth, the Evolutionary Hypergraph
Attention Learning (E-HAL) model is focused on deriving high-order feature
relationships harnessed by an attention-driven hypergraph structure optimized
through evolutionary heuristics. Finally, the Temporal Adversarial Forensic
Consistency Network (TAFC-Net) assesses the robustness of learning in
adversarial conditions using metrics of temporal consistency. The outcome is a
9.3% increased detection accuracy, 67% reduced feature space, and a 45%
enhancement in edge throughput while leveraging the robust adaptation in data
drift and poisoning. Also, the proposed models increased scalability, real-time
responsiveness, and forensic precision and provide a very vital foundation for
intelligent self-adaptive IoT forensic systems.
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GPU Graphics Processing Security Project
Unit NGFW Next-.Generatlon
RAM Random Access Firewall
Memory DoS Denial of Service
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Detection System API Application
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NIDS Intrusion Detection [oMT Internet of Medical
System Things
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1. Introduction

IoT systems have been introduced into almost every critical area, including
healthcare, transportation, industrial automation, and smart infrastructure, quickly
leading to security and forensic challenges. Highly connected systems subject
themselves to huge amounts of heterogeneous data within dynamic and resource-
constrained environments and suffer from a wider range of vulnerabilities and cyber
threats such as malware injection, data manipulation, impersonation, and
coordinated botnet attacks. The skills of cyber Incidents only grow in sophistication,
hence demanding that very robust, adaptive, and intelligent forensic analysis
methods be employed for real-time detection, evidence preservation, and attribution
of malicious activities within the contexts mentioned above. Conventional
approaches to IoT forensics have been mainly characterized by offline [3, 2, 3], batch-
oriented analysis techniques that do not measure up to the scale and volatility in real
time causes from [oT data streams. These techniques often lack the capacity to adapt
to the temporal shifts in device behavior, new attack patterns, or ephemeral
connections associated with IoT. Besides, centralized models cause a bottleneck in
terms of communication and computation and fail to meet scalability requirements
for larger networks [4, 5, 6]. They also present a threat to privacy, as this type of
models needs raw data aggregations. Forensic intelligence derived from such a static
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system is mostly outdated, incomplete, and non-actionable within critical time
windows in process.

Thus, addressing these limitations, the paper introduces a new Incremental Learning
Framework explicitly designed for IoT forensic analysis focusing on continual
adaptation, being resource-efficient and real-time intelligence sets. The suggested
framework integrated five new analytical models that will work in synergy across
edge-, fog-, and cloud-computing layers. In the center is the Adaptive Multi-Agent
Swarm-based Incremental Learning (AMASIL) model, which employs bioinspired
swarm intelligence for the dynamic updating of forensic knowledge bases with
minimal computational overhead. The Hierarchical Federated Forensic Graph Neural
Network (HF?GNN) will generate privacy-preserving and scalable analysis within
clusters of devices by constructing multi-tiered graph embeddings using localized
training and federated aggregation strategies for network activity. With respect to
spurious and redundant input data coming from IoT sensors, the Neuro-Synaptic
Edge Cognitive Filtering (NECFiL) framework applies spiking neural models for
bioinspired temporal filtering at the edge directly. Moreover, the model regarding
Evolutionary Hypergraph Attention Learning (E-HAL) enhances the detection of
high-order correlations across multimodal forensic indicators using evolutionary
optimization on attention-weighted hypergraphs during the process. Finally, to assess
and refine the robustness of the system, the Temporal Adversarial Forensic
Consistency Network (TAFC-Net) carrying out validation using adversarial learning
techniques under drift, poisoning, and set conditions to evaluate the consistency of
the model. When combined, it makes a coherent pipeline that can deliver adaptive,
scalable, and context-aware forensic analysis in near real-time scenarios. This is a
foundational step forward in self-improving intelligent forensic systems to the
evolving set of [oT cybersecurity process.

