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Abstract: With the rapid proliferation of IoT devices, there has been some 

unprecedented surge in security breaches and forensic complexities attributable 

to the high data velocity, heterogeneity, and dynamic behavior of IoT networks. 

Existing forensic frameworks rely predominantly on static, batch-learning 

models which neither adapt to shifting threats, operate efficiently on resource-

constrained devices, nor possess any capacity for real-time processing. In 

addition, current approaches inadequately satisfy the requirements for 

distributed environments, temporal consistency, and adaptive feature selection 

sets. This work, therefore, proposes an integrative Incremental Learning 

Framework for IoT Forensic Analysis, incorporating its five pioneering analytical 

models that will ensure real-time, scalable and adaptive forensic intelligence 

sets. The first model, Adaptive Multi-Agent Swarm-based Incremental Learning 

(AMASIL), introduces bioinspired agents using self-organizing particle dynamics 

to achieve dynamic threat learning. The second model will enable privacy-

preserving, scalable analysis across distributed devices through hierarchical 

graph-based embeddings: Hierarchical Federated Forensic Graph Neural 

Network (HF2GNN). Third, Neuro-Synaptic Edge Cognitive Filtering (NECFiL) 

implements spiking neural networks at the edge for bioinspired temporal 

filtering of relevant forensic signals. Fourth, the Evolutionary Hypergraph 

Attention Learning (E-HAL) model is focused on deriving high-order feature 

relationships harnessed by an attention-driven hypergraph structure optimized 

through evolutionary heuristics. Finally, the Temporal Adversarial Forensic 

Consistency Network (TAFC-Net) assesses the robustness of learning in 

adversarial conditions using metrics of temporal consistency. The outcome is a 

9.3% increased detection accuracy, 67% reduced feature space, and a 45% 

enhancement in edge throughput while leveraging the robust adaptation in data 

drift and poisoning. Also, the proposed models increased scalability, real-time 

responsiveness, and forensic precision and provide a very vital foundation for 

intelligent self-adaptive IoT forensic systems. 

Keywords: Incremental Learning, IoT Forensics, Bioinspired Optimization, 

Federated Learning, Real-Time Analysis 
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Abbreviation Full Form 

IoT Internet of Things 

AI Artificial Intelligence 

SDN 
Software-Defined 

Networking 

IPFS 
InterPlanetary File 

System 

RPL 

Routing Protocol for 

Low-Power and Lossy 

Networks 

DL Deep Learning 

ML Machine Learning 

GNN Graph Neural Network 

PSO 
Particle Swarm 

Optimization 

AMASIL 

Adaptive Multi-Agent 

Swarm-based 

Incremental Learning 

NECFiL 
Neuro-Synaptic Edge 

Cognitive Filtering 

HF²GNN 

Hierarchical Federated 

Forensic Graph Neural 

Network 

E-HAL 

Evolutionary 

Hypergraph Attention 

Learning 

TAFC-Net 

Temporal Adversarial 

Forensic Consistency 

Network 

RDAD 
Rank-Based Dynamic 

Attack Detection 

DDoS 
Distributed Denial of 

Service 

MITM Man-in-the-Middle 

F1-Score 
Harmonic Mean of 

Precision and Recall 

TTD Time to Detection 

VPN Virtual Private Network 

SN Springer Nature 

CICIDS-2018 Canadian Institute for 

Cybersecurity Intrusion 

Detection System 2018 

Dataset 

UNSW-NB15 

University of New South 

Wales Network-Based 

Dataset (2015) 

IoTID20 
IoT Intrusion Detection 

2020 Dataset 

HSD 

Honest Significant 

Difference (statistical 

test) 

ANOVA 
Analysis of Variance 

(statistical test) 

UI User Interface 

API 
Application 

Programming Interface 

IDS 
Intrusion Detection 

System 

DNS Domain Name System 

IP Internet Protocol 

TCP/IP 

Transmission Control 

Protocol/Internet 

Protocol 

SVM 
Support Vector 

Machine 

CNN 
Convolutional Neural 

Network 

LSTM 
Long Short-Term 

Memory 

P2P Peer-to-Peer 

BLE Bluetooth Low Energy 

GDPR 
General Data Protection 

Regulation 

FMA 
Forensic Memory 

Analysis 

CVE 

Common 

Vulnerabilities and 

Exposures 

UAV 
Unmanned Aerial 

Vehicle 
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OS Operating System 

QoS Quality of Service 

MAC Media Access Control 

CPU Central Processing Unit 

GPU 
Graphics Processing 

Unit 

RAM 
Random Access 

Memory 

SD 
Secure Digital (memory 

cards) 

SHA Secure Hash Algorithm 

VPN Virtual Private Network 

HIDS 
Host-based Intrusion 

Detection System 

NIDS 

Network-based 

Intrusion Detection 

System 

PKI 
Public Key 

Infrastructure 

DLT Distributed Ledger 

Technology 

UTM 
Unified Threat 

Management 

OWASP 
Open Web Application 

Security Project 

NGFW 
Next-Generation 

Firewall 

DoS Denial of Service 

TTP 
Tactics, Techniques, 

and Procedures 

APT 
Advanced Persistent 

Threat 

ACL Access Control List 

API 
Application 

Programming Interface 

IoMT 
Internet of Medical 

Things 

1. Introduction 

IoT systems have been introduced into almost every critical area, including 

healthcare, transportation, industrial automation, and smart infrastructure, quickly 

leading to security and forensic challenges. Highly connected systems subject 

themselves to huge amounts of heterogeneous data within dynamic and resource-

constrained environments and suffer from a wider range of vulnerabilities and cyber 

threats such as malware injection, data manipulation, impersonation, and 

coordinated botnet attacks. The skills of cyber Incidents only grow in sophistication, 

hence demanding that very robust, adaptive, and intelligent forensic analysis 

methods be employed for real-time detection, evidence preservation, and attribution 

of malicious activities within the contexts mentioned above. Conventional 

approaches to IoT forensics have been mainly characterized by offline [1, 2, 3], batch-

oriented analysis techniques that do not measure up to the scale and volatility in real 

time causes from IoT data streams. These techniques often lack the capacity to adapt 

to the temporal shifts in device behavior, new attack patterns, or ephemeral 

connections associated with IoT. Besides, centralized models cause a bottleneck in 

terms of communication and computation and fail to meet scalability requirements 

for larger networks [4, 5, 6]. They also present a threat to privacy, as this type of 

models needs raw data aggregations. Forensic intelligence derived from such a static 
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system is mostly outdated, incomplete, and non-actionable within critical time 

windows in process. 

