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1. Introduction 

Investment decisions in uncertain environments are often characterized by 

irreversibility, flexibility, and learning. Once capital is committed, it cannot be costlessly 

reversed; hence, investors face the classical dilemma of whether to invest immediately 

or wait for better information. The real options approach provides a rigorous framework 

to analyse such decisions under uncertainty, emphasizing that the option to delay 

Abstract: This paper develops a real options framework to analyse irreversible 

investment decisions under regime-dependent uncertainty and learning-by-

doing effects. The cost of investment is modeled as a stochastic diffusion 

process that can switch between low and high carbon regimes, reflecting 

shifts in policy or technological environments. A learning mechanism is 

introduced whereby accumulated investment experience reduces cost 

volatility over time. The resulting Hamilton–Jacobi–Bellman (HJB) equations 

form a system of coupled variational inequalities, for which closed-form 

solutions are generally intractable. To solve this system, we implement a 

finite-difference (FD) discretization combined with a Projected Successive 

Over-Relaxation (PSOR) algorithm, providing a robust and stable numerical 

method for determining value functions and optimal investment thresholds. 

Convergence diagnostics confirm the numerical stability of the approach, and 

results reveal that learning significantly compresses volatility, reduces the 

option value of waiting, and accelerates investment in the low-carbon regime. 

The framework captures how policy-induced regime switching and 

endogenous learning jointly shape optimal investment timing and scale. The 

proposed method can be extended to multi-regime or multi-factor models, 

offering a flexible foundation for evaluating investment under complex 

environmental and policy uncertainty. 

Keywords: Irreversible Investment, Real options, Regime switching, 

Learning-by-doing, HJB equation, Optimal investment scale 
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investment has value (Dixit and Pindyck, 1994; McDonald and Siegel, 1986; Trigeorgis, 

L., 1996). 

In many practical contexts such as clean energy transition, infrastructure development, 

and low-carbon technology deployment investment costs evolve stochastically and may 

switch between distinct regimes. These regimes can reflect shifts in policy (e.g., carbon 

tax enforcement), technological progress, or macroeconomic conditions. The regime-

switching framework captures this feature by allowing the parameters of the cost 

process (drift and volatility) to depend on a hidden Markov chain (Elliott, etal., 2009; 

Driffill, etal., 2013). This approach enriches the standard real options model by 

accounting for the possibility of structural breaks and persistent uncertainty about the 

investment environment. 

At the same time, learning effects where accumulated investment or experience reduces 

uncertainty play a critical role in modern investment decisions. In renewable energy 

technologies, for example, learning by doing reduces future volatility in installation and 

production costs (Li and Rajagopalan, 2008; Miller, 2005). This mechanism introduces 

path-dependence into the stochastic process: the volatility of cost declines as 

investment increases. Incorporating such learning effects into a stochastic, regime-

dependent framework provides a richer and more realistic model of irreversible 

investment behaviour. 

Despite the theoretical and empirical importance of these features, there is no 

analytical solutions when both regime switching and learning are present. The resulting 

Hamilton–Jacobi–Bellman (HJB) equation becomes nonlinear and involves coupled 

variational inequalities for each regime. Hence, numerical approaches are required. 

Recent work has emphasized the reliability of finite-difference (FD) and Projected 

Successive Over-Relaxation (PSOR) schemes in solving such problems, especially when 

convergence and stability are explicitly verified (Forsyth and Labahn, 2007).This study 

develops a numerical solution framework for a two-regime investment model in which 

the cost process follows a stochastic diffusion with regime-dependent parameters and 

learning-induced volatility reduction. Specifically, we employ a finite-difference 

discretization combined with a PSOR algorithm to solve the coupled HJB system, 

ensuring convergence through diagnostic checks and error monitoring. The numerical 

framework allows us to derive investment thresholds, value functions, and optimal 

capacity levels K∗(C) for both regimes. 

 

The main contributions of this paper are as follows: 

• Integration of learning and regime switching: We extend the standard real options 

model by incorporating a volatility-reducing learning mechanism and stochastic 

regime changes in the cost process. 

