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Introduction: 

This paper discusses about different approaches to price the options. It is a 

fundamental concept in finance that has been widely studied and applied in both 

academia and industry. Options are contracts that give the holder the right, but not 

the obligation, to buy or sell an underlying asset at a predetermined price and time. 

The value of an option is determined by a variety of factors, including the current 

price of the underlying asset, the time until the option expires, the volatility of the 

underlying asset, and prevailing interest rates. 

 

The pricing of options is a complex process that has been the subject of extensive 

research in financial economics. One of the most widely used models for option 

pricing is the Black-Scholes model. The model assumes that the underlying asset 

follows a log-normal distribution, and it considers the current price of the underlying 

asset, the option's strike price, the time until the option expires, the volatility of the 

underlying asset, and the prevailing interest rates. 

 

The Black-Scholes model has been widely studied and criticized, leading to the 

development of alternative models, such as the binomial model, which considers 
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multiple possible outcomes for the price of the underlying asset of the options at the 

expiry. Other models, such as the Monte Carlo simulation, Vasicek Mean Reversion 

Model, and the Heston Stochastic volatility model, have also been developed to price 

options. 

 

Option pricing has important implications for traders and investors, as it helps them 

determine the fair value of an option and make informed decisions about buying, 

selling, or holding options. In addition, option pricing has practical applications in risk 

management, portfolio optimization, and financial engineering but financial models 

have their own limitations which restricts them to reach to the higher accuracy levels. 

So, it is important in finance to use different concepts to validate accuracy. 

To overcome these limitations of the above-mentioned financial models, this paper 

introduces Quantum Harmonic oscillator model to price European call options which 

is a theoretical framework used to describe the behaviour of certain physical systems, 

such as the vibrations of a molecule or the motion of a particle in a potential well. In 

this model, the energy of the system is quantizedi.e.,it can only take on certain 

discrete values.Moreover, the quantum harmonic oscillator model is particularly 

useful in option pricing because it provides a way to incorporate the effects of market 

volatility, which is a key factor in determining the price of options.It is a model with 

closed-form solution, which means that there is a mathematical formula to compute 

the volatility and price of the options.  

In financial options pricing models, volatility refers to the expected standard deviation 

of the underlying asset's price over a certain period of time. On the other hand, in 

quantum harmonic oscillator, volatility refers to the standard deviation of the position 

of the particle in the harmonic potential well.The standard deviation of position in the 

harmonic potential well changes as the particle's energy level changes. So, in quantum 

harmonic oscillator, volatility is not constant and changes as the energy level 

changes.The QHO model has been used as an alternative to the Black-Scholes model 

for option pricing, as it can capture some of the non-linear and non-normal 

characteristics of stock price movements that the Black-Scholes model cannot. 

However, it has its own limitations and should be used with caution, especially for 

more complex financial instruments. 

To validate the QHO model, it is important to compare its predictions with market 

prices and other models, as well as to conduct sensitivity analysis on the input 

parameters, such as volatility and time to expiration. This paper introduces some more 

different option pricing models including black scholes model to price European call 

options to compare it with the same derived from quantum harmonic oscillator. 
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Here, themain difference in volatility among these option pricing models is mentioned 

below.It is the way in which individual model is constructed and this volatility impacts 

on the prediction of option pricing. 

 

 Quantum Harmonic Oscillator: 

Volatility is not explicitly modelled as a separate input parameter. Instead, it is 

indirectly captured by the drift and diffusion terms of the stochastic process 

that describes the evolution of the underlying asset price. 

 

 Black Scholes Option Pricing Model: 

In this model, volatility is assumed to be constant over time and is an input 

parameter in the formula. It represents the degree of fluctuation of the 

underlying asset's price and is a measure of the risk associated with the option. 

 

 Heston Stochastic Volatility Model: 

Volatility is modelled as a stochastic process that follows a mean-reverting 

square root process. It is assumed to be a function of time and the underlying 

asset's price. It plays a central role in the option pricing formula. 