Thus, addressing these limitations, the paper introduces a new Incremental Learning 

Framework explicitly designed for IoT forensic analysis focusing on continual 

adaptation, being resource-efficient and real-time intelligence sets. The suggested 

framework integrated five new analytical models that will work in synergy across 

edge-, fog-, and cloud-computing layers. In the center is the Adaptive Multi-Agent 

Swarm-based Incremental Learning (AMASIL) model, which employs bioinspired 

swarm intelligence for the dynamic updating of forensic knowledge bases with 

minimal computational overhead. The Hierarchical Federated Forensic Graph Neural 

Network (HF²GNN) will generate privacy-preserving and scalable analysis within 

clusters of devices by constructing multi-tiered graph embeddings using localized 

training and federated aggregation strategies for network activity. With respect to 

spurious and redundant input data coming from IoT sensors, the Neuro-Synaptic 

Edge Cognitive Filtering (NECFiL) framework applies spiking neural models for 

bioinspired temporal filtering at the edge directly. Moreover, the model regarding 

Evolutionary Hypergraph Attention Learning (E-HAL) enhances the detection of 

high-order correlations across multimodal forensic indicators using evolutionary 

optimization on attention-weighted hypergraphs during the process. Finally, to assess 

and refine the robustness of the system, the Temporal Adversarial Forensic 

Consistency Network (TAFC-Net) carrying out validation using adversarial learning 

techniques under drift, poisoning, and set conditions to evaluate the consistency of 

the model. When combined, it makes a coherent pipeline that can deliver adaptive, 

scalable, and context-aware forensic analysis in near real-time scenarios. This is a 

foundational step forward in self-improving intelligent forensic systems to the 

evolving set of IoT cybersecurity process. 

Motivation and Contribution 

The motivation for this research originates from a pressing need for adaptive and 

intelligent forensic capabilities in modern IoT ecosystems. Mostly, existing forensic 

models operate on static learning paradigms, requiring retraining from scratch 

whenever there is a change in device behavior or attack vectors in the process. This 

becomes grossly inefficient in swiftly changing environments of the IoT system where 

the threat landscape changes often, whereas the devices generate more data on a 

massive scale, and most of such data will be noisy, and unstructured. On the other 

hand, forensic analysis in these environments is heavily constrained by resource 

limitations, inhibitive privacy regulations, and demand for immediate situational 

awareness. All of these factors combined require that incremental, lightweight, and 

distributed forensic intelligence architectures be developed, which learn, adapt, and 

scale continuously in response to changes in the environment. The limitations of 
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real-time response, adaptability to data, and scalability are thereby presently 

targeting the work with bioinspired optimization, federated learning, and 

neuromorphic computing sets dealing with forensic science sets. 

This paper presents five contributions, which jointly constitute a new forensic 

learning architecture for IoT systems. This first contribution introduces AMASIL, a 

swarm-based incremental learning algorithm endowed with reward-driven self-

organization for the continuous updating of forensic models. Secondly, this paper 

presents HF²GNN, a hierarchical federated learning mechanism for graph-structured 

forensic data that enables distributed training without compromising data privacy in 

the process. Thirdly, a neuromorphic model for cognitive filtering embedded in the 

IoT is presented, called NECFiL that reduces noise to the data and enhances the 

signal significance at the edge. Fourthly, the paper presents E-HAL, a hypergraph 

attention learning algorithm using higher-order interactions to obtain complicated 

feature relationships amongst multimodal data. Lastly, the framework incorporates 

TAFC-Net, a temporal adversarial validation model that audits and enhances 

robustness in the presence of attack. These methods together constitute a novel end-

to-end adaptive forensic learning framework with a high degree of accuracy, 

efficiency, and resilience, contributing considerably to the field of intelligent IoT 

forensics. 

2. Review of Existing Models used for IoT Forensic Analysis 

The earliest contributions, i.e., Surange and Khatri [1], played a pivotal role in the 

development of the open-source frameworks for forensic data acquisition, which 

provided just the basic and necessary tool set for the systematic collection of 

evidences. Building upon this, Deepthi et al. [2] introduced a dual-key integrity 

model that put efforts on data tamper resistance while Kirmani and Banday [3] 

addressed anti-forensic mechanisms at the firmware level, revealing systemic 

vulnerabilities that were long ignored in the process. As IoT infrastructure gradually 

decentralized, the need for secure and distributed evidence storage came to the 

forefront in the process. This was addressed by Rani et al. [4] based on blockchain 

and IPFS smart contract architecture, a line further extended in followed works 

focusing on smart environments and edge computing sets. The integration of 

anomaly detection into routing protocols as proposed by Sridhar et al. [5] turned the 

attention toward a proactive way of forensic analysis of IoT networks. Meanwhile, 

Rani et al. [6] emphasized massive data redundancy in large-scale forensic 

repositories, suggesting intelligent elimination of redundancy techniques in the 

process.  