• Robust numerical solution: We design and implement a FD-PSOR solver with built-

in convergence diagnostics and threshold detection, ensuring numerical consistency 

with theoretical properties. 
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• Economic interpretation: We analyse the resulting investment thresholds and 

capacity functions, showing how learning compresses uncertainty and leads to 

asymmetric regime-specific behaviour. 

The rest of the paper is structured as follows. Section 2 introduces the model and the 

stochastic processes governing the cost dynamics under learning and regime switching. 

Section 3 outlines the numerical solution approach based on the FD-PSOR method. 

Section 4 presents and discusses the numerical results, including convergence 

diagnostics, investment thresholds, and value function profiles. Section 5 concludes 

with key findings and directions for future research. 

 

2. Model setup and Hamilton–Jacobi–Bellman (HJB) formulation 

The model describes an irreversible investment decision where a firm must choose the 

optimal timing and scale (K) of a project. The decision is made under two sources of 

uncertainty: a stochastic unit investment cost (Ct) and a two-state Markov chain for 

carbon policy (rt ∈ {L,H}) where L and H are the low and high carbon cost regimes 

respectively. The output priceP̅ is fixed and ρ > 0 is the discount rate. 

Stochastic State Variables 

Unit Investment Cost (Ct): Follows a Geometric Brownian Motion (GBM) described 

by the stochastic differential equation: dCt = μCCtdt + σC(K)CtdWt (1) 
Where μC < 0 reflects a tendency for cost to decline over time, and the key feature is 

that the volatility, σC(K), depends on the chosen scale of investment, K. Specifically, it's 

a decaying function, 

σC(K) = σ0e−ϕK + σmin, ϕ > 0 (2) 
With baseline volatility σ0 and σmin  a lower bound on uncertainty. Equation (2) 

represents learning-by-doing or economies of scale in technological diffusion. This 

assumption implies that a larger planned capacity reduces future cost uncertainty. 

Carbon Policy Regime (rt): A continuous-time Markov chain with two states, Lis the low 

carbon cost regime and His the high carbon cost regime. The transition intensities are λLH, probability per unit time of moving from regime L to H and λHL, probability per 

unit time of moving from regime H to L. The carbon cost per unit output isχL in the L 

regime and χH in the H regime, with χH > χL. 
Decision Variables: 

Timing: The firm decides when to invest, which is a stopping time problem. 

Scale (K): At the time of investment, the firm chooses the optimal capacity K. 
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Costs and Revenues: 

Investment Cost (I(K)): A convex function of capacity, I(K) = κKα with α > 1. This 
implies increasing marginal costs for larger projects. 
Instantaneous Operating Cash Flow (Π(C, r, K)): Once the project is running, the cash 
flow is:  

Π(Ct, r, K) = K(P̅ − Ct − χr) (3) 
whereP̅ is a fixed output price. The cost term includes the unit investment cost Ct 
(which is assumed to affect ongoing operational costs) and the regime specific carbon 
cost χr. 
The net present value (instantaneous payoff/ profit function) of investing at time t is 
given by  NPV = (P̅ − C − χr)K

ρ
− κKα (4) 

Thus, the optimal scale-dependent payoff is  

Π∗(C, r) = supK {K(P̅ − Ct − χr)
ρ

− κKα} (5) 
This profit function reflects the trade-off between the revenue margin P̅ − Ct − χr and 
the scale of operation determined by K. The firm chooses the optimal capital stock K∗ 
that maximizes the instantaneous profit. To find optimal scale we use the First Order 
Conditioni.e. ∂Π∗(C, r)∂K = 0 

K∗ = [(P̅ − Ct − χr)
ακρ

] 1
α−1

 

Also, ∂2Π∗(C, r)∂K2 = −α(α− 1)κKα−1 < 0 

Hence, we have 

K∗ = {  
  [(P̅ − Ct − χr)

ακρ
] 1

α−1 , for P̅ − Ct − χr > 0 
0                  ,   otherwise (6) 