 

 Vasicek Mean Reversion Model: 

It is an input parameter that represents the degree of randomness in the 

interest rate process and affects the option prices via the term structure of 

interest rates. So, volatility is modelled as a mean-reverting process that follows 

an Ornstein-Uhlenbeck process. 

 

 Monte Carlo Option Pricing Model: 

It is simulated using random number generators, and its value at each time step 

affects the simulation of the underlying asset's price. In this model, volatility is 

developed as a stochastic process that is a function of time and the underlying 

asset's price. The option price is then estimated by averaging the payoffs of a 

large number of simulated paths. 

 

Literature Review: 

  Ivancevic [8] (2009) proposed a bidirectional quantum associative 

memory structure for Black–Scholes–like option price progression. It comprised of a 

pair of coupled NLS equations, one controlling stochastic volatility as well as the other 

administering option price, both self-organizing in an adaptive ‘market heat potential' 

trained by continuous Hebbian learning. By using approach of lines with adaptive 

step-size integrator, this stiff pair of NLS equations were solved numerically. He 

established a quantum neural composition approach for option price modelling. 
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  Alvarez [2] (2010) used lagged detrended fluctuation analysis (DFA) to 

investigate the effectiveness of crude oil markets (i.e., autocorrelations are dependent 

of the time scale). Results using spot price data for the years 1986 to 2009 showed 

significant efficiency deviations linked to lag autocorrelations, therefore implementing 

the random walk for crude oil prices entails significant forecasting costs. 

 

  In't Hout [7] (2010) dealt with the numerical solution of the Heston 

partial differential equation (PDE) that plays an important role in financial option 

pricing theory, Heston (1993). A feature of this time-dependent, twodimensional 

convection-diffusion-reaction equation is the presence of a mixed spatial-derivative 

term, which stems from the correlation between the two underlying stochastic 

processes for the asset price and its variance. 

 

  Cotfas&Cotfas[5](2013) investigates from a mathematical point of view an 

extension directly related to the quantumharmonic oscillator. In the considered case, 

the solution is the sum of aseries involving the Hermite-Gauss functions. A finite-

dimensional version isobtained by using a finite oscillator and the Harper functions. 

This simplifiedmodel keeps the essential characteristics of the continuous one and 

uses finitesums instead of series and integrals. 

 

  Garrahan[6] (2018)examined the ability of GBM, a modified GBM with an 

Ornstein-Uhlenbeck mean reversion term, and the QHO to model the behaviours of a 

return distribution over time. The models were applied to S&P 500 returns over the 

last five years. For each model, parameters were chosen by minimizing a goodness of 

fitstatistic using parameter search algorithms. The optimal results for each model were 

compared,using the Cramer von Mises test statistic for multiple return windows. 

 

  Ahn[1] et al. (2018) developed a quantum harmonic oscillator as a model 

for the market force that pulls a stock return from short-run oscillations to the long-

run equilibrium. Additionally, using analogies, they established an economic 

justification for physics notions like the eigenstate, eigenenergy, and angular 

frequency, which clarifies the connection between the literature on finance and 

econophysics. 

   

Jeknić-Dugić[9] (2018) pursued the quantum-mechanical challenge to the 

efficient market hypothesis for the stock market by employing the quantum Brownian 

motion model. He also introduced the external harmonic field for the Brownian 

particle and use the quantum Caldeira-Leggett master equation as a potential 

phenomenological model for the stock market price fluctuations. 
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Lee [11] et al. (2020) examined the weak-form efficient market hypothesis 

of the crude palm oil market by adopting the quantum harmonic oscillator. This 

approach allows Lee to analyze market efficiency by estimating one parameter: the 

probability of finding the market in a ground state where conclusion confirmed that 

the crude palm oil market is more efficient than the West Texas Intermediate crude oil 

market. 

 

  Orrell [13] (2020) addressed issues regarding intrinsically uncertain 

demand by using a quantum framework to model supply and demand as, not a cross, 

but a probabilistic wave, with an associated entropic force. The approach is used to 

derive from first principles a technique for modelling asset price changes using a 

quantum harmonic oscillator, that has been previously used and empirically tested in 

quantum finance. The method is demonstrated for a simple system, and applications 

in other areas of economics are discussed. 

