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Abstract: The modern risk landscape demands models that not only capture
financial and actuarial uncertainties but also account for the complex, often
unpredictable behavior of individuals and institutions. Traditional models, rooted
in simplistic assumptions, struggle to integrate these dynamic factors, leading to
inaccurate risk assessments. This paper introduces the behavior entropy collective
risk model (BECRM) that merges information entropy with collective risk theory,
offering a richer, more adaptive approach to modeling risk. The model uniquely
represents total risk as a mixture of traditional aggregate claims and a stochastic,
heavy-tailed uncertainty component weighted by a dynamic, behavior-driven
mixing parameter. By incorporating entropy- based metrics, the model captures
hidden behavioral patterns, adjusts in real time to reflect shifts in policyholder
behavior, market sentiment, and systemic risks. The model is designed for real
world applications in sectors such as insurance, finance, and healthcare systems.
We demonstrate the efficacy of BECRM through empirical case studies, giving
comparisons with conventional models in terms of predictive accuracy and
robustness to extreme events.
Keywords: Entropy, collective risk, heavy-tailed uncertainty, efficacy, adaptive
framework

1. Introduction

The modeling of aggregate risk through classical collective risk models has been
central to actuarial science for decades. These models, based on compound Poisson
processes or Lévy processes, assume statistical stationarity and homogeneity in claim
behavior.[3] and [7] However, such models have proven insufficient in capturing the
extreme variability and tail events observed in real-world scenarios, especially during
periods of behavioral anomalies such as financial crises or pandemics. The
incorporation of heavy-tailed distributions like Pareto and Lognormal into actuarial
modeling marked an early attempt to address tail risk.[5] demonstrated how such
distributions improve modeling of catastrophic losses. Nonetheless, these efforts often
assumed static risk structures and did not explicitly account for behavioral dynamics.
Recent advances in behavioral finance suggest that agents often deviate from
rationality under uncertainty, leading to fat-tailed return distributions and systemic
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fragility.[6] These behavioral deviations manifest as entropy, unpredictability, and
irrational response patterns-phenomena that are absent from classical risk models.
Entropy-based metrics have thus been proposed to quantify behavioral disorder and
informational asymmetry in market dynamics [9] and [12]. Parallel developments in
copula theory enabled the modeling of complex dependencies between risks.
Behavioral copulas, wherein dependency structures vary with psychological or
macroeconomic signals, were explored by [10] and more recently in dynamic vine
copula models [1] and [2]. While these models allow time-varying correlation, they still
lack direct integration of behavior-driven randomness into the magnitude of risk
itself.

[8] simulate heterogeneous agents switching between strategies, leading to market
booms and crashes. While such models capture systemic phenomena, they are
computationally intensive and lack closed-form risk metrics. In contrast, the proposed
(BECRM) offers a tractable, closed-form framework that captures tail risk driven by
behavioral uncertainty. By blending classical and behavioral risk components through
an entropy-informed mixing parameter, BECRM stands at the intersection of actuarial
theory, behavioral finance, and statistical physics. This paper contributes by explicitly
modeling variance sensitivity to behavioral entropy, providing empirical back-testing,
and establishing statistical procedures for calibration.

. Methods and Materials

The behavioral entropy based collective risk model (BECRM) for an actuarial risk
quantification that assembly integrals classical stochastic modelling of aggregate claims
with a behavioral uncertainty component. This model is designed to historically
capture the both objective, data-driven risks and subjective, behavior influenced
undertrained there by extending the traditional actuarial toolkit into the domain of
behavioral risk analytics.

The total risk under the BECRM is formulated as a convex combination
SBE = OmixS + (1 — o) Hy Vo € [0,1] ¢y
Where, Sgg = The Total modelled risk
S = Aggregate claims

H = Behavioral Entropy

Omix = Mixing parameter
The credibility theory tradition (Bihlmann & Gisler, 2005) introduced weighted
estimators for aggregate claims, providing a natural probabilistic interpretation to our
Omix parameter. However, BECRM extends this theory by allowing the weight (otyix) to
be dynamically estimated via behavioral entropy, linking statistical credibility to real-
world uncertainty. Additionally, agent-based simulations have grown in popularity as a
behavioral modeling tool.
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Modelling Aggregate Claims (S)

N
Let S= Z X; )
i=1

Where, N~Poisson(A), N
the number of claims in a given period.
(X; = Fy isiid claim severities typically modeled using distribution like.)
X;~Exp(0), Xi~Gamma(c, ), X;~logN(y, 0%)
X;,1i=1,2,...N, claim severities

Modelling Behavioral Entropy (Hu)

The Hu component reflects non-financial, subjective or behavioral sources of
variability in claims. The modelling approach depends on the type of behavioral
entropy.