Thapaliya and Sharma [7] introduced deep learning-based feature fusion that aided in 

better signal extractions from high-dimensional forensic data, while Shin et al. [8] 

explored packet fingerprinting for vehicular forensics, using the low-level network 
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traffic analysis of infotainment systems to good effect. Stanković et al. [9] captured 
the forensic significance of user-centric IoT applications through multi-platform 

artifact extractions from wearable devices. Kim et al. [10] reinforced this trajectory by 

proposing a unified forensic framework for smart IoT devices, emphasizing 

modularity and cross-device traceability in the process. Subsequent works considered 

forensic resilience within dynamic threat environments. Bhardwaj and Dave [11] 

progressed intelligent attack graph models guided by detection granularity and 

incident causality mapping sets. The Malik and Sharma [12] survey synthesized 

blockchain-based evidence-preservation emerging trends that bridged older 

blockchain-based models to new lightweight authentication schemes. Concurrently, 

Tavares-Silva et al. [13] handled malware detection through sandboxing in IoT 

environments, while Pirbhulal et al. [14] presented a meta-analysis of cybersecurity in 

5G-integrated IoT systems. da Luz Lemos et al. [15] further enhanced network 

forensics on a protocol level by developing a memory forensic methodology for 

software-defined networks. Yadav and Gupta [16] analyzed malware behaviors in 

Android-IoT hybrids to provide a uniform detection pipeline. Likewise, Gandhi and 

Arumugam [17] elaborated on evidence-extraction schemes for unstructured IoT-

device ecosystems, stressing the essence of device-agnostic forensic designs. Due to 

increasing concerns over data privacy, Pathak et al. [18] evolved a privacy-preserving 

forensic framework for cloud-IoT deployments. In a way, the edge-centered forensic 

method by Castelo Gómez and Ruiz-Villafranca [19] was a major change toward 

decentralized evidence collection, minimizing network latency and bandwidth 

consumption. Lastly, Rudrakar et al. [20] applied digital forensics to precision 

agriculture, extending forensic capabilities to domain-specific IoT environments. 

Islam et al. [21], among others, analyzed and extended ways of performing log 

authentication using blockchains for enhancing the chain-of-custody in forensic trails 

of data. Daoudagh et al. [22] developed an ontology for forensic event classifications 

to monitor IoT systems. Sybil detection mechanisms for healthcare IoT were 

proposed by Li and Wang [23], while Li et al. [24] suggested a zero-trust mechanism 

for authentication in critical infrastructures. The taxonomy and detection 

mechanisms of IoT malware presented by Victor et al. [25] synthesized several key 

themes across the literature, offering a comprehensive classification of forensic-

relevant malware attributes. 

3. Proposed Model Design Analysis 

The integrated model recently proposed for incremental IoT forensic analysis forms a 

multi-component analysis framework that aims to actively harness real-time 

adaptivity, data efficiency, high-order learning, distributed processing, and 

adversarial robustness. The five novel sub-modules AMASIL, HF²GNN, NECFiL, E-

HAL, and TAFC-Net are the building blocks of an integrated processing pipeline that 
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is further optimized for the constraint and requirement specificity of modern IoT 

ecosystems. Each submodule is mathematically formalized for analytical reasons of 

traceability and integration at a system level in the process. The model would operate 

over streaming data X(t) generated by heterogeneous IoT devices, represented as a 

continuous-time multivariate stochastic process. At the edge, the spiking neural 

encoding mechanism process of Neuro-Synaptic Edge Cognitive Filtering (NECFiL) 

performs the temporal filtering of incoming data samples. The input features 

X(t)={x1(t),x2(t),...,xn(t)} convolve with the spike kernels Ks(τ), thus yielding synaptic 
response functions Si(t) defined Via equation 1, 𝑆𝑖(𝑡) = ∫ 𝑥𝑖(𝜏)𝐾𝑠(𝑡 − 𝜏)𝑑𝜏, ∀𝑖 ∈ {1, … , 𝑛}𝑇

0 . . (1)  
This convolution is akin to biological post-synaptic potentials for early feature 

suppressions. To temporally align the filtered signals, a dynamic decay function ϕi(t) 

is applied to yield the effective filtered signals x̃i(t) Via equation 2, 𝑥̃𝑖(𝑡) = 𝑆𝑖(𝑡) ⋅ 𝑒−𝜆𝑖 𝑡, 𝜆𝑖 > 0 … (2) 

Iteratively, Next, the filtered features are passed on to AMASIL, which implements 

the swarm-based reinforcement learning scheme, as illustrated in figure 2 of this text. 

Each forensic agent aj∈A updates its position in the search space θj according to 
particle swarm dynamics with adaptive inertia ω(t), acceleration coefficients c1,c2, 
and personal and global optima p(j), g Via equation 3, 𝑑𝜃𝑗(𝑡)𝑑𝑡 =  𝜔(𝑡) ⋅ 𝑑𝜃𝑗(𝑡 − 1)𝑑𝑡 +  𝑐1𝑟1(𝑝(𝑗) − 𝜃𝑗(𝑡)) +  𝑐2𝑟2(𝑔 − 𝜃𝑗(𝑡)) … (3) 

To allow for convergence stability under adversarial drift, the adaptive inertia term 

ω(t) is modulated using an entropy-based agent confidence score Hj(t), computed 

Via equations 4 & 5, 𝜔(𝑡) = 11 +  𝑒𝑥𝑝(−𝛼𝐻𝑗(𝑡)) … (4) 

𝐻𝑗(𝑡) =  − ∑ 𝑝𝑗𝑘(𝑡) 𝑙𝑜𝑔 𝑝𝑗𝑘(𝑡)𝐾
𝑘=1 … (5)  

Where pjk(t) is the posterior probability of agent aj's classification across K classes. 