 

  Samimi& Najafi [15] (2021) studies the European option pricing on the 

zero-coupon bond in which the Skew Vasicek model uses to predict the interest rate 

amount. To do this, he applied the skew Brownian motion as the random part of the 

model and showed that results of the model predictions are better than other types of 

the model. 

 

  Bhatt and Gor[3] (2022) showcased an interesting structure of Risk 

Neutral system. They also examine single step and multistep quantum binomial 

option pricing model. This approach elaborates circuit proposed by A. Meyer. Bhatt 

and Gor[3] (2022) review applications of quantum harmonic oscillator model in 

financial mathematics and also discussed about different applications of quantum 

harmonic oscillator and its characteristics. 

 

Data Collection: 

In this paper, historical data is collected randomly from YAHOO Finance website for 

options of Silver-gate Capital Corporation (SI). Historical data for the same is collected 

in the time span of one year from 1st January 2021 to 1st January 2022.  

 

Methodology: 

Quantum Harmonic Oscillator 

This paper uses Quantum Harmonic Oscillator (QHO) model to price a call option of 

a stock. It implements the QHO model using the Crank-Nicolson method with a 

backward propagation in time.The option is priced by propagating the wave function 

of the underlying stock price backward in time from the expiration date to the current 

date. The QHO potential is used to model the stock price dynamics, with the drift and 

https://www.sciencedirect.com/topics/physics-and-astronomy/first-principles
https://www.sciencedirect.com/topics/mathematics/harmonic-oscillator
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diffusion terms defined in terms of the risk-free interest rate, volatility, and the 

frequency of the QHO potential. 

 

Here for Silver-gate Capital Corporation, the calculations were made with python 

programming. Below mentioned algorithms were developed in this paper to price the 

European call options using quantum harmonic oscillator. 

 

1. Set up the initial parameters:  

Current stock price (S0), Strike price (K), Risk-free interest rate (r), Volatility 

(sigma), Time to expiration (T), Number of time steps (N), and Number of 

simulations (M). 

 

2. Set up the grid for the wave function:  

Number of grid points (𝑁𝑔𝑟𝑖𝑑), Minimum value of x-axis (𝑥𝑚𝑖𝑛), Maximum value 

of x-axis (𝑥𝑚𝑎𝑥) and spacing between two consecutive grid points (dx). 

 

3. Set up the potential for the QHO using the formula: 𝑉 = 12 (𝜔2𝑥2) 
where 𝜔 = √2𝑟𝜎2 

 

4. Define the drift (𝜇) and diffusion (𝐷) terms for the stochastic process using the 

formulas: 𝜇 = 𝑟 − 12𝜎2 𝐷 = 𝜎√2𝜔 

 

 

 

5. Initialize the wave function at expiration using the formula: 

𝜑 = √(𝑚𝑎𝑥(𝑆0 − 𝑘, 0)) ∗ 𝑒𝑥𝑝(−12 (𝑥 − 𝑙𝑜𝑔 (𝑆0𝑘 ))2𝐷2 ) 

and  |𝜑| = √(∫𝜑2 𝑑𝑥) 

 

6. Propagating the wave function backwards in time using the following steps: 

a. Calculate the new potential and drift terms using the formula: 
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𝑉𝑛𝑒𝑤 = 𝑉 + 12𝜔2(𝑥 − 𝜇𝑑𝑡)2 𝜇𝑛𝑒𝑤 = 𝜇 − 12𝜎2𝜔 + 12 𝑗𝐷2(𝑥 − 𝜇𝑑𝑡)𝜔2  

where 𝑑𝑡 = 𝑇𝑁is the time step. 

b. Construct the matrix for the evolution operator using the formula: 

�̂� = ( 𝑒𝑖𝐸0𝑡ℏ 0 ⋯ 0⋮  𝑒𝑖𝐸1𝑡ℏ ⋱ ⋮00 ⋯ 𝑒𝑖𝐸𝑛−1𝑡ℏ
)
(𝑛−1)×(𝑛−1)

 

where (𝑛 − 1)= grid 

c. Apply the evolution operator to the wave function. 