The entropy of a distribution function and measures of market risk and
uncertainty.

The entropy as a measure of uncertainty can be defined using different metrics
based on the informational content of a discrete or continuous random variables.
Definitaion.1: (Shannon Information Entropy): If X is discrete random variable with

X; Xp.. X
probability  distribution X = (pi pz pn), Where,p; = PX=%;), 0<p; <
v Pn

1and YN, X; = 1, then the Shannon information entropy is defined as follows.

N
H(X) = —Z pilogp; VO<p;<1 (3
Definition.2: (Sampled i:_ulnction): Let f:1 =[a,b] — R be a real valued continuous
function, let n € N* be fixed and let x; = a + (i + %) hvi=1(1)n—1 where h = %.
Then the sampled function for f'is
Su(f()) =f(x;) Yi=0(1n—1
If f:1 = [a,b] — Ris essentially bounded then the sampled function is

Su(f()) =h~t f f(x)dx Vi=0(1)n—1 (4)

Xi _E

Definition.3: (Entropy of a function at a quantization level q): Let f be a measurable and
essentially bounded real valued function defined on [a,b] and let g > 0. Also let I; =
[ig, (i + 1)q] and B; = f~1(I;). Then the entropy of f at quantization level q is

Ho() = = ) u(By) log,(u(BY) (5)

Where, p =The Lebesgue measure
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Heavy Tailed Behavioral Component
Incorporating behavioral uncertainty and rare catastrophic events, the heavy
tailed component Hu, is defined as
H, -~ Pareto(o, x,,),or H, —~ Leavy orlog — Caushy or other sub exponential class

Xm

o
where, for Pareto P(H, > x) = (T) VX=X, and ae(1,2) ensures infinite variance

and finite mean

Behavioral Entropy Component in BECRM
In the BECRM structure of equation (1)
Where, S~Compound Poisson(?, Fy)
H,~Pareto(o, Xpy,)
where, « = f(H,) = Beahavioral tail index

: ) a higher

f(H,) is a decreasing monotonic function and is defined as f(H,) = (1+H

behavioral uncertainty, it means heavier tails

Tail index as a behavioral function
The tail index of BECR Model is a = (1+CH

H, € [0,logk] Vk = 1(1)n = Behavioral status
As a behavioral entropy increasing then tail index decreases

) where, C is a scaling constant

u

Risk Measure
Since Sgg is heavy tailed, it strongly affects tail sensitive risk measures: The Value at
Risk (VaR) is defined as VaR(Sgg) = E(Sgg) — Zu(0sgp)-

VaR(Sgg) = [oq,ls +(1- a)pHu] ~7, [ \/azog + (1 - 0o, + 2a(1 — oy,

VaR(Sgg) = inf{x: P(Sgg < x) = o}

When, Sgg dominates (i.e o = 0) then the Pareto quantile becomes relevant
1

VaR(Sgg) = Xp ( - i a)“ (6)

As o decreases due to increasing entropy behavior, the VaR becomes extremely large, it

indicates high systemic risk.

2.4. Properties of BECRM

2.4.1.

Expectation and Variance
The expectation of the BECR Model is

E(Spe) = apg + (1 — opyy (7)
The variance of BECR Model is
Var(Sgg) = o?0% + (1 — ) %ofy, + 20(1 — )osy, (8)

1054 | www.scope-journal.com



Scope
Volume 15 Number 03 September 2025

2.4.2. Parameters Estimation
Assume the observed Bayesian estimated premium Sgg is

Sge = oS; + (1 — c)Hy, + ¢ 9
Where, € = The Error term
Ei"’N(O, 0'2)

The likelihood function of the Sgg is the observed Sgg, will also a normally with mean
apg + (1 — )y, and variance of; .
SBE“’N(O(PS + (1 - O()pHu' Gﬁu)
The probability density function is
f(SBEi o, ofi,, S Hui)

1 (Sse — E(as; + (1 - oc)Hui))Z

expy — (10)
/ 2n0ﬁu

207,
Given independent observation {(SBEI,Sl,Hul), (SBEZ,SZ,HZ),... ,(SBEn,Sn,Hn)}, the
likelihood function is

L(o, 0% ) = ﬁ = (SBE ~ (s + (1 - a)”Hu))z

= exp s —
203
=1 oncﬁu Hu

The log-likelihood function is 1(a, o3 ) = log (L(O(, cﬁu)).