By substituting K∗ in Π∗ we get immediate optimized payoff (the payoff from exercising 
immediately and choosing the best K), 

Π∗(C, r) = {  
  [α− 1

α
] [ 1

ακ
] 1

α−1 [P̅ − Ct − χr
ρ

] α
α−1 ,    P̅ − Ct − χr > 0 

0                                                , otherwise (7) 
𝛱∗ is the obstacle in the optimal stopping (irreversible investment problem).Larger𝜒𝑟 

reduces the numerator 𝑃̅ − 𝐶 − 𝜒𝑟 and therefore reduces both 𝐾∗ and 𝛱∗. A higher 

discount 𝜌 reduces the present value of future revenue and therefore lowers both 𝐾∗ and 
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𝛱∗.Parameter 𝛼 governs curvature of investment cost; as 𝛼 = 1 the solution tends to a 

linear case that must be treated separately. 

2.1. Derivation of the Hamilton-Jacobi-Bellman (HJB) Variational Inequality 

The derivation relies on the principles of stochastic dynamic programming and real 

options theory, incorporating both the Geometric Brownian Motion (GBM) for cost and 

the two-state Markov chain for carbon policy. 

2.1.1. The Firm's Stochastic Control Problem 

The firm seeks to maximize the expected present value of its perpetual future cash flows 

by choosing the optimal stopping time (𝜏) and the optimal scale (𝐾) upon investment. 

The value function, 𝑉(𝐶𝑡, 𝑟), represents the firm's maximum expected value while 

waiting in state (𝐶𝑡, 𝑟): 𝑉(𝐶𝑡, 𝑟) = 𝑚𝑎𝑥𝜏 𝐸𝑡[𝑒−𝜌𝜏𝛱∗(𝐶𝜏, 𝑟𝜏)]  

where 𝛱∗(𝐶, 𝑟) is the maximum instantaneous payoff achieved by choosing the optimal 

capacity 𝐾∗, as derived from the first-order condition. 

2.1.2. The HJB Variational Inequality 

Following the dynamic programming principle, over a small-time interval Δt, the value 
function must satisfy the following generalized Bellman equation: 𝑉(𝐶𝑡, 𝑟) = 𝑚𝑎𝑥{𝛱∗(𝐶𝑡, 𝑟), 𝑒−𝜌𝛥𝑡𝐸𝑡[𝑉(𝐶𝑡+𝛥𝑡, 𝑟𝑡+𝛥𝑡)]} (8) 
The first term, 𝛱∗(𝐶𝑡, 𝑟), represents the immediate value obtained by exercising the 

option (investing). The second term, 𝑒−𝜌𝛥𝑡𝐸𝑡[𝑉(𝐶𝑡+𝛥𝑡, 𝑟𝑡+𝛥𝑡)], represents the expected 

discounted value obtained by continuing to wait. 

2.1.3. Derivation of the Infinitesimal Generator (𝓛𝒓) 
To evaluate the expected continuation value, we use Itô's Lemma on 𝑉(𝐶𝑡, 𝑟). The total 
differential of 𝑉(𝐶𝑡, 𝑟) is 𝑑𝑉(𝐶𝑡, 𝑟) = ℒ𝑟𝑉(𝐶𝑡, 𝑟)𝑑𝑡 + 𝜕𝑉𝜕𝐶 𝑑𝐶𝑡 
The infinitesimal generator ℒ𝑟 is comprised of two parts: the generator for the 
continuous state variable 𝐶𝑡 and the generator for the jump process 𝑟. 
The unit cost Ct follows the SDE: 𝑑𝐶𝑡 = 𝜇𝐶𝐶𝑡𝑑𝑡 + 𝜎𝑝𝑟𝑒𝐶𝑡𝑑𝑊𝑡. Since the firm is still 

waiting, the investment scale 𝐾 = 0, so the pre-investment volatility is 𝜎𝑝𝑟𝑒 = 𝜎0. 
The drift and diffusion terms give the following contribution to the generator: 𝒢𝑉(𝐶, 𝑟) = 1𝑑𝑡 𝐸𝑡[𝑑𝑉]|𝐶−𝑡𝑒𝑟𝑚𝑠 = 𝜇𝐶𝐶 𝜕𝑉𝜕𝑐 + 12 (𝜎0𝐶)2 𝜕2𝑉𝜕𝐶2 