 

 

 

7. Calculate the expected payoff using the formula: 

 𝑝𝑎𝑦𝑜𝑓𝑓 = 𝑚𝑎𝑥(𝑒𝑥𝑝(𝑥) − 𝑘, 0) 
 

8. Calculate the call option price by taking the dot product of the squared wave 

function with the payoff and discounting it to the present value using the 

formula: 

 𝐶𝑎𝑙𝑙𝑃𝑟𝑖𝑐𝑒 = (𝜑2 ∙ 𝑝𝑎𝑦𝑜𝑓𝑓) ∗ 𝑒𝑥𝑝(−𝑟𝑇) 
 

Black Scholes Option Pricing Model 

The Black-Scholes model is a mathematical formula used to calculate the theoretical 

value of a European call option. The formula considers various factors that affect the 

price of the option, such as the current stock price, the exercise price, the time until 

expiration, the risk-free interest rate, and the volatility of the underlying asset. Here is 

the formula for the Black-Scholes model for a European call option: 𝐶 = 𝑆𝑁(𝑑1) − 𝑥𝑒−𝑟𝑇𝑁(𝑑2) 
where, 

C = The theoretical value of the call option  

S = The current stock price  

X = The exercise price of the option  

r = The risk-free interest rate  

T = The time to expiration of the option (in years)  

N() = The cumulative standard normal distribution  
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d1 = [ln (SX)+(r + (σ2)2 ) ∗ T]
σ ∗ sqrtT  

d2 =  d1 − σ ∗ sqrt(T) 
In this formula, σ represents the volatility of the underlying asset, which is a measure 
of how much the price of the asset fluctuates over time. The d1 and d2 terms are 

known as the "Black-Scholes parameters" and are used to calculate the probability that 

the option will be exercised. The N(d1) and N(d2) terms represent the cumulative 

standard normal distribution, which is a statistical measure that calculates the 

probability of a particular event occurring. 

By plugging in the relevant values for S, X, r, T, and σ into the Black-Scholes formula, 

one can calculate the theoretical value of a European call option. The formula assumes 

that the underlying asset follows a log-normal distribution and that there are no 

transaction costs or taxes. However, in practice, these assumptions may not hold, and 

adjustments may need to be made to the formula to account for these factors. 

 

Heston Stochastic Volatility Model: 

The Heston model assumes that the underlying asset follows a geometric Brownian 

motion process, which is similar to the Black-Scholes model. However, the model also 

incorporates stochastic volatility, which means that the volatility of the underlying 

asset is not constant but rather fluctuates over time. 

Here is the formula for the Heston stochastic volatility model for a European call 

option: C = SP1 − Xe−rT ∗ P2 

where, 

C = The theoretical value of the call option  

S = The current stock price  

X = The exercise price of the option  

r = The risk-free interest rate  

T = The time to expiration of the option (in years)  P1 = The probability density function for the stock price, under the risk-neutral 

measure, at time T  P2 = The probability density function for the log stock price, under the risk-neutral 

measure, at time T 
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The probability density functions P1 and P2 are calculated using the Heston model's 

stochastic volatility process, which is represented by two stochastic differential 

equations: 

 dS = rSdt +√vSdW1dv = κ(θ − v)dt + σ√v ∗ dW2 

Here, 

dS = The change in the stock price  

v = The volatility of the underlying asset  

κ = The mean-reverting rate of the volatility process  

θ = The long-term average volatility  

σ = The volatility of the volatility process  dW1 anddW2= Two Wiener processes that represent the randomness in the stock price 

and volatility processes, respectively. 

 

By numerically solving these stochastic differential equations, one can simulate the 

paths of the stock price and volatility processes, and then use them to calculate the 

probability density functions P1 and P2. Once these probability density functions are 

known, one can use them to calculate the theoretical value of a European call option 

using the above formula. 

