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Abstract: This paper develops a real options framework to analyse irreversible
investment decisions under regime-dependent uncertainty and learning-by-
doing effects. The cost of investment is modeled as a stochastic diffusion
process that can switch between low and high carbon regimes, reflecting
shifts in policy or technological environments. A learning mechanism is
introduced whereby accumulated investment experience reduces cost
volatility over time. The resulting Hamilton-Jacobi-Bellman (HJB) equations
form a system of coupled variational inequalities, for which closed-form
solutions are generally intractable. To solve this system, we implement a
finite-difference (FD) discretization combined with a Projected Successive
Over-Relaxation (PSOR) algorithm, providing a robust and stable numerical
method for determining value functions and optimal investment thresholds.
Convergence diagnostics confirm the numerical stability of the approach, and
results reveal that learning significantly compresses volatility, reduces the
option value of waiting, and accelerates investment in the low-carbon regime.
The framework captures how policy-induced regime switching and
endogenous learning jointly shape optimal investment timing and scale. The
proposed method can be extended to multi-regime or multi-factor models,
offering a flexible foundation for evaluating investment under complex
environmental and policy uncertainty.
Keywords: Irreversible Investment, Real options, Regime switching,
Learning-by-doing, HJB equation, Optimal investment scale

1. Introduction

Investment decisions in uncertain environments are often characterized by
irreversibility, flexibility, and learning. Once capital is committed, it cannot be costlessly
reversed; hence, investors face the classical dilemma of whether to invest immediately
or wait for better information. The real options approach provides a rigorous framework
to analyse such decisions under uncertainty, emphasizing that the option to delay
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investment has value (Dixit and Pindyck, 1994; McDonald and Siegel, 1986; Trigeorgis,
L.,1996).

In many practical contexts such as clean energy transition, infrastructure development,
and low-carbon technology deployment investment costs evolve stochastically and may
switch between distinct regimes. These regimes can reflect shifts in policy (e.g., carbon
tax enforcement), technological progress, or macroeconomic conditions. The regime-
switching framework captures this feature by allowing the parameters of the cost
process (drift and volatility) to depend on a hidden Markov chain (Elliott, etal., 2000;
Driffill, etal., 2013). This approach enriches the standard real options model by
accounting for the possibility of structural breaks and persistent uncertainty about the
investment environment.

At the same time, learning effects where accumulated investment or experience reduces
uncertainty play a critical role in modern investment decisions. In renewable energy
technologies, for example, learning by doing reduces future volatility in installation and
production costs (Li and Rajagopalan, 2008; Miller, 2005). This mechanism introduces
path-dependence into the stochastic process: the volatility of cost declines as
investment increases. Incorporating such learning effects into a stochastic, regime-
dependent framework provides a richer and more realistic model of irreversible
investment behaviour.

Despite the theoretical and empirical importance of these features, there is no
analytical solutions when both regime switching and learning are present. The resulting
Hamilton-Jacobi-Bellman (HJB) equation becomes nonlinear and involves coupled
variational inequalities for each regime. Hence, numerical approaches are required.
Recent work has emphasized the reliability of finite-difference (FD) and Projected
Successive Over-Relaxation (PSOR) schemes in solving such problems, especially when
convergence and stability are explicitly verified (Forsyth and Labahn, 2007).This study
develops a numerical solution framework for a two-regime investment model in which
the cost process follows a stochastic diffusion with regime-dependent parameters and
learning-induced volatility reduction. Specifically, we employ a finite-difference
discretization combined with a PSOR algorithm to solve the coupled HJB system,
ensuring convergence through diagnostic checks and error monitoring. The numerical
framework allows us to derive investment thresholds, value functions, and optimal
capacity levels K*(C) for both regimes.

The main contributions of this paper are as follows:

¢ Integration of learning and regime switching: We extend the standard real options
model by incorporating a volatility-reducing learning mechanism and stochastic
regime changes in the cost process.

¢ Robust numerical solution: We design and implement a FD-PSOR solver with built-
in convergence diagnostics and threshold detection, ensuring numerical consistency
with theoretical properties.
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e Economic interpretation: We analyse the resulting investment thresholds and
capacity functions, showing how learning compresses uncertainty and leads to
asymmetric regime-specific behaviour.