The Markov Chain dictates the expected value change due to regime switching. 
In the Low Regime (𝑟 = 𝐿): The system can jump to 𝐻 with intensity 𝜆𝐿𝐻. 1𝑑𝑡 𝐸𝑡[𝑑𝑉]|𝑗𝑢𝑚𝑝 = 𝜆𝐿𝐻[𝑉(𝐶, 𝐻) − 𝑉(𝐶, 𝐿)] 
In the High Regime (𝑟 = 𝐻): The system can jump to 𝐿 with intensity 𝜆𝐿𝐻. 1𝑑𝑡 𝐸𝑡[𝑑𝑉]|𝑗𝑢𝑚𝑝 = 𝜆𝐻𝐿[𝑉(𝐶, 𝐿) − 𝑉(𝐶,𝐻)] 
Combining the components, the full infinitesimal generator ℒ𝑟 for regime 𝑟 ∈ {𝐿, 𝐻} is: 
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ℒ𝑟 = 12 (𝜎0𝐶)2 𝜕2𝑉𝜕𝐶2 + 𝜇𝐶𝐶 𝜕𝑉𝜕𝑐 + 𝜆𝑟→𝑟′  [𝑉(𝐶, 𝑟′) − 𝑉(𝐶, 𝑟)] (9) 
 

2.1.4. The HJB Equations 

Substituting the generator back into the Bellman equation, applying the condition 𝜌𝑉𝑑𝑡 = −𝑑(𝑒−𝜌𝑡𝑉)/𝑒−𝜌𝑡, and taking the limit as Δt→0, we arrive at the HJB Variational 
Inequality for the waiting region: 𝜌𝑉(𝐶, 𝑟) = 𝑚𝑎𝑥{ℒ𝑟𝑉(𝐶, 𝑟), 𝛱∗(𝐶, 𝑟)} (10) 
This leads to a system of two coupled nonlinear partial differential equations (PDEs), 
one for each regime: 
Regime L (Low Carbon Cost, 𝜒𝐿): 𝑚𝑖𝑛{𝜌𝑉(𝐶, 𝐿) − ℒ𝐿𝑉(𝐶, 𝐿), 𝑉(𝐶, 𝐿) − 𝛱∗(𝐶, 𝐿)} = 0 
Where: ℒ𝐿𝑉 = 12 (𝜎0𝐶)2 𝜕2𝑉(𝐶, 𝐿)𝜕𝐶2 + 𝜇𝐶𝐶 𝜕𝑉(𝐶, 𝐿)𝜕𝑐 +𝜆𝐿𝐻[𝑉(𝐶, 𝐻) − 𝑉(𝐶, 𝐿)] (11) 
Regime H (High Carbon Cost, 𝜒𝐻): 𝑚𝑖𝑛{𝜌𝑉(𝐶,𝐻) − ℒ𝐻𝑉(𝐶,𝐻), 𝑉(𝐶, 𝐻) − 𝛱∗(𝐶, 𝐻)} = 0 
Where: ℒ𝐻𝑉 = 12 (𝜎0𝐶)2 𝜕2𝑉(𝐶,𝐻)𝜕𝐶2 + 𝜇𝐶𝐶 𝜕𝑉(𝐶,𝐻)𝜕𝑐 +𝜆𝐻𝐿[𝑉(𝐶, 𝐿) − 𝑉(𝐶, 𝐻)] (12) 
2.1.5. Optimal Policy Conditions 