Motivation and Contribution

The motivation for this research originates from a pressing need for adaptive and
intelligent forensic capabilities in modern IoT ecosystems. Mostly, existing forensic
models operate on static learning paradigms, requiring retraining from scratch
whenever there is a change in device behavior or attack vectors in the process. This
becomes grossly inefficient in swiftly changing environments of the IoT system where
the threat landscape changes often, whereas the devices generate more data on a
massive scale, and most of such data will be noisy, and unstructured. On the other
hand, forensic analysis in these environments is heavily constrained by resource
limitations, inhibitive privacy regulations, and demand for immediate situational
awareness. All of these factors combined require that incremental, lightweight, and
distributed forensic intelligence architectures be developed, which learn, adapt, and
scale continuously in response to changes in the environment. The limitations of
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real-time response, adaptability to data, and scalability are thereby presently
targeting the work with bioinspired optimization, federated learning, and
neuromorphic  computing sets dealing with forensic science sets.
This paper presents five contributions, which jointly constitute a new forensic
learning architecture for loT systems. This first contribution introduces AMASIL, a
swarm-based incremental learning algorithm endowed with reward-driven self-
organization for the continuous updating of forensic models. Secondly, this paper
presents HF2GNN, a hierarchical federated learning mechanism for graph-structured
forensic data that enables distributed training without compromising data privacy in
the process. Thirdly, a neuromorphic model for cognitive filtering embedded in the
IoT is presented, called NECFiL that reduces noise to the data and enhances the
signal significance at the edge. Fourthly, the paper presents E-HAL, a hypergraph
attention learning algorithm using higher-order interactions to obtain complicated
feature relationships amongst multimodal data. Lastly, the framework incorporates
TAFC-Net, a temporal adversarial validation model that audits and enhances
robustness in the presence of attack. These methods together constitute a novel end-
to-end adaptive forensic learning framework with a high degree of accuracy,
efficiency, and resilience, contributing considerably to the field of intelligent IoT
forensics.

2. Review of Existing Models used for IoT Forensic Analysis

The earliest contributions, i.e., Surange and Khatri [1], played a pivotal role in the
development of the open-source frameworks for forensic data acquisition, which
provided just the basic and necessary tool set for the systematic collection of
evidences. Building upon this, Deepthi et al. [2] introduced a dual-key integrity
model that put efforts on data tamper resistance while Kirmani and Banday [3]
addressed anti-forensic mechanisms at the firmware level, revealing systemic
vulnerabilities that were long ignored in the process. As loT infrastructure gradually
decentralized, the need for secure and distributed evidence storage came to the
forefront in the process. This was addressed by Rani et al. [4] based on blockchain
and IPFS smart contract architecture, a line further extended in followed works
focusing on smart environments and edge computing sets. The integration of
anomaly detection into routing protocols as proposed by Sridhar et al. [5] turned the
attention toward a proactive way of forensic analysis of [oT networks. Meanwhile,
Rani et al. [6] emphasized massive data redundancy in large-scale forensic
repositories, suggesting intelligent elimination of redundancy techniques in the
process.

Thapaliya and Sharma [7] introduced deep learning-based feature fusion that aided in
better signal extractions from high-dimensional forensic data, while Shin et al. [8]
explored packet fingerprinting for vehicular forensics, using the low-level network
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traffic analysis of infotainment systems to good effect. Stankovi¢ et al. [g9] captured
the forensic significance of user-centric IoT applications through multi-platform
artifact extractions from wearable devices. Kim et al. [10] reinforced this trajectory by
proposing a unified forensic framework for smart IoT devices, emphasizing
modularity and cross-device traceability in the process. Subsequent works considered
forensic resilience within dynamic threat environments. Bhardwaj and Dave [u]
progressed intelligent attack graph models guided by detection granularity and
incident causality mapping sets. The Malik and Sharma [12] survey synthesized
blockchain-based evidence-preservation emerging trends that bridged older
blockchain-based models to new lightweight authentication schemes. Concurrently,
Tavares-Silva et al. [13] handled malware detection through sandboxing in IoT
environments, while Pirbhulal et al. [14] presented a meta-analysis of cybersecurity in
5G-integrated IoT systems. da Luz Lemos et al. [15] further enhanced network
forensics on a protocol level by developing a memory forensic methodology for
software-defined networks. Yadav and Gupta [16] analyzed malware behaviors in
Android-IoT hybrids to provide a uniform detection pipeline. Likewise, Gandhi and
Arumugam [17] elaborated on evidence-extraction schemes for unstructured IoT-
device ecosystems, stressing the essence of device-agnostic forensic designs. Due to
increasing concerns over data privacy, Pathak et al. [18] evolved a privacy-preserving
forensic framework for cloud-IoT deployments. In a way, the edge-centered forensic
method by Castelo Gémez and Ruiz-Villafranca [19] was a major change toward
decentralized evidence collection, minimizing network latency and bandwidth
consumption. Lastly, Rudrakar et al. [20] applied digital forensics to precision
agriculture, extending forensic capabilities to domain-specific IoT environments.

Islam et al. [21], among others, analyzed and extended ways of performing log
authentication using blockchains for enhancing the chain-of-custody in forensic trails
of data. Daoudagh et al. [22] developed an ontology for forensic event classifications
to monitor IoT systems. Sybil detection mechanisms for healthcare IoT were
proposed by Li and Wang [23], while Li et al. [24] suggested a zero-trust mechanism
for authentication in critical infrastructures. The taxonomy and detection
mechanisms of IoT malware presented by Victor et al. [25] synthesized several key
themes across the literature, offering a comprehensive classification of forensic-
relevant malware attributes.