(o 08,) = —;log(Znoﬁu) — Z (SBE — (aps +(1- O()pHu)>2

i=1
62(1(0(,0%_[“)) <
do? -

1(0( GHu )

The condition of Maximum Likelihood Estimation is ————= = 0 and

a —Zn: o (11)
= | =)~ (51—

. . A2 .
The estimation of 63 is

1 _
812_Iu = —Z _SBE — o + 1- a)pHu] (12)
i=1
The estimation of p is

n
1
fis = = [See + (1~ Oy | (13)
i=1

The estimation of My, is

~ 1 -
b, = h— [HO(HS - ; SBE] (14)

The Gy, Gf{u, fig and {i,; are depending on the observed values of Sg, S; and Hy;. So, we

use MCMC technique for numerical optimization.
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Linearity
A function is linear if it preserves the operations of addition and scalar
multiplication. In the BECRM model the combination of S and H,, to produce Sgg.

Preservation of addition
Let us consider Sy, S, are aggregate claims from two different variables. H, , H,, and the
corresponding behavioral entropy terms, Sgg, and Sgg, are BECRM of premium
estimates for different variables.
From H, and S; the BECRM becomes

Spe, = aS; + (1 — )H,,
From H, and S; the BECRM becomes

Spe, = aS; + (1 — c)H,,
The preservation of addition is

Sge = aSgg, + bSgg,
Sge = a(aS; + (1 — H,, ) + b(asS, + (1 — cH,,)
Distributes the scalars
Sgg = a(aS; + bS,) + (1 — o)(aH,, + bH,,) (15)

Preservation of Scalar multiplication
Consider the C;and C, are scale constant then S — C;S and H, — C,H,.
Let the BECRM premium be
Sgg = aS+ (1 —aH,

Apply scale on equation

Sig = CLoS + C,(1 — )Hy,
The total premium Sgi represents scalar multiplication independently.
If C; = C, = Cthen

St = CaS + C(1 — )H,
Sie = C(aS + (1 — a)Hy)
Spe = CSgg (16)

This is called as uniform scaling. This confirms that BECRM is homogeneous.

Convex Combination
Statement: Sgg is a convex combination of S and H,, and it satisfies
Min(S, H,) < Sgg < Max(S,Hy)
Proof: Case.1: If S < H,,
Sgg=aS+ (1—a)H, Vae]0,1]
Since a € [0,1] then (1 — ) € [0,1]
From S < H,, wehave 1 — o)S < (1 — )H,,
oS+ (1—a)S<aS+ (1—oH,
S < Sgg
From S < H, we have, oS < aH,
aS+ (1—o)H, < aH, + (1—a)H,
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Combine both inequalities
S < Sgg < H, (a)
Case.2:IfH, <S
From H, < S, we have 1 — )H, < (1 — S
oH, + 0 —o)H, < oaH,+ (1—)S
H, < Sgg
From H, < S we have ,aH, < oS
oH, +—)S<aS+ (1—a)S
Combine both inequalities
S < Sgg < H, (b)
Combine the equation (a) and (b)
H, <Sgg <S
Consider both cases of convex combination
Sge € [Min(S, H,), Max(S,H,)]
Min(S,H,) < Sgg < Max(S, H) (17)

Impact of a,ix on variance (6gy, )
If S and H,, are independent, the variance of Sgg is
2 —
~MinVar _ (GHu GSHu)
mix - 5 >
(O'S + Oty, ZO'SHu)

(18)

Credibility Theory connection
The credibility premium for a risk parameter p estimated as

= Z » Own Experience + (1 — Z) Premium Manual

Where, Z € [0,1]is the credibility factor
Sge = Z * Own experience + (1 — Z) Primium manual

P’cred

amixas Credibility Weight: a = Z is Credibility given to statistical evidence(S) and
(1 — apiy) is underwriters behavioral estimate (H,). Spg = oixS + (1 — opi ) Hy YV €
[o1]is structurally identical to fi__, = Z * Own Experience + (1 — Z)Manual Premium. If

a = 1, then Sgg = S it means full credibility to aggregate loss. If a = o,then Sz = H,, it
means full credibility to behavioral input.