 

The Heston model is more complex than the Black-Scholes model, but it is considered 

to be a more accurate representation of the real-world behaviour of financial assets, as 

it accounts for changes in volatility over time. However, the Heston model can also be 

computationally intensive. 

 

Vasicek Mean Reversion Model 

The Vasicek model assumes that the short-term interest rate follows a mean-reverting 

process, as described by the following stochastic differential equation: dr(t) = k(θ − r(t))dt + σ(r(t))dW(t) 
where, 

dr(t) = the change in the short-term interest rate at time t  

k = the mean-reversion rate of the interest rate process  

θ = the long-term average interest rate  

σ(r(t)) = the volatility of the interest rate at time t, which is a function of the interest 
rate r(t)  

dW(t) = a Wiener process representing the randomness in the interest rate process 

 

Using this model, the price of a European call option can be calculated using the 

following formula: 
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C = SN(d1) − xe−rTN(d2) 
where all other parameters are as same as in the above-mentioned models. 

d1 =  (ln (SX)+(r + σ22 )T)
σ√T  

d2 = d1 − σ√T 

To use the Vasicek model in this formula, one can replace the risk-free interest rate 

with the expected value of the short-term interest rate under the Vasicek model: r = E(r) = θ + (r0 − θ) ∗ e−kT 

Where: r0 = The current short-term interest rate 

Once the expected value of the short-term interest rate is known, it can be used to 

calculate the price of the European call option using the above formula. 

Monte Carlo Option Pricing Model 

The Monte Carlo option pricing model is a numerical method for estimating the price 

of a European call option. It involves simulating multiple possible future stock price 

paths using random numbers and then using these paths to calculate the expected 

payoff of the option. 

Steps to showcases Monte Carlo Option Pricing Model: 

1. Generate a large number of random numbers, typically using a pseudorandom 

number generator. These numbers will be used to simulate possible future 

stock price paths. 

2. Calculate the drift and volatility of the stock price using historical data and a 

mathematical model such as the Black-Scholes model. These values will be 

used to simulate the future stock price paths. 

3. Set an initial stock price and calculate the time step size, which is the length of 

time between each simulated stock price. 

4. Simulate multiple future stock price paths by randomly selecting from the 

generated numbers to create a sequence of price changes over time. 

5. For each simulated stock price path, calculate the payoff of the European call 

option at the time of expiration using the formula: Payoff = max(0, S(T) − X) 
Where S(T) = the simulated stock price at the time of expiration and X = the 

strike price of the option 
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6. Repeat steps 4-5 for a large number of simulated stock price paths. 

7. Calculate the average payoff of the European call option across all the 

simulated stock price paths. This average value represents the estimated price 

of the option. 

The Monte Carlo option pricing model is flexible and can be used to price options 

with complex payoff structures, as well as options on assets with non-normal 

return distributions. 

 

Numerical Calculations: 

Descriptive analysis for the data of Silver Gate Capital Corporation is done with the 

help of JAMOVI. 

 

Table 1 Descriptive Analysis 

Descriptives 

Log Return 

Total 

observations 18 

Strike Price 2.5 

Current price 12.8 

risk free rate 3% 

N 17 

Mean 0.0195 

Median -0.0245 

Mode -0.116 

Standard 

deviation 0.118 

Variance 0.014 

Shapiro-Wilk W 0.871 

Shapiro-Wilk p 0.023 

 

 

Quantum Harmonic Oscillator 

Parameters used in quantum harmonic oscillator and option pricing with the help of 

model is mentioned below: 
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Parameters QHO Option Pricing Model 

Planck constant 6.26E-34 Payoff 7.94E+00 

Diffusion coefficient 0.00019 Call Value 10.44 

Mass 1.03E-63     

k 0.0001 Absolute (d1) 0.23683 

w 3.12E+29 Absolute (d2) 4.04E-01 

mw 3.21E-34     

mean square 0.00038 N(d1) 0.593606 

Gamma 9.75E-05 N(d2) 6.57E-01 

Table 2 Quantum Harmonic Oscillator 
 

 

 

 

 

 

 

 

 

 

 