The solution to this system partitions the state space (𝐶, 𝑟) into two regions separated 
by a free boundary, the optimal investment threshold 𝐶𝑟∗: 
i. Waiting Region (𝐶 > 𝐶𝑟∗): The option value V is strictly greater than the payoff 𝛱∗, and the PDE holds an equality: 𝜌𝑉(𝐶, 𝑟) = ℒ𝑟𝑉(𝐶, 𝑟) 
ii. Investment Region (𝐶 ≤ 𝐶𝑟∗): The firm exercises the option, and the value 
function collapses to the immediate payoff: 𝑉(𝐶, 𝑟) = 𝛱∗(𝐶, 𝑟) 
The free boundary Cr∗ is uniquely determined by the Value Matching and Smooth 
Pasting conditions: 
i. Value Matching Condition: The value function must be continuous at the 
boundary.      𝑉(𝐶𝑟∗, 𝑟) = 𝛱∗(𝐶𝑟∗, 𝑟) 
ii. Smooth Pasting Condition: The marginal value of waiting must equal the 
marginal value of investing, ensuring a smooth transition. 𝜕𝑉(𝐶𝑟∗, 𝑟)𝜕𝐶 = 𝜕𝛱∗(𝐶𝑟∗, 𝑟)𝜕𝐶  

These non-linear, coupled PDEs are solved numerically using the Finite Difference 

method combined with the Projected Successive Over-Relaxation (PSOR) algorithm, as 

detailed in the numerical section 3. 

3. Numerical Implementation and Results 

This section outlines the numerical strategy employed to solve the HJB equation and 

reports the main findings. Given the analytical intractability of regime-switching HJB 

problems with endogenous learning, we rely on a finite-difference approximation and a 
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Projected Successive Over-Relaxation (PSOR) algorithm to compute the value function 

and optimal investment thresholds. 

3.1.   Numerical Discretization 
We discretize the state space of costs 𝐶 ∈ [𝐶𝑚𝑖𝑛, 𝐶𝑚𝑎𝑥] using a uniform grid of 𝑁 points. 
The first and second derivatives of the value function are approximated by central finite 
differences. Specifically, for a given cost grid {𝐶𝑖}𝑖=1𝑁 : 𝜕𝑉(𝐶𝑖)𝜕𝐶 ≈ 𝑉(𝐶𝑖+1)−𝑉(𝐶𝑖−1)2∆𝐶 ,

𝜕2𝑉(𝐶𝑖)𝜕𝐶2 ≈ 𝑉(𝐶𝑖+1)−2𝑉(𝐶𝑖)+𝑉(𝐶𝑖−1)∆𝐶2 , 

Where∆𝐶 = (𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛)/(𝑁 − 1). 
Boundary conditions are imposed as follows: 
At 𝐶𝑚𝑖𝑛, the value function is set equal to the immediate payoff: 𝑉(𝐶𝑚𝑖𝑛, 𝑟) = 𝛱∗(𝐶𝑚𝑖𝑛, 𝑟) 
At𝐶𝑚𝑎𝑥, the option to wait dominates, so 𝑉(𝐶𝑚𝑎𝑥, 𝑟) ≈ 0. 
 

3.2. PSOR Algorithm 
To enforce the option feature, we employ the PSOR method. At each iteration, the 
algorithm updates the value function by solving the discretized HJB system, while 
projecting onto the feasible set defined by: 𝑉(𝐶𝑖, 𝑟) ≥ 𝛱∗(𝐶𝑖, 𝑟),        ∀𝑖, 𝑟. 
Convergence is achieved when successive iterations differ by less than a tolerance𝜀 =10−6. The method is numerically stable and ensures monotonicity of the solution. 
 
3.3. Calibration 
The parameters used in the numerical experiments are reported in Table 1. They are 
chosen to be consistent with the real options literature and to illustrate the effect of 
regime switching and learning. 

Table 1.Parameter Values for Numerical Analysis 

Parameter Symbol Value Unit Source 

Discount Rate 𝜌 0.05 Annual 
Standard corporate discount rate 

assumption. 

Cost Drift 𝜇𝐶 -0.01 Annual 
The long-term of unit cost is slightly 

decreasing. 