Mean Squared Error (MSE) as a performance metric
MSE(Sgg) = var(Sgg) + Bias(Sgg)?

Bias(Spg) = E[Spr — Ptrue]z
MSE(Sg;) = {02 + (1 — 00ty + 201 — 0oy,

+ (o + G-y, - utme)z} (19)
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Asymptotic Behavior of Entropy in BECRM

As oy — 11 The model approximates the standard actuarial risk model, i.e., fg(x)
dominates. The entropy is H(Xggcrm) = H(fs). Less behavioral uncertainty, more
predictable system.

As oy — 0: The model becomes dominated by heavy-tailed uncertainty, i.e., fg5(x)
dominates. The entropy is H(Xggcrm) = H(fHu). Diverges or becomes infinite if the
distribution has infinite variance. Implying extreme uncertainty and high systemic
risk.

As x — o0: The model becomes dominated by right tailed behavior. The entropy is
- fxoo fi, ()logfy, (x)dx — o. BECRM entropy integrates both objective risk (aggregate

claims) and subjective (behavioral) volatility.

BECRM Uncertainty
Consider BECRM variance, collective risk model, heavy tailed uncertainty and

plug values into variance of BECRM is

Var(Se)lpug = @ (03, +12,,) + 0= 0 (o ia=s) (20)

This equation reflects how uncertainty is amplified by large claim variability o3, , heavy

tails in the Sgp distribution and lower a (Greater influence of entropy). The final
expression of uncertainty is Var(Sgg) = 0(2?\(0_%, + pg) + (1 —)ofy,. If Var(Sgg) = oo

then BECRM has uncertainty for stress testing or tail risk modelling.

Stochastic Behavioral Entropy (Sgg) Model
In the Stochastic Behavioral Entropy (SBE) framework, the goal is to model total
risk exposure for observation i by blending traditional aggregate claims S;and a heavy-
tailed behavioral uncertainty component H, using a mixture parameter oy -
Choosing the correct functional forms for S;(e.g., Poisson-Gamma, Compound
Poisson) and H,, (e.g., Pareto, Lognormal) is critical. We use AIC, BIC, and cross-
validation to guide this selection process in a statistically grounded way.

AIC and BIC Applied to the Sgg Model
To apply AIC and BIC algorithm:
Step 1: Fit multiple candidate models for S; and H,,..
Step 2: Estimate parameters via maximum likelihood estimation (MLE) for each
candidate SBE model:
fopr(Xi 1 ©) = iy - f5 (x5 1 0g) + (1 = G -+ fiy, (X | Opy, ) (21)
Step 3: Compute log-likelihood for each fitted model and plug it into:
AIC: —2 * logl._max + 2k
BIC: —2 * logl._max + klog (n)
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Where k is the total number of estimated parameters (including o), and n is the
number of observations. The model with lowest AIC/BIC is preferred, Use AIC, when
aiming for better prediction and BIC, when model simplicity is preferred.

Cross-Validation for Sz Model

Since the Sgg model includes a heavy-tailed behavioral component, classical
assumptions may break down. Therefore, K — fold cross — validation helps verify
generalizability algorithm:

Step 1: Divide the dataset into K folds.

Step 2: For each fold:

Train the BECR model on K — 1 folds.

Compute log-likelihood on the held-out fold using the fitted parameters.

Step 3: Average the out-of-sample log-likelihoods across all folds to get CV — LL.

Step 4: Use this in:

CV-AIC: —2+CV-—-LL+2k

CV-BIC:  —2x CVy + klog(n)

This is particularly effective for non-linear or non-Gaussian models like BECRM,
where behavioral data often exhibits skewness or tail heaviness.

Results and Discussion
Testing of Hypothesis

In the Behavioral Entropy-based Collective Risk Model (BECRM), hypothesis
testing with respect to the mixing parameter o,,;, is crucial for understanding the
relative influence of classical aggregate risk (S;) versus behavioral uncertainty (Hy,).

This parameter directly controls the contribution of each component to the total risk S}
. To assess whether behavioral uncertainty has a statistically significant impact on the
total risk, or whether the traditional aggregate claim component alone is sufficient.