The rest of the paper is structured as follows. Section 2 introduces the model and the
stochastic processes governing the cost dynamics under learning and regime switching.
Section 3 outlines the numerical solution approach based on the FD-PSOR method.
Section 4 presents and discusses the numerical results, including convergence
diagnostics, investment thresholds, and value function profiles. Section 5 concludes
with key findings and directions for future research.

2. Model setup and Hamilton-Jacobi-Bellman (HJB) formulation

The model describes an irreversible investment decision where a firm must choose the
optimal timing and scale (K) of a project. The decision is made under two sources of
uncertainty: a stochastic unit investment cost (C;) and a two-state Markov chain for
carbon policy (r; € {L,H}) where L and H are the low and high carbon cost regimes
respectively. The output priceP is fixed and p > 0 is the discount rate.

Stochastic State Variables

Unit Investment Cost (Ct): Follows a Geometric Brownian Motion (GBM) described
by the stochastic differential equation:
dC, = p Cedt + o (K)CdW, (1)
Where p¢ < 0 reflects a tendency for cost to decline over time, and the key feature is
that the volatility, o¢(K), depends on the chosen scale of investment, K. Specifically, it's
a decaying function,
oc(K) = 656 % + 0,0, d>0 (2)

With baseline volatility 6, and o,;, a lower bound on uncertainty. Equation (2)
represents learning-by-doing or economies of scale in technological diffusion. This
assumption implies that a larger planned capacity reduces future cost uncertainty.
Carbon Policy Regime (1;): A continuous-time Markov chain with two states, Lis the low
carbon cost regime and His the high carbon cost regime. The transition intensities are
ALH, probability per unit time of moving from regime L to H and Ay, probability per
unit time of moving from regime H to L. The carbon cost per unit output isx;, in the L
regime and xy in the H regime, with xyz > x..

Decision Variables:
Timing: The firm decides when to invest, which is a stopping time problem.
Scale (K): At the time of investment, the firm chooses the optimal capacity K.
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Costs and Revenues:
Investment Cost (I(K)): A convex function of capacity, [(K) = kK* with a > 1. This
implies increasing marginal costs for larger projects.
Instantaneous Operating Cash Flow (TI(C, 1, K)): Once the project is running, the cash
flow is:

n(ct’ r, K) = K(F - Ct - Xr) (3)
whereP is a fixed output price. The cost term includes the unit investment cost C;
(which is assumed to affect ongoing operational costs) and the regime specific carbon
cost X-

The net present value (instantaneous payoff/ profit function) of investing at time t is
given by

(P-C—xJ)K
P

NPV = KK® 4)

Thus, the optimal scale-dependent payoff is

K(P—C,—
IT°(C,r) = sup{ ( pt Xr) - KK“}
K

(5)

This profit function reflects the trade-off between the revenue margin P — C; — x, and
the scale of operation determined by K. The firm chooses the optimal capital stock K*
that maximizes the instantaneous profit. To find optimal scale we use the First Order
Conditioni.e.

oIT* (C, 1)
oK 0 )
K* = l(P — G- Xr)l“_l
aKp
Also,
0%I1"(C, 1)

KE - —a(a— 1DkK* 1 <0

Hence, we have
[(F —Ce — Xr)

1
o—1
forP—C,—y >0
= ] orP -~ ,

0 , otherwise

By substituting K* in IT" we get immediate optimized payoff (the payoff from exercising
immediately and choosing the best K),

a— 111 [P=C—x ] -
en Wl ] Prea>o
mcr=4L o« Jlox p %)

0 ,otherwise
IT* is the obstacle in the optimal stopping (irreversible investment problem).Largery,

reduces the numerator P — C — x, and therefore reduces both K* and IT*. A higher
discount p reduces the present value of future revenue and therefore lowers both K* and
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1" .Parameter a governs curvature of investment cost; as @ = 1 the solution tends to a
linear case that must be treated separately.