Volatility 𝜎0 0.25 Annual Represents average cost uncertainty. 

Learning Factor 𝜙 0.1 N/A 
Determines the reduction in σ with 
investment K. Set to zero for base 

case, non-zero for sensitivity 

Low-Cost Regime 
Penalty 

𝜒𝐿 0.0 $/unit 
Represents low or zero carbon 

tax/penalty. 

High-Cost Regime 
Penalty 

𝜒𝐻 10.0 $/unit 
Represents a significant carbon 

tax/penalty. 𝐿 → 𝐻 𝜆𝐿𝐻 0.1 Annual 
Expected time to switch to high-cost 

regime is 10 years (1/𝜆𝐿𝐻) 
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𝐻 → 𝐿 𝜆𝐻𝐿 0.2 Annual 
Expected time to switch to low-cost 

regime is 5 years (1/𝜆𝐻𝐿). 

Investment Cost 
Exponent 

𝛼 1.5 N/A 
Models increasing marginal costs of 

capacity (economies of scale are 
decreasing) 

3.4. Results 

The proposed finite-difference and PSOR-based solver demonstrates stable and 

accurate numerical behaviour across both regimes. To ensure the reliability of the 

solution, the convergence characteristics, numerical thresholds, and graphical profiles 

were analysed in detail. 

3.4.1. Convergence Performance 

The PSOR algorithm was executed with a relaxation factor of 𝜔 = 1.1 and a convergence 

tolerance of 10−6. The iteration log confirmed a smooth decline in the residual error, 

indicating monotonic convergence toward equilibrium. The solver converged 

successfully after 11,994 iterations, reaching a final residual error of 9.99 × 10⁻⁷, which is 
well within the prescribed tolerance. Table 2 summarizes the convergence diagnostics 

obtained from the implementation. 

Table 2. PSOR convergence performance across iterations 

Iteration Step Residual Error Convergence Status 

1000 3.4 × 10−3 Continuing 

5000 7.59 × 10−5 Stable decline 

10,000 3.34 × 10−6 Near steady-state 

11,994 9.99 × 10−7 Converged 

The steady and controlled reduction in the error demonstrates the numerical stability of 

the proposed scheme. The choice of step size (N=200) and the relaxation parameter 

ensured a balance between speed and stability. 

3.4.2. Threshold and Capacity Results 

Upon convergence, the optimal cost thresholds and corresponding investment 

capacities were obtained as shown in Table3. 

 

Table 3. Optimal thresholds and capacity levels across regimes 

Regime Threshold 𝐂∗ Optimal 

Capacity 𝐊∗ Interpretation 

Low-carbon (L) 0.01 1777742 
Early trigger for expansion due to 

low adjustment cost 

High-carbon 

(H) 
200 0 

Projection continuation not 

optimal under high cost 
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3.4.3. Graphical Validation 

    To validate the numerical accuracy and economic consistency, the computed value 

function and capacity paths were plotted against the cost grid. Figure 1 illustrates the 

value function V(C) and the corresponding payoff Π(C) for both regimes. The smooth 

transition between the continuation and stopping regions confirms the satisfaction of 

the value-matching and smooth-pasting conditions at the computed thresholds. 

 
Figure 1. Value Function v/s Cost Across Regimes 

The second plot, shown in Figure 2, depicts the optimal capacity functionK∗(C)  across 

the cost grid. The curve shows that capacity sharply declines with higher costs, 

consistent with the theoretical properties of real options under increasing marginal 

adjustment costs. 

 
Figure 2. Optimal Capacity K*(C) v/s Cost Across Regimes 
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The results indicate that under favourable cost conditions (low regime), the firm 

optimally expands capacity rapidly, while in the high-cost regime, the investment is 

deferred. The convergence pattern and graphical validation collectively confirm that the 

PSOR-based finite-difference solver captures the expected option value behaviour 

accurately. 