The updated forensic representation vectors θj(t) are then used as edge-level 

embeddings input into HF²GNN Process. Then, as represented in figure 3, HF²GNN 

would iteratively model device relationships as a dynamic graph Gt=(V,Et) where 

each vertex v∈V represents a device, and edges eij(t)∈Et encode behavioral 

correlations.  
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Figure 1. Model Architecture of the Proposed Analysis Process 

Local GNN updates are computed using attention weighted message passing Via 

equation 6, ℎ𝑖(𝑙 + 1) =  𝜎 ( ∑ 𝛼𝑖𝑗(𝑙)𝑊(𝑙)ℎ𝑗(𝑙)𝑗∈𝑁(𝑖) ) … (6) 
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Figure 2. Overall Flow of the Proposed Analysis Process 

Here, αij(l) is the attention score based on feature similarity and temporal edge 
weights wij(t), while σ is a non-linear activation function for the process.  
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Figure 3. Pseudo Code of the Proposed Analysis Process 

Input 

• Streaming IoT device data (sensor logs, network packets, telemetry) 

• Predefined agent pool, device graph structures, and attack signatures 

Output 

• Real-time forensic classification results 

• Updated incremental learning models 

• Robustness metrics and validation reports 

Process 

1. Edge Filtering using NECFiL 

o Collect raw IoT data at edge nodes 

o Apply cognitive filtering to remove noise and retain forensic-

relevant signals 

o Forward filtered features to learning modules 

2. Incremental Learning using AMASIL 

o Initialize swarm agents with current forensic knowledge 

o Update agent behavior based on real-time inputs 

o Perform local optimization and share updates among agents 

o Generate updated feature representations 

3. Distributed Graph Learning using HF²GNN 

o Construct local device interaction graphs 

o Train GNN locally on edge or fog nodes 

o Aggregate global embeddings through federated learning 

o Output structural forensic embeddings 

4. Feature Enhancement using E-HAL 

o Encode multimodal inputs into hypergraph structure 

o Apply attention mechanism to prioritize key features 

o Evolve hyperedge weights based on classification relevance 

o Output high-order feature embeddings 

5. Robustness Validation using TAFC-Net 

o Generate adversarial variations of inputs 

o Evaluate consistency of model outputs over time 

o Update confidence scores and report vulnerabilities 

6. Final Output Aggregation 

o Combine results from all modules using weighted ensemble 

o Output forensic decisions with confidence scores 

o Store updated models and feedback for next iterations in process 
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The global update is then performed via federated aggregation Via equations 7 & 8, 𝐻𝑔𝑙𝑜𝑏𝑎𝑙 =  ∑ (𝑛𝑚𝑁 ) 𝐻𝑚 … (7)𝑀
𝑚=1  

𝑁 =  ∑ 𝑛𝑚𝑀
𝑚=1 … (8)  

Where Hm represents the local model from client m and nm is the number of local 

samples. Thereafter, these embeddings are passed to the E-HAL module, which 

constructs a hypergraph H=(V,Eh) from multimodal features and learns higher-order 

correlations based on attention and evolutionary weight adaptation. The edge 

attention weights βe are evolved according to a fitness function F(βe) that minimizes 
the cross-entropy loss Lce while maximizing feature relevance ‘Re’ Via equation 9, 𝛽𝑒 ∗ =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽𝑒 [𝐿𝑐𝑒(𝛽𝑒) −  𝜇𝑅𝑒(𝛽𝑒)] … (9) 

Feature relevance Re is computed through partial derivative sensitivity of the forensic 

output y with respect to input feature xk Via equation 10, 𝑅𝑒 =  ∑ | 𝜕𝑦𝜕𝑥𝑘| … (10)𝑛
𝑘=1  

Finally, to validate the model's robustness TAFC-Net generates temporal adversarial 

perturbations δt over the input sequences and evaluates the consistency of the 
predictions across the reference yt and perturbed outputs ŷt in process. The 

consistency loss Lcons is minimized for stability Via equation 11, 𝐿𝑐𝑜𝑛𝑠 =  ∫ ||𝑦𝑡 −  ŷ𝑡(𝛿𝑡)||2𝑑𝑡 … (11)𝑇
0  

The total system output Y(t) is defined as a weighted combination of final forensic 

predictions from each module, incorporating a time-decayed trust score γi(t) Via 
equations 12 & 13, Y(t) =  ∑ γi(t) ⋅ yi(t)5

i=1 … (12) 

γi(t) = e−κti∑ e−κtj5j=1 … (13) 

The equation expresses the dynamic ensemble-based forensic decision at timestamp 

‘t’, where yi(t) is the output from each component model and ti denotes the 

corresponding latency sets. Decay-weighted output values ensure temporal relevance 

and stability in a high-velocity forensic environment. The integrated model was 

chosen because the components are inherently complementary- NEFCIL reduces 

noise locally, AMASIL enables lightweight incremental learning, HF²GNN preserves 

structural dependencies in a distributed setup, E-HAL captures feature interactions 

that go beyond pairwise correlations, and TAFC-Net ensures resistance against 

sophisticated adversarial threats. A modular but analytically unified architecture 
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guarantees end-to-end optimization for scalability, adaptability, and real-time IoT 

forensic intelligence sets. 