Black Scholes Option Pricing Model 

Payoff and the call option value predicted by the Black Scholes Option pricing model 

is calculated as: 

 

Table 3 Black-Scholes Model 

BS Option Pricing Model 

    

Payoff 7.29973 

Call Value 9.79973 

Absolute (d1) 1.656365 

Absolute (d2) 1.64763 

N(d1) 0.951176 

N(d2) 0.950286 

 

Heston Stochastic Volatility Model 

Parameters used in Heston Stochastic Volatility Model are calculated with MS Excel. It 

uses some different parameters such as theta, kappa sigma described below:  

 

Table 4 Heston Model 

Heston Stochastic Volatility Model 

Theta 0.0195 

Kappa 3.5 

Sigma 0.118 

Rho -0.5 v0 0.013924 

Payoff 8.227 

Call Value  10.727 
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Vasicek Mean Reversion Model 

Vasicek model uses many of the parameters from Heston model with slight 

modifications mentioned below: 

Table 5Vasicek Model 

Vasicek Model r0 0.03 

K 0.1 

Theta 0.05 

Sigma 0.05 

T 1 

Dt 0.00274 

N 1000 

    

Payoff 7.6157 

Call Value 10.1157 

 

Monte Carlo Option Pricing Model 

This is a simulation method to predict option pricing, so it uses limited parameters for 

prediction calculated in the given table: 

Table 6Monte Carlo Model 

Monte Carlo Model 

    S0 12.8 

k 2.5 

r 0.03 

T 1 

sigma 0.118 

N 100000 

dt 0.003968 

    

Payoff 6.6 

Call Value 9.1 
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Graphical Representation: 

 

 

Figure 1 Graphical Representation 

It is important to mention here that the actual price of Silver Gate Capital Corporation 

at expiration date is 10.62 INR and predicted value of Heston model and quantum 

harmonic oscillator model is 10.73 INR and 10.44 INR respectively which can be 

observed from the graph given above. 

 

Conclusion: 

This study compared effectiveness ofquantum harmonic oscillator with the four 

different models in predicting European call option prices: Black-Scholes, Vasicek, 

Monte Carlo, and Heston. It is observed that the Heston model provided the best fit to 

historical option prices, followed closely by the quantum harmonic oscillator model. 

While the Monte Carlo method showed promise in its ability to handle complex 

option structures, it did not perform well as the other two models in this study. 

These results highlight the importance of considering alternative models beyond the 

traditional Black-Scholes framework for option pricing. This study suggests that the 

Heston and quantum harmonic oscillator models may provide better predictions in 

this particular case where the actual price of Silver Gate Capital Corporation at 

expiration date is 10.62 INR which is very much closure to the predicted value of 

Heston and Quantum Harmonic Oscillator. While other three models underperform 

for the situation. 

Moreover, it is found that the quantum harmonic oscillator model provided a 

surprisingly accurate fit to historical option prices, especially considering it as a 

relatively simple structure. This model is based on the idea that stock prices can be 
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treated as wave functions and can be described using principals of quantum 

mechanics. 

While the quantum harmonic oscillator model is not widely used in finance and 

economics, our results suggest that it may have potential applications in option 

pricing and other financial modelling contexts. 

Future Scope: 

This study found that Quantum Harmonic Oscillator model provided a surprisingly 

accurate fit to historical option prices, and future research could explore its theoretical 

underpinnings and potential applications in other financial modelling contexts.This 

paper was based on historical data from a single market, and future research could 

explore how the models perform in different market conditions or with different types 

of options.There are many other factors that can influence option prices, such as 

interest rates, dividends, and volatility. In Future, one could explore how to 

incorporate these additional factors into the models. Future research could also 

compare the models with additional benchmarks such as implied volatility or out-of-

sample prediction accuracy. In future another approach can be developed through the 

techniques such as bootstrapping or cross-validation to estimate the uncertainty in 

the parameters of Quantum Harmonic Oscillator and their impact on the option 

prices. This would provide more realistic assessment and performance of the models 

in the practiceand help to identify any potential weaknesses or limitations of the 

models. 
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