2.1 Derivation of the Hamilton-Jacobi-Bellman (HJB) Variational Inequality
The derivation relies on the principles of stochastic dynamic programming and real
options theory, incorporating both the Geometric Brownian Motion (GBM) for cost and
the two-state Markov chain for carbon policy.

211. The Firm's Stochastic Control Problem
The firm seeks to maximize the expected present value of its perpetual future cash flows
by choosing the optimal stopping time (7) and the optimal scale (K) upon investment.
The value function, V(C;, 1), represents the firm's maximum expected value while
waiting in state (C¢,7):

V(C,1) = max E/e P*IT*(C,, 1,)]

where IT*(C, ) is the maximum instantaneous payoff achieved by choosing the optimal
capacity K*, as derived from the first-order condition.

2a.2.  The HJB Variational Inequality
Following the dynamic programming principle, over a small-time interval At, the value
function must satisfy the following generalized Bellman equation:

V(Ce, 1) = max{IT*(Cy, 1), e PAYE [V (Cosnrs Terae) 1} (8)
The first term, I1*(C;,7), represents the immediate value obtained by exercising the
option (investing). The second term, e PA'E, [V (Cpypt, Te+4:)], TEpPresents the expected
discounted value obtained by continuing to wait.

2.1.3.  Derivation of the Infinitesimal Generator (£")

To evaluate the expected continuation value, we use It6's Lemma on V(C;, 7). The total
differential of V(C;,7) is
av
dV(Ct, T') = LrV(Ct, T')dt + %dCt
The infinitesimal generator L" is comprised of two parts: the generator for the

continuous state variable C; and the generator for the jump process r.
The unit cost Ct follows the SDE: dC; = ucCidt + 0. CrdW,. Since the firm is still
waiting, the investment scale K = 0, so the pre-investment volatility is o,,, = 0.
The drift and diffusion terms give the following contribution to the generator:
1 0%V

a 1
V(C,r) = —E,[dV = 1€ —+ = (6,0)? ~—
gv(c,) at el ]C_terms Uc ac+2(00 ) 3C?

The Markov Chain dictates the expected value change due to regime switching.
In the Low Regime (r = L): The system can jump to H with intensity 4, .

1
Jjump
In the High Regime (r = H): The system can jump to L with intensity 4, .
1

Jjump
Combining the components, the full infinitesimal generator L” for regime r € {L, H} is:
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R YL v ,
L7 = 2 (000)? 5 + HeC 5+ At [V(C,T) = V(C,1)) ©)

21.4. The HJB Equations

Substituting the generator back into the Bellman equation, applying the condition
pVdt = —d (e PtV)/e Pt and taking the limit as At—o, we arrive at the HJB Variational
Inequality for the waiting region:

pV(C,r) = max{L"V(C,r),T1"(C,1)} (10)
This leads to a system of two coupled nonlinear partial differential equations (PDEs),
one for each regime:
Regime L (Low Carbon Cost, y;):

min{pV(C,L) — LLV(C,L),V(C,L) — 1" (C,L)} = 0
Where:
2
Ly =%(JOC)Z%+/1¢C%€’L)+ALH[V(C,H)—V(C,L)] (11)
Regime H (High Carbon Cost, yy):
min{pV (C,H) — LHV(C, H),V(C,H) — T*(C,H)} = 0

Where:
0%V(C,H) CGV(C H)

LHV=1(O'C)2 pcC————=
20 aC? ¢ 9

— +u[V(C,1) =V (C, H)] (12)
2a.5.  Optimal Policy Conditions
The solution to this system partitions the state space (C,r) into two regions separated
by a free boundary, the optimal investment threshold C;::
i. Waiting Region (C > C;): The option value V is strictly greater than the payoff
IT*, and the PDE holds an equality:
pV(C,v)=L"V(C,1)

ii. Investment Region (C < C;): The firm exercises the option, and the value
function collapses to the immediate payoft:

v, r)y=m(Cr)
The free boundary Cr* is uniquely determined by the Value Matching and Smooth
Pasting conditions:
i. Value Matching Condition: The value function must be continuous at the
boundary.