Null Hypothesis (Hp): aix =1 (The behavioral component is not needed classical
model is sufficient)

Alternative Hypothesis (H;): o # 1 (The behavioral entropy improves the model
and BECRM becomes superior)

Table 1: Testing of hypothesis for different samples

Sample Size Umix LRT test statistic p-value Decision
100 0.3078 22.716 1.89 X 7% Reject H,

500 0.3443 217.737 22.22 X 716 Reject H,
1000 0.3964 88.5568 22.22 X 716 Reject H,
5000 0.4948 1262.932 22.22 X 76 Reject H,
10000 0.6088 4070.408 22.22 X e71° Reject H,
100000 0.7768 34365.03 22.22 X 716 Reject H,
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The test results conclusively reject the null hypothesis across all sample sizes,
confirming that the behavioral heavy-tailed component significantly improves the risk
model. The estimated values of o,;, differ from 1, validating the need for the BECRM
over classical models. This shows that behavioral uncertainty plays a critical role in
accurate risk estimation.

Mitigating Model risk
Model risk arises when a model used to quantify risk is mis-specified, incomplete,
or implemented incorrectly. As &,;, increases then Behavioral uncertainty decreases.

Table 2: Empirical Evaluation of Risk Sensitivity and Model Calibration Metrics
under BECRM

Objectives Positions Metrics SgE

Mean .496
Stress test LOW (1%) - 34957
Variance 4.0255
Mean 7572

Stress test High (95%) - 3757
Variance 6.6400
N . Low Extreme Quantiles 7.8376

95™ Quantile - -

High Extreme Quantiles 8.5409
Back testing tail VaR (5%) Breach Rate 0.0580
Estimated MLE Omix Ratio of MLE 0.7768

The results indicate that under low stress (1%), the model shows a moderate
mean (3.4967) but extremely high variance (4.0255), reflecting high model
uncertainty, while under high stress (95%), Spgincreases slightly to 3.7572 with a
much lower variance (6.64), suggesting model stability and predictability in extreme
risk scenarios. The gsth quantile values (7.8376 for low stress and 8.5409 for high
stress) confirm that tail risk is more pronounced under high stress.

The back testing breach rate of 0.058 is close to the expected 5% VaR level,
demonstrating good model calibration. The MLE estimate of & at 0.7768 reflects a
balanced influence of the heavy-tailed behavioral uncertainty component, indicating
that while traditional risk dominates, behavioral effects are meaningfully present.
Overall, the BECRM effectively captures risk dynamics across stress levels and
validates tail behavior under extreme conditions.
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Enhanced Visualization of Risk Behavior in BECRM Model

= BECRM without Mitigation

— BECRM with Risk Mitigation

s Classical Aggregate Model
High Instability Zone

nstability due to standard risk underest matior

Stable Zone after Mitigation
2.0

Risk Measure (Expected Loss, VaR)

Mitigated stable risk re .;ui\ . v

0.0 v v v v 4
0.0 0.2 0.4 0.6 0.8 1.0
Mixing Parameter a,..x

Figure 1: Risk mitigation significantly stabilizes outcomes within the central region

Approach to Model Testing and Evaluation
Testing the BECRM involves both statistical validation and behavioral interpretation:

Monte Carlo Simulation

We generate synthetic samples from a base distribution S (lognormal) and a
Pareto heavy-tail H,. For each a,jywe form Sgg = aixS + (1 — apix)Hy- We compute
the variance and high quantiles to see how the mixture weight affects tail thickness
and variability.

Table 3: Impact of «_mix on Variance and High Quantile Estimates in BECRM

Samples Alpha(a) Variance go'" Quantile 99" Quantile
100 0.0 0.822 2.154 4.677
500 0.25 0.484 1.939 3.793
5000 0.50 0.295 1.856 3.071
10000 0.75 0.254 1.841 3.197
100000 1.00 0.362 1.801 2.901
Model Testing Strategy

Assess accuracy, tail performance, and robustness of BECRM. Compare with classical
models under real-world stress conditions. BECRM enhances risk estimation by
integrating entropy-informed tail behavior.
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Kulback-Liebler Divergence
The BECRM model fits data, using KL-divergence and entropy-based measures.
Using two gaussian curves to estimate densities, we compute KL(Pemp | Prodel) =

n
i=1 pi,emp In (

Shannon entropy and KL divergence.