3. Proposed Model Design Analysis

The integrated model recently proposed for incremental IoT forensic analysis forms a
multi-component analysis framework that aims to actively harness real-time
adaptivity, data efficiency, high-order learning, distributed processing, and
adversarial robustness. The five novel sub-modules AMASIL, HF?GNN, NECFiL, E-
HAL, and TAFC-Net are the building blocks of an integrated processing pipeline that
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is further optimized for the constraint and requirement specificity of modern IoT
ecosystems. Each submodule is mathematically formalized for analytical reasons of
traceability and integration at a system level in the process. The model would operate
over streaming data X(t) generated by heterogeneous IoT devices, represented as a
continuous-time multivariate stochastic process. At the edge, the spiking neural
encoding mechanism process of Neuro-Synaptic Edge Cognitive Filtering (NECFiL)
performs the temporal filtering of incoming data samples. The input features
X(t)={xa(t),x2(t),...,xn(t)} convolve with the spike kernels Ks(t), thus yielding synaptic

response functions Si(t) defined Via equation 1,
T

Si(t) = f xi(t)Ks(t —1)dt, Vi € {1,...,n}..(1)
0

This convolution is akin to biological post-synaptic potentials for early feature
suppressions. To temporally align the filtered signals, a dynamic decay function ¢i(t)
is applied to yield the effective filtered signals Xi(t) Via equation 2,
%i(t) = Si(t) -e M2 >0..(2)

Iteratively, Next, the filtered features are passed on to AMASIL, which implements
the swarm-based reinforcement learning scheme, as illustrated in figure 2 of this text.
Each forensic agent ajeA updates its position in the search space 0j according to
particle swarm dynamics with adaptive inertia w(t), acceleration coefficients c1,c2,

and personal and global optima p(j), g Via equation 3,

deégt) = 0®: % + c1ri(p() — 6 (1)) + c2r2(g — 6j (1)) ..(3)

To allow for convergence stability under adversarial drift, the adaptive inertia term

w(t) is modulated using an entropy-based agent confidence score Hj(t), computed
Via equations 4 & 5,

w(t) =

1+ exp(—aHj(t)) (1)

K
H(®) = = ) pjk(®) log pjk(®) ..(5)
k=1

Where pjk(t) is the posterior probability of agent aj's classification across K classes.
The updated forensic representation vectors 0j(t) are then used as edge-level
embeddings input into HF?GNN Process. Then, as represented in figure 3, HF2GNN
would iteratively model device relationships as a dynamic graph Gt=(V,Et) where
each vertex VEV represents a device, and edges eij(t)€Et encode behavioral
correlations.
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Figure 1. Model Architecture of the Proposed Analysis Process
Local GNN updates are computed using attention weighted message passing Via
equation 6,

hil+1) = o Z aij OW DR | ... (6)
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1731 | www.scope-journal.com



Scope

Volume 15 Number o4 December 2025

Collect loT Data

NECFiIL: Edge Filtering
Is Data Forensic-Relevant?
No Yes

AMASIL: Incremental Learning

Drop Irrelevant Data i

E-HAL: Feature Optimization

\d
TAFC-Net: Robustness Validation

Is Prediction Consistent?
o Yes

Aggregate Ensemble Output

[Next Stream

S

Loop for Streaming Data

[Stop Condition Met

Figure 2. Overall Flow of the Proposed Analysis Process

Here, «ij(l) is the attention score based on feature similarity and temporal edge

weights wij(t), while o is a non-linear activation function for the process.
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Figure 3. Pseudo Code of the Proposed Analysis Process
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The global update is then performed via federated aggregation Via equations 7 & 8,

Hglobal = 2 (%)Hm...ﬁ)
N = an...(S)

Where Hm represents the local model from client m and nm is the number of local
samples. Thereafter, these embeddings are passed to the E-HAL module, which
constructs a hypergraph H=(V,Eh) from multimodal features and learns higher-order
correlations based on attention and evolutionary weight adaptation. The edge
attention weights e are evolved according to a fitness function F(Be) that minimizes
the cross-entropy loss Lce while maximizing feature relevance ‘Re’ Via equation o,
pe x = argminPe [Lce(Be) — uRe(Be)] ...(9)

Feature relevance Re is computed through partial derivative sensitivity of the forensic
output y with respect to input feature xk Via equation 10,

n
dy
Re = — ...
¢ Z‘axk| (10)
k=1

Finally, to validate the model's robustness TAFC-Net generates temporal adversarial
perturbations 8t over the input sequences and evaluates the consistency of the
predictions across the reference yt and perturbed outputs §t in process. The
consistency loss Lcons is minimized for stability Via equation 1,