4. Comparative Result Analysis 

The experimental prototype for the validation of the proposed incremental learning 

framework was intended towards rigorous evaluation on the adaptability, scalability, 

and forensic intelligence of the framework across different IoT environments. The 

implementation is done using Python 3.11 with the Tensor Flow 2.15 and PyTorch 2.1 

frameworks on a hybrid-cloud-edge simulation platform. The hardware environment 

comprised an NVIDIA A100 GPU (40 GB HBM2), 256 GB RAM, and Intel Xeon Gold 

6348 CPUs for centralized training, whereas the edge simulations were deployed on 

NVIDIA Jetson Xavier NX blocks with 16 GB RAM that emulated realistic low-power 

IoT nodes. A streaming simulator was designed to emulate real-time data acquisition 

at different sampling frequencies, simulating time series data between 10-100 Hz flow 

rates of packets between 1.0 and 20.0 Mbps. Hyperparameter tuning for every 

component in the model was performed individually. For NECFiL, the spike decay 

rate was fixed at 0.05 with a maximum filtering threshold of 70% irrelevant 

suppressing based on entropy analysis. In the AMASIL module swarm, the swarm size 

was given to be 50 agents; inertia weight was initialized to 0.9 with a decay rate of 

.005 per iteration. The HF²GNN module employed a two-layer Graph Attention 

Network that defined local training batch sizes to 128 and a global federated 

aggregation cycle every 5 epochs. E-HAL had hypergraph connectivity of up to 3rd 

order edges with an evolutionary learning rate of 0.002 and a crossover probability of 

0.7. Adversarial sequences within which maximum perturbation norm was at 0.15 and 

temporal window sizes were of the order of 50 steps formed part of TAFC-Net. 

Ensemble output aggregation weights were assigned dynamically based on model 

latency and local consistency metrics. 
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Figure 4. Model’s Integrated Result Analysis 

To benchmark the increments in a comprehensive way, three public datasets 

centering on IoT were selected; they were as follows: CICIDS-2018, UNSW-NB15, and 

a dataset that was curated according to IoTID20 standards, which comprises attack 

scenarios of smart homes and smart cities. The CICIDS-2018 dataset offered a 

balanced mix of benign and malicious traffic logs, comprising DDoS, botnet, 

infiltration, and web-based attacks, captured from an actual network set up. A subset 

of 100,000 samples streamed over time with ground truth was provided for validating 

detection accuracy and latency of drift adaption. UNSW-NB15 provided total records 

of 2.5 million instances across nine attack categories. All these were used to evaluate 

performance under hypergraph modeling for generalization. IoTID20 contained raw 

telemetry logs from temperature sensors, IP cameras, and smart switches consisting 

of label-rich samples for brute force, DoS, and MITM attacks, used to validate edge-

specific filtering efficacy. The evaluation of the outcomes of the forensic analysis was 

through precision, recall, F1-score, and time-to-detection (TTD). Also, robustness 

against adversarial perturbations was expressed in terms of the model consistency 

score and prediction stability of the model over different historical windows in 

process. There was a minor introduction of manual data drift by introducing new 

devices and changing the communication paths under which testing of incremental 

model updating due to environmental variation at process occurs. The performance 

of the integrated model remained superior across all datasets with an average F1 score 

of 96.1%, while input dimensions were reduced by 67%, punishing adversarial 

robustness by as much as 28% compared to the federated models and static learning 

baseline. The effectiveness of these settings proves capacity in heterogeneous data 
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handling by the proposed system, real-time incremental adaptation capabilities, and 

gives robust forensic intelligence under natural and most severe adversarial 

conditions, respectively in the process. 

For the experimental validation of these benchmark datasets, CICIDS-2018, UNSW-

NB15, and IoTID20 were considered for the process. The Canadian Institute for 

Cybersecurity provides realistic network traffic from a seven-day recording period 

combining benign and malicious behaviors such as those of DDoS, brute force, 

infiltration, and web attacks, among which more than 80 network features per record 

and well over 3 million labeled instances make this dataset highly suitable for 

evaluating anomaly detection and drift adaptation. The UNSW-NB15 dataset, 

generated by the Australian Centre for Cyber Security, comprises almost 2.5 million 

records and has 39 features. There is a wide variety of attack types, including but not 

limited to fuzzers, exploits, and backdoors. It was mainly used to assess model 

generalization and feature sensitivity under an evolving threat landscape. It focuses 

on smart buildings in the IoT context with traffic from IoT devices such as cameras, 

smart bulbs, and sensors. It has around '600,000 samples including both benign and 

malicious data involving DoS, MITM, and scanning attacks captured with a real-time 

network of interconnected IoT devices, thereby validating edge-level filtering and 

temporal feature encoding effectiveness under real IoT conditions. 

The work done on hyperparameter tuning was a unique comprehensive process 

conducted using random search and manual refinement across all the modules for 

the best performance and stability. The synaptic decay rate fixed for the NECFiL 

module was 0.05 with a filtering threshold of 70% for noise suppression. Swarm size 

for AMASIL module was set to 50 agents, inertia weight initialized at 0.9 with a decay 

factor of 0.005, and the process was set for learning coefficients c1=c2=1.5. The 

HF²GNN used a two-layer GAT structure with attention dropout of 0.2, batch size 128, 

and federated update frequency specified to 5 local epochs. E-HAL was specified with 

a 0.002 evolutionary learning rate, a mutation probability of 0.1, and a population size 

of 30 for hyperedge weight evolution. The TAFC-Net adversarial module was trained 

on a perturbation constraint of 0.15 with a temporal consistency window size of 50 

steps. All modules made use of Adam optimizer with base learning rates ranging 

between 0.0005 and 0.001 and employed early stopping with a patience of 10 epochs. 

Such values resulted in stable convergence, high classification accuracy, and robust 

performance under streaming and adversarial conditions in the process. 

The performance of the proposed incremental learning framework was assessed and 

compared with three reference state-of-the-art methods, Method [2], Method [8], and 

Method [25], with respect to several key performance metrics based on datasets and 

samples from the CICIDS-2018, UNSW-NB15, and IoTID20. Each method was 

assessed on accuracy, F1-score, detection latency, feature reduction, robustness to 
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adversaries, and adaptability to data drifts. The results were systematically recorded 

and are available in the following tables in process. 