These results provide strong computational evidence supporting the proposed real 

options framework and establish a numerically consistent link between the stochastic 

cost process and the firm’s optimal capacity decisions 

 

4. Discussion 

The results emphasize the asymmetric effect of carbon cost regimes on investment 

timing. When policy costs are low, firms invest aggressively, essentially treating the 

project as if it were immediately profitable. This explains the near-zero threshold and 

the extremely large optimal scale. In practice, such large (K*) values should be 

interpreted not literally, but as evidence of strong incentives for rapid capacity 

expansion. Conversely, in the high-cost regime, the effective investment threshold is 

pushed to the boundary of the feasible domain. The model therefore predicts that 

firms will refrain from investing unless costs fall dramatically. This finding aligns with 

intuition: stringent climate policy or higher carbon prices increase the value of waiting, 

since firms expect possible reversals or cost reductions in the future. 

Learning-by-doing was also incorporated in an extended version of the model. While it 

affects the volatility term and reduces uncertainty over time, the qualitative patterns 

remain robust. Learning primarily shifts thresholds, encouraging earlier adoption, but 

does not overturn the asymmetry between low and high regimes. 

 

5. Conclusion 

This paper developed and solved a real options model of irreversible investment under 

stochastic costs and policy uncertainty. Using a finite-difference PSOR method, we 

computed value functions, payoffs, and optimal thresholds for two carbon regimes. The 

results show that: 

1. Under low-carbon policy costs, investment is effectively immediate and large-scale, 

with thresholds near zero. 

2. Under high-carbon policy costs, firms optimally defer investment, with thresholds 

pushed to the upper cost boundary. 

3. The inclusion of learning effects reduces uncertainty and promotes earlier adoption, 

but does not eliminate regime asymmetry. 

The key policy implication is that carbon pricing and related policy instruments have a 

decisive effect on the timing of green investment. High carbon costs risk delaying 

investment indefinitely, whereas credible low-cost regimes spur rapid adoption. For 

policymakers, ensuring stability and predictability in carbon policy is therefore critical 

to accelerate the transition to low-carbon technologies. Future work could extend the 
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analysis to multiple interacting firms, endogenous price feedbacks, or richer forms of 

technological learning. Nonetheless, the current framework highlights the central role 

of uncertainty and regime switching in shaping optimal investment behaviour. 

 

Statements and Declarations 

Competing interest: The author declares that there are no known competing financial 

interest or personal relationships that could have appeared to influence the work 

reported in this paper. 

 

Data Availability: The data supporting the findings of this study were generated 

through numerical simulations. The simulation code and parameter files are available 

from the corresponding author upon reasonable request. 

 

Funding: No specific grant from any funding agency in the public, commercial, or not-

for-profit sectors was received for this research. 

 

Ethical Approval: Not applicable (this study did not involve human participants or 

animal experiments). 

 

References: 

1. Dixit, A. K., & Pindyck, R. S. (1994). Investment under Uncertainty. Princeton 

University Press. 

2. Mc Donald, R., & Siegel, D. (1986). The Value of Waiting to Invest. Quarterly Journal 

of Economics, 101(4), 707–728. 

3. Elliott, R. J., Miao, H., & Yu, J. (2009). Investment timing under regime 

switching. International Journal of Theoretical and Applied Finance, 12(04), 443-

463. 

4. Driffill, J., Kenc, T., & Sola, M. (2013). Real options with priced regime-switching 

risk. International Journal of Theoretical and Applied Finance, 16(05), 1350028. 

5. Li, G., & Rajagopalan, S. (2008). Process improvement, learning, and real 

options. Production and Operations Management, 17(1), 61-74. 

6. Miller, L. T., & Park, C. S. (2005). A learning real options framework with 

application to process design and capacity planning. Production and Operations 

Management, 14(1),5-20. 

7. Forsyth, P. A., & Labahn, G. (2007). Numerical methods for controlled Hamilton-

Jacobi-Bellman PDEs in finance. Journal of Computational Finance, 11(2), 1. 

8. Trigeorgis, L. (1996). Real options: Managerial flexibility and strategy in resource 

allocation. MIT press. 