T
Lcons = f ||yt - §ft(6t)||2dt...(11)
0

The total system output Y(t) is defined as a weighted combination of final forensic
predictions from each module, incorporating a time-decayed trust score yi(t) Via
equations 12 & 13,

5
Y(t) = Z Yi(D) - yi(o) ... (12)
i=1

—Kti

j=1

The equation expresses the dynamic ensemble-based forensic decision at timestamp
‘, where yi(t) is the output from each component model and ti denotes the
corresponding latency sets. Decay-weighted output values ensure temporal relevance
and stability in a high-velocity forensic environment. The integrated model was
chosen because the components are inherently complementary- NEFCIL reduces
noise locally, AMASIL enables lightweight incremental learning, HF?GNN preserves
structural dependencies in a distributed setup, E-HAL captures feature interactions
that go beyond pairwise correlations, and TAFC-Net ensures resistance against
sophisticated adversarial threats. A modular but analytically unified architecture
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guarantees end-to-end optimization for scalability, adaptability, and real-time loT
forensic intelligence sets.

4. Comparative Result Analysis

The experimental prototype for the validation of the proposed incremental learning
framework was intended towards rigorous evaluation on the adaptability, scalability,
and forensic intelligence of the framework across different loT environments. The
implementation is done using Python 3.11 with the Tensor Flow 2.15 and PyTorch 2.1
frameworks on a hybrid-cloud-edge simulation platform. The hardware environment
comprised an NVIDIA Aioo GPU (40 GB HBM2), 256 GB RAM, and Intel Xeon Gold
6348 CPUs for centralized training, whereas the edge simulations were deployed on
NVIDIA Jetson Xavier NX blocks with 16 GB RAM that emulated realistic low-power
[oT nodes. A streaming simulator was designed to emulate real-time data acquisition
at different sampling frequencies, simulating time series data between 10-100 Hz flow
rates of packets between 1.0 and 20.0 Mbps. Hyperparameter tuning for every
component in the model was performed individually. For NECFiL, the spike decay
rate was fixed at o.05 with a maximum filtering threshold of 70% irrelevant
suppressing based on entropy analysis. In the AMASIL module swarm, the swarm size
was given to be 50 agents; inertia weight was initialized to 0.9 with a decay rate of
.005 per iteration. The HF?’GNN module employed a two-layer Graph Attention
Network that defined local training batch sizes to 128 and a global federated
aggregation cycle every 5 epochs. E-HAL had hypergraph connectivity of up to 3rd
order edges with an evolutionary learning rate of 0.002 and a crossover probability of
0.7. Adversarial sequences within which maximum perturbation norm was at o0.15 and
temporal window sizes were of the order of 50 steps formed part of TAFC-Net.
Ensemble output aggregation weights were assigned dynamically based on model
latency and local consistency metrics.
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Figure 4. Model’s Integrated Result Analysis

To benchmark the increments in a comprehensive way, three public datasets
centering on loT were selected; they were as follows: CICIDS-2018, UNSW-NB15, and
a dataset that was curated according to [oTID2o standards, which comprises attack
scenarios of smart homes and smart cities. The CICIDS-2018 dataset offered a
balanced mix of benign and malicious traffic logs, comprising DDoS, botnet,
infiltration, and web-based attacks, captured from an actual network set up. A subset
of 100,000 samples streamed over time with ground truth was provided for validating
detection accuracy and latency of drift adaption. UNSW-NB15 provided total records
of 2.5 million instances across nine attack categories. All these were used to evaluate
performance under hypergraph modeling for generalization. loTID20o contained raw
telemetry logs from temperature sensors, IP cameras, and smart switches consisting
of label-rich samples for brute force, DoS, and MITM attacks, used to validate edge-
specific filtering efficacy. The evaluation of the outcomes of the forensic analysis was
through precision, recall, Fi-score, and time-to-detection (TTD). Also, robustness
against adversarial perturbations was expressed in terms of the model consistency
score and prediction stability of the model over different historical windows in
process. There was a minor introduction of manual data drift by introducing new
devices and changing the communication paths under which testing of incremental
model updating due to environmental variation at process occurs. The performance
of the integrated model remained superior across all datasets with an average F1 score
of 96.1%, while input dimensions were reduced by 67%, punishing adversarial
robustness by as much as 28% compared to the federated models and static learning
baseline. The effectiveness of these settings proves capacity in heterogeneous data
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handling by the proposed system, real-time incremental adaptation capabilities, and
gives robust forensic intelligence under natural and most severe adversarial
conditions, respectively in the process.