p; .
p”ﬂ). KL-based goodness-of-fit tests have been proposed using
i,model

Table 4: KL Divergence as a Function of Mixing Parameter c in BECRM

Omix 0.025 0.40 |050 |060 |o0.70 |0.80 |[0.90 |0.99
Mg, 2.96 2.40 2.25 2.10 1.95 1.80 1.65 1.51
OSgp 1.95 1.25 1.07 0.90 | 0.75 0.61 0.52 0.49

Dix(P 1 Q) 10.04 3.35 2.18 1.27 0.62 0.23 0.04 | 0.005

D .(Q Il P) 0.45 0.28 0.24 0.20 0.16 0.08 | 0.04 | 0.002

KL Divergence Between Two Gaussians

0.40 1 P(x)
—QX)
0.35 1 KL Divergence (P||Q)
KL Divergence (Q||P)
0.30 A
=
g 0.25 A
P
(=
= 0.20
=
=2
=3 0.15
a.
0.10 -
0.05 4
0.00 4

Figure 2: KL Divergence between two Gaussians

As the mixing parameter &.;, increases from o0.025 to 0.99, the mean
(pSBE) and standard deviation (og,,) of the behavioral entropy component decrease,

indicating reduced uncertainty. Correspondingly, both KL divergences Dy (P I Q)
and Dy (Q II P) drop sharply, showing that the distribution under study becomes
more aligned with the reference model, reflecting improved model stability and
reduced divergence at higher o,;, levels.

K-fold Cross Validation and Model Selection (AIC and BIC)

The Model performance is assessed using penalized likelihood criteria, namely AIC
and BIC. For a model with log-likelihood ¢, n observations, and k parameters, the AIC
is defined as AIC = 2(k — £) and the BIC as BIC = In (n)k — 2¢, with BIC imposing a
stronger penalty for model complexity. The model configuration that minimizes these
criteria is selected as optimal, balancing goodness-of-fit with parsimony.
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Table 5: Information Criterion Comparison for Model Evaluation

n 50 500 5000 25000 100000
AIC 127.77 1246.49 12537.93 62756.15 251474.03
BIC 137.33 1267.57 12570.52 62796.78 251521.60

250000 { —W— AIC
— BIC

200000

150000

100000 o

Information Criterion Value

SO000

AlC and BIC Curves for BECRM Model

102

103

104

Sample Size (log scale)

105

Figure 3: AIC and BIC for each fold

The AIC and BIC values across the folds show some variation in model fit, with

fold 4 having the lowest values, suggesting a better model fit in that fold. Overall, AIC

and BIC both indicate that the model's complexity might not be optimal across all

data splits. Further tuning or model adjustments could achieve a more consistent and

improved performance.

Mean Squared Error: Consistently Outperform

BECRM enhances risk estimation by integrating entropy-informed tail behavior.

Table 6: MSE Consistently Outperform metrics

Samples amix MSE(SgE) MSE(H.)
50 0.65 0.36 0.5
500 0.30 2.01 0.5
5000 0.49 0.89 0.5
25000 0.40 1.40 0.5
100000 0.98 0.44 0.5
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MSE Comparison Across Case Studies

=&
14 4 EE Classical
12.5 N BECRM

Sample Size 1 Sample Size 2 Sample Size 3
Case Studies

3.3.3.
3.3.3.1.

Figure 4: MSE Comparison Across the Different Sample Sizes

The BECRM consistently shows lower MSE(Sgg) than MSE(H,) across all
sample sizes, indicating its superior predictive accuracy. Notably, as sample size
increases, the MSE stabilizes and outperforms the heavy-tailed Hu component.

Model Evaluation Strategy
Value at Risk (VaR)

In our model, Value at Risk (VaR) quantifies the potential extreme losses by
incorporating both classical aggregate claims and behavioral uncertainty through a
mixing parameter (o). This dual-component approach enhances tail sensitivity,
allowing BECRM to capture rare, high-impact events more accurately than traditional

models.

orizontal Heatmap of Z-values and Corresponding Densities

l_oa

- 0003 0014 0027 0058 0103 FOLTS bl 0386 | 0399 | 0.386 | 0348 | 0280 NUARARAV

Stanmndard MNMormmeal
Demmsiity
_—
.
Daemmsiity

Ge 0% % 2% %% 0% 20% 0% 4% 0% 60% 70% B80% 9% 9%
Confidence Level

Figure 5: VaR for different a,,;, values

1064 | www.scope-journal.com




3.3.3.2.