V(C;,r)=10"(C;,1)
ii. Smooth Pasting Condition: The marginal value of waiting must equal the
marginal value of investing, ensuring a smooth transition.

ov(C;,r) oI (Cy,r)

ac —  oc

These non-linear, coupled PDEs are solved numerically using the Finite Difference

method combined with the Projected Successive Over-Relaxation (PSOR) algorithm, as
detailed in the numerical section 3.

3. Numerical Implementation and Results

This section outlines the numerical strategy employed to solve the HJB equation and
reports the main findings. Given the analytical intractability of regime-switching HJB
problems with endogenous learning, we rely on a finite-difference approximation and a
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Projected Successive Over-Relaxation (PSOR) algorithm to compute the value function
and optimal investment thresholds.

3.1. Numerical Discretization
We discretize the state space of costs C € [Ciin, Cinax] using a uniform grid of N points.
The first and second derivatives of the value function are approximated by central finite
differences. Specifically, for a given cost grid {C;}\_;:
V()  V(Ci)=V(Ciy) I?V(C)  V(Cip1)=2V(CD+V(Ci1)

ac 2AC 7 ac? AC? ’
WhereAC = (Crax — Cnin) /(N —1).
Boundary conditions are imposed as follows:
At Cpyin, the value function is set equal to the immediate payofft:

V(Cmin’ r) =1I" (Crnins )

AtCpqx, the option to wait dominates, so V(Cpoy, 7) = 0.

3.2.  PSOR Algorithm
To enforce the option feature, we employ the PSOR method. At each iteration, the
algorithm updates the value function by solving the discretized HJB system, while
projecting onto the feasible set defined by:

V(C;,r) =1 (C;,7), Vi, r.
Convergence is achieved when successive iterations differ by less than a tolerancee =
1076, The method is numerically stable and ensures monotonicity of the solution.

3.3. Calibration

The parameters used in the numerical experiments are reported in Table 1. They are
chosen to be consistent with the real options literature and to illustrate the effect of
regime switching and learning.

Table 1.Parameter Values for Numerical Analysis

Parameter Symbol Value Unit Source
. Standard corporate discount rate
Discount Rate p 0.05 Annual p .
assumption.
. The long-term of unit cost is slightl
Cost Drift Uc -0.01 Annual & . shtly
decreasing.
Volatility oy 0.25 Annual Represents average cost uncertainty.

Determines the reduction in o with
Learning Factor [0} 0.1 N/A investment K. Set to zero for base
case, non-zero for sensitivity

Low-Cost Regime Represents low or zero carbon

Penalty AL 00 $/unit tax/penalty.
High-Cost Regime . Represents a significant carbon
XH 10.0 $/unit
Penalty tax/penalty.
L H An o1 Annual Expected time to switch to high-cost

regime is 10 years (1/A;y)
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Expected time to switch to low-cost

H-L AL 0.2 Annual regime is 5 years (1/Ay;).

Models increasing marginal costs of
a 1.5 N/A capacity (economies of scale are
decreasing)

Investment Cost
Exponent

3.4. Results

The proposed finite-difference and PSOR-based solver demonstrates stable and
accurate numerical behaviour across both regimes. To ensure the reliability of the
solution, the convergence characteristics, numerical thresholds, and graphical profiles
were analysed in detail.

3.41. Convergence Performance

The PSOR algorithm was executed with a relaxation factor of w = 1.1 and a convergence
tolerance of 107°. The iteration log confirmed a smooth decline in the residual error,
indicating monotonic convergence toward equilibrium. The solver converged
successfully after 1,994 iterations, reaching a final residual error of 9.99 x 1077, which is
well within the prescribed tolerance. Table 2 summarizes the convergence diagnostics
obtained from the implementation.

Table 2. PSOR convergence performance across iterations

Iteration Step Residual Error Convergence Status
1000 34x1073 Continuing
5000 7.59 x 1075 Stable decline

10,000 3.34x107° Near steady-state
11,094 9.99 x 1077 Converged

The steady and controlled reduction in the error demonstrates the numerical stability of
the proposed scheme. The choice of step size (N=200) and the relaxation parameter
ensured a balance between speed and stability.