 

Figure 5. Model’s Overall Result Analysis 

Table 2: Classification Accuracy (%) on Different Datasets 

Dataset Proposed Model Method [2] Method [8] Method [25] 

CICIDS-2018 96.4 89.7 91.2 93.1 

UNSW-NB15 95.2 88.1 90.3 92.4 

IoTID20 97.1 86.5 89.8 91.0 

Table 2 reveals the overall superiority of the proposed model over the baseline 

methods with respect to all datasets included in the comparison in terms of 

classification accuracy sets. With reference to the IoTID20 dataset, which 

corresponds to a realistic, smart home scenario, the model performed remarkably 

well at 97.1% accuracy due to its neuromorphic filtering and higher-order feature 

modelling, signalling that it was indeed better suited to heterogeneous and noisy 

input in process. 

Table 3: F1-Score (%) Comparison 

Dataset Proposed Model Method [2] Method [8] Method [25] 

CICIDS-2018 95.7 87.9 89.4 92.3 

UNSW-NB15 94.2 85.5 88.0 90.1 

IoTID20 96.3 83.2 87.1 89.0 
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F1-scores further affirm the proposed model's superiority in Table 3, indicating better 

precision and recall balance sets. This has been attributed to the joint impact of edge-

level filtering and federated graph embeddings, which further reduce both false 

positives and false negatives in forensic detection tasks in process. 

Table 4: Average Detection Latency (Seconds) 

Dataset Proposed Model Method [2] Method [8] Method [25] 

CICIDS-2018 0.85 2.11 1.78 1.35 

UNSW-NB15 0.94 2.04 1.89 1.47 

IoTID20 0.71 1.92 1.61 1.20 

According to Table 4, the proposed model shows the lowest average detection latency 

across datasets and samples. The reason for this performance is early filtering 

through NECFiL and local incremental learning in AMASIL, which eliminate the full 

retraining overhead to reach near-real-time decision-making, particularly evident for 

edge-heavy datasets such as IoTID20 Sets. 

Table 5: Feature Dimensionality Reduction (%) 

Dataset Proposed Model Method [2] Method [8] Method [25] 

CICIDS-2018 64.5 35.2 43.1 51.0 

UNSW-NB15 67.2 37.8 41.5 50.3 

IoTID20 61.7 30.4 38.2 45.5 

In Table 5, the proposed model showed considerably more features reduction than 

those in other methodologies. Using E-HALs evolutionary hypergraph attention 

mechanism, the model retains the most-forensic-relevant features without loss of 

accuracy, thus improving computational efficiency and scalability levels for the 

process. 

Table 6: Adversarial Robustness Score (%) 

Dataset Proposed Model Method [2] Method [8] Method [25] 

CICIDS-2018 93.8 71.5 76.3 82.4 

UNSW-NB15 91.5 68.9 74.1 80.2 

IoTID20 94.1 65.8 72.0 78.5 

Table 6 indicates the robustness of the proposed model to adversarial conditions such 

as data poisoning and evasion attacks. The incorporation of TAFC-Net inside the 

architecture has achieved real-time validation by consistency checks, which 

significantly improve the resilience of the forensic inference pipeline as compared to 

existing ones in the process. 
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Table 7: Drift Adaptation Success Rate (%) 

Dataset Proposed Model Method [2] Method [8] Method [25] 

CICIDS-2018 95.2 72.4 77.8 84.1 

UNSW-NB15 92.3 70.1 75.6 82.7 

IoTID20 96.5 66.7 71.9 80.4 

The proposed model, as evidenced in Table 7, is therefore adaptable to data drift. 

AMASIL's incremental swarm agents keep changing their representations due to 

behavioral changes. Thus, the model is really quick to adapt to emerging threats in 

dynamic IoT environments with many data, as in IoTID20 Sets or scenarios 

characterized by volatility in process. It is worth mentioning that the proposed 

integrated framework is appropriate for forensic analysis in real-time IoT systems; 

coming together edge intelligence, federated modelling, evolutionary feature 

selection, and adversarial validation makes the framework ideally applicable in 

modern dispersed cyberphysical systems. 

Validated Result Impact Analysis 

Among the methods that this framework overtakes by density-increase, there are 

Method [2], Method [8], and Method [25]. The beginning can be run on table 2, 

which compares classification accuracy on three representative datasets, out of which 

the proposed model sets an accuracy score consistently above 95% and a peak at a 

total of 97.1% on the IoTID20 dataset samples. The implication is that the model is 

capable of detecting threats accurately in heterogeneous environments where it 

outperforms traditional methods due to their limited adaptability and static learning 

structures. Such improvements are valuable to real-time IoT networks, where minor 

enhancements to even marginal gains in classification accuracy would mean 

considerable reductions in the occurrences of missed threats and false positives, 

marking a substantial hike in the recorded accuracy of ongoing forensic 

investigations in process. 

F1-scores in Table 3 along with figure 4 & figure 5 test that the proposed model is able 

to maintain a well-balanced accuracy performance in precision and recall sets. This 

improvement in IoTID20 goes as much as 13% when compared to Method [2] in 

favour of the proposed model over all baseline methods. This is particularly 

significant in forensic analysis since both under-reporting and over-reporting 

anomalies have impact operationally serious consequences. The fact remains, though, 

that whether in practice, such as smart cities, or within industrial IoT systems 

practically deploying high-fidelity F1-scores, they mean a notable degree of reliance 

on automated alert systems that minimize reliance on human verification and false 

alarms while keeping incident responses timely and accurate in process.  
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The latency results charted in Table 4 would be the trump card for introducing the 

suggested architecture to real-time environments. With average detection delays of 

less than a second for all datasets combined, the proposed architecture significantly 

reduces the time to insightful analysis compared with Method [8] and Method [25]. 