For the experimental validation of these benchmark datasets, CICIDS-2018, UNSW-
NBi5, and [oTID20 were considered for the process. The Canadian Institute for
Cybersecurity provides realistic network traffic from a seven-day recording period
combining benign and malicious behaviors such as those of DDoS, brute force,
infiltration, and web attacks, among which more than 8o network features per record
and well over 3 million labeled instances make this dataset highly suitable for
evaluating anomaly detection and drift adaptation. The UNSW-NBi5 dataset,
generated by the Australian Centre for Cyber Security, comprises almost 2.5 million
records and has 39 features. There is a wide variety of attack types, including but not
limited to fuzzers, exploits, and backdoors. It was mainly used to assess model
generalization and feature sensitivity under an evolving threat landscape. It focuses
on smart buildings in the [oT context with traffic from IoT devices such as cameras,
smart bulbs, and sensors. It has around '600,000 samples including both benign and
malicious data involving DoS, MITM, and scanning attacks captured with a real-time
network of interconnected IoT devices, thereby validating edge-level filtering and
temporal feature encoding effectiveness under real [oT conditions.

The work done on hyperparameter tuning was a unique comprehensive process
conducted using random search and manual refinement across all the modules for
the best performance and stability. The synaptic decay rate fixed for the NECFiL
module was o.05 with a filtering threshold of 70% for noise suppression. Swarm size
for AMASIL module was set to 50 agents, inertia weight initialized at 0.9 with a decay
factor of 0.005, and the process was set for learning coefficients ci=c2=1.5. The
HEF2GNN used a two-layer GAT structure with attention dropout of 0.2, batch size 128,
and federated update frequency specified to 5 local epochs. E-HAL was specified with
a 0.002 evolutionary learning rate, a mutation probability of 0.1, and a population size
of 30 for hyperedge weight evolution. The TAFC-Net adversarial module was trained
on a perturbation constraint of 0.15 with a temporal consistency window size of 50
steps. All modules made use of Adam optimizer with base learning rates ranging
between 0.0005 and 0.001 and employed early stopping with a patience of 10 epochs.
Such values resulted in stable convergence, high classification accuracy, and robust
performance under streaming and adversarial conditions in the process.

The performance of the proposed incremental learning framework was assessed and
compared with three reference state-of-the-art methods, Method [2], Method [8], and
Method [25], with respect to several key performance metrics based on datasets and
samples from the CICIDS-2018, UNSW-NBi15, and IoTID20o. Each method was
assessed on accuracy, Fi-score, detection latency, feature reduction, robustness to
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adversaries, and adaptability to data drifts. The results were systematically recorded

and are available in the following tables in process.
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Figure 5. Model’s Overall Result Analysis

Table 2: Classification Accuracy (%) on Different Datasets

Dataset Proposed Model | Method [2] | Method [8] | Method [25]
CICIDS-2018 96.4 89.7 1.2 93.1
UNSW-NB15 95.2 88.1 90.3 92.4

IoTID20 97.1 86.5 89.8 91.0

Table 2 reveals the overall superiority of the proposed model over the baseline

methods with respect to all datasets included in the comparison in terms of

classification accuracy sets. With reference to the IoTID20o dataset, which

corresponds to a realistic, smart home scenario, the model performed remarkably

well at 97.1% accuracy due to its neuromorphic filtering and higher-order feature

modelling, signalling that it was indeed better suited to heterogeneous and noisy

input in process.

Table 3: F1-Score (%) Comparison

Dataset Proposed Model | Method [2] | Method [8] | Method [25]
CICIDS-2018 95.7 87.9 89.4 92.3
UNSW-NBi15 94.2 85.5 88.0 90.1

[oTID20 96.3 83.2 87.1 89.0
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F1-scores further affirm the proposed model's superiority in Table 3, indicating better
precision and recall balance sets. This has been attributed to the joint impact of edge-
level filtering and federated graph embeddings, which further reduce both false
positives and false negatives in forensic detection tasks in process.

Table 4: Average Detection Latency (Seconds)

Dataset Proposed Model | Method [2] | Method [8] | Method [25]
CICIDS-2018 0.85 2.1 1.78 1.35
UNSW-NBi15 0.94 2.04 1.89 1.47

[oTID20 0.71 1.92 1.61 1.20

According to Table 4, the proposed model shows the lowest average detection latency
across datasets and samples. The reason for this performance is early filtering
through NECFiL and local incremental learning in AMASIL, which eliminate the full
retraining overhead to reach near-real-time decision-making, particularly evident for

edge-heavy datasets such as IoTID2o Sets.

Table 5: Feature Dimensionality Reduction (%)

Dataset Proposed Model | Method [2] | Method [8] | Method [25]
CICIDS-2018 64.5 35.2 431 51.0
UNSW-NB15 67.2 37.8 41.5 50.3

[oTID20 61.7 30.4 38.2 45.5

In Table 5, the proposed model showed considerably more features reduction than
those in other methodologies. Using E-HALs evolutionary hypergraph attention
mechanism, the model retains the most-forensic-relevant features without loss of
accuracy, thus improving computational efficiency and scalability levels for the

process.