3.4.2. Threshold and Capacity Results
Upon convergence, the optimal cost thresholds and corresponding investment
capacities were obtained as shown in Tables.

Table 3. Optimal thresholds and capacity levels across regimes

Optimal
Regime Threshold C* P 1.ma . Interpretation
Capacity K
Early tri f ion due t
Low-carbon (L) o.00 . arly trigger .or expansion due to
low adjustment cost
High-carbon Projection continuation not
200 o . .
(H) optimal under high cost
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3.43. Graphical Validation

To validate the numerical accuracy and economic consistency, the computed value
function and capacity paths were plotted against the cost grid. Figure 1 illustrates the
value function V(C) and the corresponding payoff I1(C) for both regimes. The smooth
transition between the continuation and stopping regions confirms the satisfaction of
the value-matching and smooth-pasting conditions at the computed thresholds.

Low regime High regime
3
P
R — Value % |
----- Payoff 2
o i\ Threshold _
[1}] o @
2 & 2 8
> S ] = 3
o - _
< . 3
L F -
o | | | | & | | |
o
0 50 100 150 200 0 50 100 150 200
C (cost) C (cost)

Figure 1. Value Function v/s Cost Across Regimes

The second plot, shown in Figure 2, depicts the optimal capacity functionK*(C) across
the cost grid. The curve shows that capacity sharply declines with higher costs,
consistent with the theoretical properties of real options under increasing marginal
adjustment costs.

Optimal Capacity K*(C) Across Cost Grid
K*(at C*_L)= 1777740 ; K*(at C*_H) =0
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=
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Figure 2. Optimal Capacity K*(C) v/s Cost Across Regimes
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The results indicate that under favourable cost conditions (low regime), the firm
optimally expands capacity rapidly, while in the high-cost regime, the investment is
deferred. The convergence pattern and graphical validation collectively confirm that the
PSOR-based finite-difference solver captures the expected option value behaviour
accurately.

These results provide strong computational evidence supporting the proposed real
options framework and establish a numerically consistent link between the stochastic
cost process and the firm’s optimal capacity decisions

4. Discussion

The results emphasize the asymmetric effect of carbon cost regimes on investment
timing. When policy costs are low, firms invest aggressively, essentially treating the
project as if it were immediately profitable. This explains the near-zero threshold and
the extremely large optimal scale. In practice, such large (K*) values should be
interpreted not literally, but as evidence of strong incentives for rapid capacity
expansion. Conversely, in the high-cost regime, the effective investment threshold is
pushed to the boundary of the feasible domain. The model therefore predicts that
firms will refrain from investing unless costs fall dramatically. This finding aligns with
intuition: stringent climate policy or higher carbon prices increase the value of waiting,
since firms expect possible reversals or cost reductions in the future.
Learning-by-doing was also incorporated in an extended version of the model. While it
affects the volatility term and reduces uncertainty over time, the qualitative patterns
remain robust. Learning primarily shifts thresholds, encouraging earlier adoption, but
does not overturn the asymmetry between low and high regimes.

5. Conclusion

This paper developed and solved a real options model of irreversible investment under

stochastic costs and policy uncertainty. Using a finite-difference PSOR method, we

computed value functions, payoffs, and optimal thresholds for two carbon regimes. The

results show that:

1. Under low-carbon policy costs, investment is effectively immediate and large-scale,
with thresholds near zero.

2. Under high-carbon policy costs, firms optimally defer investment, with thresholds
pushed to the upper cost boundary.

3. The inclusion of learning effects reduces uncertainty and promotes earlier adoption,
but does not eliminate regime asymmetry.

The key policy implication is that carbon pricing and related policy instruments have a
decisive effect on the timing of green investment. High carbon costs risk delaying
investment indefinitely, whereas credible low-cost regimes spur rapid adoption. For
policymakers, ensuring stability and predictability in carbon policy is therefore critical
to accelerate the transition to low-carbon technologies. Future work could extend the
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analysis to multiple interacting firms, endogenous price feedbacks, or richer forms of
technological learning. Nonetheless, the current framework highlights the central role
of uncertainty and regime switching in shaping optimal investment behaviour.
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