This could be done based on edge filtering through NECFiL and rapid localized 

learning with AMASIL, which means making decisions very close to the data source. 

Reduced latency is, therefore, strategically important in real-time scenarios, such as 

an autonomous vehicle network or critical infrastructure monitoring, enabling 

proactive mitigation and preventing threat propagation across the network sets.  

Table 5 also illustrates that dimensionality reduction is effective in the model, with 

over 60% on feature pruning but still achieving high classification scores. The E-HAL 

module performed the task of focusing on forensic-relevant features through 

hypergraph attention and evolutionary weighting sets, which further allow 

operationally less processing load and resulting faster inference and much less energy 

consumption on edge and fog devices, often significantly constrained by limited 

computational resources. All of these allow real-time deployments of the forensic 

system across thousands of devices without degrading system performance or 

energizing budgets in the process.  

Finally, the last tables which are literally 6 and 7 have gone testing for adversarial 

robustness and drift adaptivity. Both of these are very critical parameters concerning 

dynamic IoT environments. The performance of the proposed model exceeded 

anything baseline methods ever achieved as it demonstrated robustness scores about 

90% with drift adaptation success rates close to 96%. These TAFC-Net and AMASIL 

modules are the crucial ones, allowing the system to detect and countermeasure 

manipulation against adversarial attack and, even more so in this dynamic world, 

changes in user behavior over time. In practical terms, it means that under evolving 

threat conditions, the forensic model could be relied on to remain intact even under 

compromised security conditions, making such deployment suitable for mission-

critical domains such as healthcare Internet of Things, smart grids, and defense-grade 

surveillance systems. All these accrue to affirm the operational value of the proposed 

model in adaptive, resilient high-performance enabled forensic analysis for real-time 

IoT ecosystems. 

Validated Hyperparameter & Baseline Detailed Analysis 

The performance evaluation of the proposed incremental learning framework 

included a detailed statistical analysis of key performance indicators, including 

classification accuracy, F1 score, detection latency, feature reduction rate, robustness 

under adversarial perturbation, and adaptability to data drift. The performance 

metrics, in terms of accuracy, were recorded independently for five runs for each 



Scope 

Volume 15 Number 04 December 2025 

1742 www.scope-journal.com 

 

dataset, and both expected value (mean) and variance were calculated to evaluate the 

consistency and stability of the model. The proposed model was found to give an 

average classification accuracy of 96.2% with variance ±0.48, indicating that both 

predictive precision and performance were very high in the process. Similarly, the 

mean of the same for the F1-score was 95.4% showing variance ±0.53, confirming the 

capability of the model in managing the trade-off between precision and recall 

consistently. Detection latency averagely stood at 0.83 seconds with variance ±0.11 

and reflected real-time capability with little deviation under dynamic streaming 

conditions.  

One Way ANOVA and Tukey's HSD tests were used to test the statistical significance 

of performance improvements observed above baseline models. It was confirmed by 

the ANOVA tests that p Values < 0.01 were obtained for all of the main performance 

measures; it thus means that differences among the models tested here, including the 

one proposed, were significant at the 99% confidence level. Moreover, by applying 

Tukey's HSD in post-hoc analysis, it was found that the new model proposed was 

always better than Method [2], Method [8], and Method [25] for all datasets; the most 

significant margin was, however, seen in the IoTID20 dataset for improvements in 

both adversarial robustness and drift adaptability gains, exceeding 12% and 14%, 

respectively, against the best-performing baselines. 

The baseline selection of Methods [2], [8], and [25] was based on their applicability to 

the given problem domain, technical similarity to our approach, and a considerable 

body of recognition in peer-reviewed forensic and cybersecurity literature. Method 

[2] is a static forensic model that uses machine learning decision trees and support 

vector machines, included here to indicate the limitations of non-incremental 

techniques in developing IoT environments. Method [8], with a centralized deep 

learning architecture in a convolutional neural network with handcrafted feature 

extraction, forms a strong basis for evaluating enhancements in deep representation 

learning and processing latency. Method [25] was selected to compare performance 

against state-of-the-art distributed and privacy-preserving frameworks elsewhere by 

using a particular hybrid federated learning approach of integrating LSTM-based 

temporal encoding with cloud-centric aggregations. These baselines reach across the 

design space of static, deep, and federated architectures, making them fair counter-

benchmarks for the proposed multi-layered and adaptive learning pipelines.  

Statistical testing sets examined the strengths of the model against adversarial and 

non-stationary conditions. For adversarial resilience, the proposed model had a mean 

consistency score of 93.1% with a variance of ±0.66, whereas Method [25] attained a 

best of 82.4% with a variance of ±1.18. This was a statistically significant gap (p < 0.01) 

and is in accordance with the model using temporal consistency validation and 

perturbation-aware learning. In terms of drift adaptation, the proposed system 
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obtained 96.5% while outpacing Method [25] by a margin of 12.4 percentage points, 

with a variance of only ±0.42, thus an indicator of very high reliability under dynamic 

threat landscapes. Hence, the statistical tests, variance measures, and rationale for 

comparison all provide a strong endorsement for the proposed model for robust, low-

latency, and adaptive forensic intelligence for IoT environments. 

Validated Real Time Use Case Scenario Analysis 

Consider applying the proposed incremental learning framework in a smart factory 

environment with around 5000 interconnected IoT devices including robotic arms, 

thermal sensors, vibration detectors, and PLCs on Process. The system is generating 

high-frequency telemetry data streams at an average of 20 messages per second per 

device, translating to over 100 million messages every day after processing. The 

proposed model is deployed in a three-tier architecture: edge nodes (Jetson Xavier-

based) perform real-time filtering using NECFiL, eliminating approximately 65% of 

redundant or irrelevant signals while keeping critical forensic features. AMASIL 

processes the filtered stream with a swarm of 50 agents, where each agent is trained 

to recognize specific behaviors, including temperature anomalies, abnormal motion 

patterns, and delays in control signals. When deviations are perceived, these agents 

update their local state vectors in \0.2 seconds and share their updates through a 

swarm fusion layer, enabling a consistent forensic reasoning process. HF²GNN builds 

evolving device graphs capturing real-time inter-device communication with 

behavioral context, which are federated every 10 minutes to preserve privacy while 

ensuring global model convergences. 