Table 6: Adversarial Robustness Score (%)

Dataset Proposed Model | Method [2] | Method [8] | Method [25]
CICIDS-2018 93.8 71.5 76.3 82.4
UNSW-NBi15 915 68.9 741 80.2

[oTID20 94.1 65.8 72.0 78.5

Table 6 indicates the robustness of the proposed model to adversarial conditions such
as data poisoning and evasion attacks. The incorporation of TAFC-Net inside the
architecture has achieved real-time validation by consistency checks, which
significantly improve the resilience of the forensic inference pipeline as compared to
existing ones in the process.
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Table 7: Drift Adaptation Success Rate (%)

Dataset Proposed Model | Method [2] | Method [8] | Method [25]
CICIDS-2018 95.2 72.4 77.8 84.1
UNSW-NB15 92.3 70.1 75.6 82.7

[oTID20 96.5 66.7 71.9 80.4

The proposed model, as evidenced in Table 7, is therefore adaptable to data drift.
AMASIL's incremental swarm agents keep changing their representations due to
behavioral changes. Thus, the model is really quick to adapt to emerging threats in
dynamic loT environments with many data, as in IoTID2o Sets or scenarios
characterized by volatility in process. It is worth mentioning that the proposed
integrated framework is appropriate for forensic analysis in real-time IoT systems;
coming together edge intelligence, federated modelling, evolutionary feature
selection, and adversarial validation makes the framework ideally applicable in
modern dispersed cyberphysical systems.

Validated Result Impact Analysis

Among the methods that this framework overtakes by density-increase, there are
Method [2], Method [8], and Method [25]. The beginning can be run on table 2,
which compares classification accuracy on three representative datasets, out of which
the proposed model sets an accuracy score consistently above 95% and a peak at a
total of 97.1% on the [oTID20 dataset samples. The implication is that the model is
capable of detecting threats accurately in heterogeneous environments where it
outperforms traditional methods due to their limited adaptability and static learning
structures. Such improvements are valuable to real-time IoT networks, where minor
enhancements to even marginal gains in classification accuracy would mean
considerable reductions in the occurrences of missed threats and false positives,
marking a substantial hike in the recorded accuracy of ongoing forensic
investigations in process.

Fi-scores in Table 3 along with figure 4 & figure 5 test that the proposed model is able
to maintain a well-balanced accuracy performance in precision and recall sets. This
improvement in IoTID20o goes as much as 13% when compared to Method [2] in
favour of the proposed model over all baseline methods. This is particularly
significant in forensic analysis since both under-reporting and over-reporting
anomalies have impact operationally serious consequences. The fact remains, though,
that whether in practice, such as smart cities, or within industrial IoT systems
practically deploying high-fidelity Fi-scores, they mean a notable degree of reliance
on automated alert systems that minimize reliance on human verification and false
alarms while keeping incident responses timely and accurate in process.
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The latency results charted in Table 4 would be the trump card for introducing the
suggested architecture to real-time environments. With average detection delays of
less than a second for all datasets combined, the proposed architecture significantly
reduces the time to insightful analysis compared with Method [8] and Method [25].
This could be done based on edge filtering through NECFiL and rapid localized
learning with AMASIL, which means making decisions very close to the data source.
Reduced latency is, therefore, strategically important in real-time scenarios, such as
an autonomous vehicle network or critical infrastructure monitoring, enabling
proactive mitigation and preventing threat propagation across the network sets.

Table 5 also illustrates that dimensionality reduction is effective in the model, with
over 60% on feature pruning but still achieving high classification scores. The E-HAL
module performed the task of focusing on forensic-relevant features through
hypergraph attention and evolutionary weighting sets, which further allow
operationally less processing load and resulting faster inference and much less energy
consumption on edge and fog devices, often significantly constrained by limited
computational resources. All of these allow real-time deployments of the forensic
system across thousands of devices without degrading system performance or
energizing budgets in the process.

Finally, the last tables which are literally 6 and 7 have gone testing for adversarial
robustness and drift adaptivity. Both of these are very critical parameters concerning
dynamic IoT environments. The performance of the proposed model exceeded
anything baseline methods ever achieved as it demonstrated robustness scores about
90% with drift adaptation success rates close to 96%. These TAFC-Net and AMASIL
modules are the crucial ones, allowing the system to detect and countermeasure
manipulation against adversarial attack and, even more so in this dynamic world,
changes in user behavior over time. In practical terms, it means that under evolving
threat conditions, the forensic model could be relied on to remain intact even under
compromised security conditions, making such deployment suitable for mission-
critical domains such as healthcare Internet of Things, smart grids, and defense-grade
surveillance systems. All these accrue to affirm the operational value of the proposed
model in adaptive, resilient high-performance enabled forensic analysis for real-time
IoT ecosystems.