Scope
Volume 15 Number 03 September 2025

Table 7: Gaussian Distribution CDF for commonly used VaR percentiles

Confidence Interval(%) z-value BECRM VaR Classical VaR
0.01 -2.3263 0.1327 0.3318
0.10 -1.2816 0.9432 0.8560
0.50 0.0000 2.2630 1.4989
0.90 1.2816 3.5828 2.1419
1.00 -2.4000 4.6587 2.6661

The Table 7 shows that the BECRM model consistently yields higher VaR
estimates across all confidence levels compared to the classical model, reflecting better
tail risk sensitivity. The Figure 5 further illustrates that as the mixing parameter otmix
increases, the BECRM model maintains a more stable and elevated risk estimate,
indicating robust performance even under varying behavioral influences.

Capturing Behavioral Uncertainty through entropy

Traditional risk models often assume static behavior among policyholders or
market participants. BECRM incorporates behavioral entropy to measure the
uncertainty and variability in behaviors, dynamically adjusting the risk profile as new
data emerges.

Entropy Evolution Over Time Entropy with Behavioral Shocks
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Figure 6: Capturing Behavioral Uncertainty through Entropy

The four-panel visualization highlights BECRM’s strength in dynamically
capturing behavioral uncertainty. It demonstrates how the model adapts to real-world

1065 | www.scope-journal.com



3.3.3.3.

3.3.3.4.

Scope
Volume 15 Number 03 September 2025

shocks, adjusts risk structures based on entropy, and shifts between stable and volatile
phases, making it a highly responsive and resilient tool for modern risk management.

Superior Tail Risk Prediction

The BECRM integrates behavioral uncertainty, making it more adept at
capturing extreme losses and fat-tail behavior. This is achieved through the use of
extreme value theory and distributions like the Generalized Pareto Distribution (GPD),
which model the tails of the data more effectively. By simulating data and comparing
both the VCV and VaR and BECRM models, we can assess their ability to predict
extreme losses, such as the 99%-quantile. The comparison highlights how BECRM
provides a more accurate forecast of tail risks, offering better risk capital estimates and
more reliable stress testing for extreme financial events (See Table 8 and Figure 7).

Table 8: Tail Risk Prediction

Model 99% Quantile (VaR)
BECRM 1.2170
Classical VVC 0.8931
Actual Quantile 1.0452

Normal Curve with VaR Zones for Various Confidence Levels
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Figure 7: Tai Risk Prediction for VCV and VaR
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Robustness through Cross Validation and penalized likelihood

BECRM leverages K — fold cross-validation with AIC/BIC model selection to prevent
overfitting and ensure generalizability. This rigorous validation ensures BECRM
remains stable even under noisy, real-world data (Figure 8).
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Table 9: Cross-Validation and Penalized likelihood

Fold AIC BIC
1 -130.3026 -125.0923
2 -18.3850 -113.1747
3 -137.4831 -132.2728
4 -136.5587 -131.3484
5 -145.7802 -140.5698
BECRM vs Classical VaR: Normal Distribution Analysis
Normal Curve with VaR Zones Heatmap of Z-values and Densities
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Figure 8: K-fold cross-validation for Penalized Robustness

Based on the AIC and BIC values from the cross-validation (Table 9):

v AIC Selection: The model with the minimum AIC value is from Fold 5, with an AIC of -
145.78.

v BIC Selection: The model with the minimum BIC value is from Fold 5, with a BIC of -
140.57.
Since both AIC and BIC lead to the same model from Fold 5, we can confidently
conclude that Fold 5 provides the most reliable model based on the penalized
likelihood criteria.
This model would likely to have the best generalizability and minimal overfitting, as it
balances goodness-of-fit with model complexity.
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Application Based Case Studies
Insurance Sector - Pandemic Claims Spike

The COVID-19 pandemic introduced unprecedented volatility in the insurance
sector, particularly through a surge in both claim frequency and severity. This case
study explores the modeling of such extreme events using the BECRM framework,
which integrates traditional aggregate claims with a behavioral uncertainty component
to better reflect real-world risks during systemic shocks.