In one scenario, a coordinated anomaly is introduced involving a subtle timing attack 

on the PLCs, inducing response delays to modify cycles of robotic tasks. Whereas 

standard anomaly detection systems would miss this pattern due to normal 

operational thresholds, the E-HAL module is able to detect high-order correlations 

among control signal timing, device heat signatures, and vibration metrics, flagging 

them as a forensic anomaly with a 96.4% certainty. Further support of the decision is 

provided through perturbation testing by TAFC-Net, attaining a temporal consistency 

score of 94%. This whole detection and verification chain takes less than 1 second, 

with results aggregated and inserted into a forensic logging system using distributed 

IPFS-backed storage. The output along with contextual evidence trails and 

confidence metrics gets available to security analysts for initiating timely and 

actionable response before the manufacturing line is comprised. This presented use 

case stands as testimony for the framework's ability to support fast, accurate, and 

adaptive forensic analysis in highly dynamic high-throughput environments where 

ordinary models are simply too slow or inaccurate to carry any operational value 

within process. 
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5. Conclusion & Future Scopes 

There is a robustly designed comprehensive Incremental Learning Framework for IoT 

Forensic Analysis containing five novel analytical models-NECFiL, AMASIL, HF²GNN, 

E-HAL, and TAFC-Net- which are optimized for different challenges in real-time, 

scalable, and adaptive forensic analysis. The architecture integrated was mainly 

devised to overcome some strong limitations associated with static centralization and 

cases where the forensic models become computationally heavy to the extent of 

failing under the scale and dynamic nature of IoT environments. Results speak loudly 

and convincingly against the effectiveness of the proposed system for real-time 

forensic requirements amidst heterogeneous data sources and adversarial scenarios. 

This means the proposed framework has attained an average classification accuracy 

of 96.2% across three benchmark datasets-CICIDS-2018, UNSW-NB15, and IoTID20-

outperforming Method [2] (88.1%), Method [8] (90.4%), and Method [25] (92.2%) by 

a wide margin. The model also gave the best-performing F1-scores, averaging 95.4% 

and achieving minimal detection latency below 0.9 seconds, a constraint very 

important for time-critical forensic operations. In turn, the E-HAL module 

accomplished a feature dimensionality reduction of the model, with an extent of 

about 67.2%, improving prospects for storage and computational efficiency. Also, the 

adversarial robustness score is greater than 93% while drift adaptation success rates 

were recorded at 96.5%; thus, this indicates that the framework is very resilient 

against changes in the threat landscape and attack manipulations. These numerical 

results reaffirm that the proposed framework can cement intelligent, context-aware, 

and robust forensic analytics in large-scale distributed IoT systems providing not only 

effective detection but also efficient operations and real-time responses & sets.  

Future Scope 

Based on the high-performance results established in this study, the future work 

could expand the framework in various strategic directions. One important upgrade 

would be to incorporate self-supervised representation learning, minimizing 

dependency on labeled data and enhancing performance in low Visibility attack 

scenarios. Beyond that, causal-aware models could elevate forensic attribution from 

anomaly detection-oriented models to screens for mental intent, attack source, and 

propagation paths, thus enriching investigation depth. Future renditions of AMASIL 

could enable meta-optimization processes to let swarm agents learn appropriate 

update rules by themselves based on environmental feedbacks. In addition, casting 

TAFC-Net outputs with blockchain-based audit trials would create immutable and 

verifiable forensic logs that would build confidence in automated forensic pipelines. 

In terms of deployment, tailored adaptations may fit within vertical-specific IoT 

environments such as industrial control systems, autonomous vehicle networks, or 

healthcare IoT settings, involving hyperparameter-setting and architectural-models 
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fine-tuning to match domain-specific constraints and regulatory requirements. 

Energy-aware scheduling of inference across edge and fog layers is still another 

attractive area to explore, seeking to boost the performance under limited power 

budgets. Finally, federated continual learning in HF²GNN could properly build 

privacy-preserving constraints under differential privacy and homomorphic 

encryption for a broader take-on in sensitive data environments. 

Limitations 

Several limitations persist in the current study, despite promising results. First, 

although the framework supports incremental and distributed learning, 

synchronization latency across federated nodes is quickly turning out to be a 

bottleneck in large-scale deployment scenarios, especially under highly decentralized 

or intermittently connected network situations. Such stability of connectivity in 

HF²GNN is assumed for global aggregation, which seldom stands valid in practically 

deployed IoT systems. The second issue is the fact that, while TAFC-Net has gone to 

great lengths to demonstrate the adversarial robustness, the model of adversarial 

applicability has been oriented mostly toward temporal and gradient-based 

perturbations. These do not yet accommodate complex multimodal or logical 

adversarial scenarios such as manipulation of protocols or internal sabotage. In 

addition, non-negligible computational overheads are brought into training by the 

evolutionary optimization of E-HAL, and such overheads would be a constraint for 

resource-constrained devices lacking cloud-offloading alternatives. Lastly, while the 

datasets engaged cover a variety of attack categories, the performance of zero-day 

attacks in completely unseen environments awaits empirical confirmation, especially 

under conditions of live deployments. These limitations indicate the need for further 

research to strengthen system robustness, decentralization, and sets of domain 

generalizability sets. 
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