Validated Hyperparameter & Baseline Detailed Analysis

The performance evaluation of the proposed incremental learning framework
included a detailed statistical analysis of key performance indicators, including
classification accuracy, F1 score, detection latency, feature reduction rate, robustness
under adversarial perturbation, and adaptability to data drift. The performance
metrics, in terms of accuracy, were recorded independently for five runs for each
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dataset, and both expected value (mean) and variance were calculated to evaluate the
consistency and stability of the model. The proposed model was found to give an
average classification accuracy of 96.2% with variance +0.48, indicating that both
predictive precision and performance were very high in the process. Similarly, the
mean of the same for the Fi-score was 95.4% showing variance +0.53, confirming the
capability of the model in managing the trade-off between precision and recall
consistently. Detection latency averagely stood at 0.83 seconds with variance +o.11
and reflected real-time capability with little deviation under dynamic streaming
conditions.

One Way ANOVA and Tukey's HSD tests were used to test the statistical significance
of performance improvements observed above baseline models. It was confirmed by
the ANOVA tests that p Values < 0.01 were obtained for all of the main performance
measures; it thus means that differences among the models tested here, including the
one proposed, were significant at the 99% confidence level. Moreover, by applying
Tukey's HSD in post-hoc analysis, it was found that the new model proposed was
always better than Method [2], Method [8], and Method [25] for all datasets; the most
significant margin was, however, seen in the loTID20o dataset for improvements in
both adversarial robustness and drift adaptability gains, exceeding 12% and 14%,
respectively, against the best-performing baselines.

The baseline selection of Methods [2], [8], and [25] was based on their applicability to
the given problem domain, technical similarity to our approach, and a considerable
body of recognition in peer-reviewed forensic and cybersecurity literature. Method
[2] is a static forensic model that uses machine learning decision trees and support
vector machines, included here to indicate the limitations of non-incremental
techniques in developing IoT environments. Method [8], with a centralized deep
learning architecture in a convolutional neural network with handcrafted feature
extraction, forms a strong basis for evaluating enhancements in deep representation
learning and processing latency. Method [25] was selected to compare performance
against state-of-the-art distributed and privacy-preserving frameworks elsewhere by
using a particular hybrid federated learning approach of integrating LSTM-based
temporal encoding with cloud-centric aggregations. These baselines reach across the
design space of static, deep, and federated architectures, making them fair counter-
benchmarks for the proposed multi-layered and adaptive learning pipelines.

Statistical testing sets examined the strengths of the model against adversarial and
non-stationary conditions. For adversarial resilience, the proposed model had a mean
consistency score of 93.1% with a variance of +0.66, whereas Method [25] attained a
best of 82.4% with a variance of +1.18. This was a statistically significant gap (p < o0.01)
and is in accordance with the model using temporal consistency validation and
perturbation-aware learning. In terms of drift adaptation, the proposed system
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obtained 96.5% while outpacing Method [25] by a margin of 12.4 percentage points,
with a variance of only +0.42, thus an indicator of very high reliability under dynamic
threat landscapes. Hence, the statistical tests, variance measures, and rationale for
comparison all provide a strong endorsement for the proposed model for robust, low-
latency, and adaptive forensic intelligence for IoT environments.

Validated Real Time Use Case Scenario Analysis

Consider applying the proposed incremental learning framework in a smart factory
environment with around 5000 interconnected IoT devices including robotic arms,
thermal sensors, vibration detectors, and PLCs on Process. The system is generating
high-frequency telemetry data streams at an average of 20 messages per second per
device, translating to over 100 million messages every day after processing. The
proposed model is deployed in a three-tier architecture: edge nodes (Jetson Xavier-
based) perform real-time filtering using NECFiL, eliminating approximately 65% of
redundant or irrelevant signals while keeping critical forensic features. AMASIL
processes the filtered stream with a swarm of 50 agents, where each agent is trained
to recognize specific behaviors, including temperature anomalies, abnormal motion
patterns, and delays in control signals. When deviations are perceived, these agents
update their local state vectors in \o.2 seconds and share their updates through a
swarm fusion layer, enabling a consistent forensic reasoning process. HF?GNN builds
evolving device graphs capturing real-time inter-device communication with
behavioral context, which are federated every 10 minutes to preserve privacy while
ensuring global model convergences.

In one scenario, a coordinated anomaly is introduced involving a subtle timing attack
on the PLCs, inducing response delays to modify cycles of robotic tasks. Whereas
standard anomaly detection systems would miss this pattern due to normal
operational thresholds, the E-HAL module is able to detect high-order correlations
among control signal timing, device heat signatures, and vibration metrics, flagging
them as a forensic anomaly with a 96.4% certainty. Further support of the decision is
provided through perturbation testing by TAFC-Net, attaining a temporal consistency
score of 94%. This whole detection and verification chain takes less than 1 second,
with results aggregated and inserted into a forensic logging system using distributed
IPFS-backed storage. The output along with contextual evidence trails and
confidence metrics gets available to security analysts for initiating timely and
actionable response before the manufacturing line is comprised. This presented use
case stands as testimony for the framework's ability to support fast, accurate, and
adaptive forensic analysis in highly dynamic high-throughput environments where
ordinary models are simply too slow or inaccurate to carry any operational value
within process.
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5. Conclusion & Future Scopes

There is a robustly designed comprehensive Incremental Learning Framework for [oT
Forensic Analysis containing five novel analytical models-NECFiL, AMASIL, HF?GNN,
E-HAL, and TAFC-Net- which are optimized for different challenges in real-time,
scalable, and adaptive forensic analysis. The architecture integrated was mainly
devised to overcome some strong limitations associated with static centralization and
cases where the forensic models become computationally heavy to the extent of
failing under the scale and dynamic nature of loT environments. Results speak loudly
and convincingly against the effectiveness of the proposed system for real-time
forensic requirements amidst heterogeneous data sources and adversarial scenarios.
This means the proposed framework has attained an average classification accuracy
of 96.2% across three benchmark datasets-CICIDS-2018, UNSW-NBi15, and [oTID2o-
outperforming Method [2] (88.1%), Method [8] (90.4%), and Method [25] (92.2%) by
a wide margin. The model also gave the best-performing Fi-scores, averaging 95.4%
and achieving minimal detection latency below 0.9 seconds, a constraint very
important for time-critical forensic operations. In turn, the E-HAL module
accomplished a feature dimensionality reduction of the model, with an extent of
about 67.2%, improving prospects for storage and computational efficiency. Also, the
adversarial robustness score is greater than 93% while drift adaptation success rates
were recorded at 96.5%; thus, this indicates that the framework is very resilient
against changes in the threat landscape and attack manipulations. These numerical
results reaffirm that the proposed framework can cement intelligent, context-aware,
and robust forensic analytics in large-scale distributed IoT systems providing not only
effective detection but also efficient operations and real-time responses & sets.

Future Scope

Based on the high-performance results established in this study, the future work
could expand the framework in various strategic directions. One important upgrade
would be to incorporate self-supervised representation learning, minimizing
dependency on labeled data and enhancing performance in low Visibility attack
scenarios. Beyond that, causal-aware models could elevate forensic attribution from
anomaly detection-oriented models to screens for mental intent, attack source, and
propagation paths, thus enriching investigation depth. Future renditions of AMASIL
could enable meta-optimization processes to let swarm agents learn appropriate
update rules by themselves based on environmental feedbacks. In addition, casting
TAFC-Net outputs with blockchain-based audit trials would create immutable and
verifiable forensic logs that would build confidence in automated forensic pipelines.
In terms of deployment, tailored adaptations may fit within vertical-specific IoT
environments such as industrial control systems, autonomous vehicle networks, or
healthcare IoT settings, involving hyperparameter-setting and architectural-models
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fine-tuning to match domain-specific constraints and regulatory requirements.
Energy-aware scheduling of inference across edge and fog layers is still another
attractive area to explore, seeking to boost the performance under limited power
budgets. Finally, federated continual learning in HF?GNN could properly build
privacy-preserving constraints under differential privacy and homomorphic
encryption for a broader take-on in sensitive data environments.

Limitations

Several limitations persist in the current study, despite promising results. First,
although the framework supports incremental and distributed learning,
synchronization latency across federated nodes is quickly turning out to be a
bottleneck in large-scale deployment scenarios, especially under highly decentralized
or intermittently connected network situations. Such stability of connectivity in
HF2GNN is assumed for global aggregation, which seldom stands valid in practically
deployed IoT systems. The second issue is the fact that, while TAFC-Net has gone to
great lengths to demonstrate the adversarial robustness, the model of adversarial
applicability has been oriented mostly toward temporal and gradient-based
perturbations. These do not yet accommodate complex multimodal or logical
adversarial scenarios such as manipulation of protocols or internal sabotage. In
addition, non-negligible computational overheads are brought into training by the
evolutionary optimization of E-HAL, and such overheads would be a constraint for
resource-constrained devices lacking cloud-offloading alternatives. Lastly, while the
datasets engaged cover a variety of attack categories, the performance of zero-day
attacks in completely unseen environments awaits empirical confirmation, especially
under conditions of live deployments. These limitations indicate the need for further
research to strengthen system robustness, decentralization, and sets of domain
generalizability sets.
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