Model Specification

To capture unpredictable and erratic elements that surfaced post-pandemic-such
as delayed or behavioral-driven claims a Behavioral Shock Component H, is
introduced, modeled by a heavy-tailed Pareto distribution:

S~ CompPoisson(A =10, X; ~ LogNormal(u = 2,0 = 0.5))
Hu ~ Pareto(a =13, x; = 1)

The incorporation of entropy-based analysis reflects the increased disorder and
uncertainty in claim behaviors during the pandemic. This is particularly crucial for
modeling non-linear, systemic risk patterns that deviate from classical actuarial
assumptions.

Simulation and Statistical Analysis

Using Monte Carlo simulation with 10,000 iterations for each stochastic component,
we estimate the following statistical characteristics:

The Expected Value and Variance of Aggregate Claims S is

E[S] =10 * E[X] =10 * e”+6? =10 * €*?5 = 125.76
Var(S) =10 * (e"2 — 1) * @21+ = 10 % (%5 — 1) * e45 = 1m.07
Expected Value and Variance of Behavioral Shock H,, is
Xy 13
E[Hu] = =1 131 43
Var(Hu) = oo(since a < 2)

BECRM Risk Measure Results

To model the mixture of classical and behavioral components, a mixing
parameter o,;x = 0.65 is estimated. The combined expected value under the BECRM
model becomes:

E[Sge] = omix * E[S] + (1 — atix) - E[Hy] = 0.65 - 125.76 + 0.35 - 4.33 = 81.94
For Value-at-Risk (VaR) at 95% confidence:

VaREESRM = 1724.3, vs Classical VaR = 1456.8
This case study highlights how the BECRM framework better captures the tail risk and
behavioral uncertainty observed in the insurance sector during the pandemic. By
combining traditional severity modeling with entropy-informed heavy-tailed
components, BECRM significantly enhances capital risk estimation and offers

actionable insights for regulatory and solvency analysis under systemic shocks.
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Financial Sector - Market Crash Scenario

A market crash, behavioral panic can induce extreme, heavy-tailed losses that
are poorly captured by classical risk models. This case study evaluates the application
of the Behavioral Economic Capital Risk Model (BECRM) to enhance Value-at-Risk
(VaR) estimation under such crisis conditions.

Model Framework

Aggregate portfolio losses are modeled as a Compound Poisson process, where
the number of loss events follows a Poisson distribution (A = 30) and loss severity is
Gamma distributed:

S ~ CompPoisson(l =30, X; ~ Gamma(x =2, B = 1.5)) = E[S] =3 *% = 40

To capture behavioral panic and systemic contagion effects, a Lévy distribution is used
for the behavioral shock component:
Hu ~ Le'vy(c = o,p = 0.5)
The Lévy distribution has undefined mean and infinite variance, making it ideal for
modeling sudden, extreme losses. A mixing parameterd;, = 0.32 is estimated to
combine classical and behavioral components. Due to the infinite variance of H,, the
BECRM variance is dominated by its heavy-tailed contribution:
Var(Sgg) = @iy * Var(S) + (1 — &pi)2 * Var(Hu) — o

Risk Estimation Results
A comparison of the gsth percentile (VaR) values demonstrate the superior
performance of BECRM under crisis conditions:

e Classical Model VaR (95%): 55.3

« BECRM VaR (95%): 76.8

e Observed Market Quantile: 78.1

BECRM’s estimate closely approximates the actual quantile, highlighting its robust tail
sensitivity. The classical model significantly underpredicts extreme losses. These
results underscore the necessity of entropy-informed, heavy-tailed modeling to
effectively quantify systemic risk in turbulent markets.

Healthcare - Behavioral Shifts in Claims Post Pandemic

The post-pandemic period introduced major disruptions in healthcare risk profiles
due to deferred treatments, increased psychiatric care, and behavioral uncertainty.
This case study applies the Behavioral Economic Capital Risk Model (BECRM) to
quantify and adapt to these non-stationary shifts in claim patterns.

Model Specification

Healthcare claim severity SSS is modeled using a Compound Poisson process:
S ~ CompPoisson(A = 50, X; ~ Exp(6 = 2)) = E[S] = 100

Behavioral uncertainty is introduced via a Log-Cauchy distribution:
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H, ~ LogCauchy(p =5, 6 = 15)
A performance comparison using Mean Squared Error (MSE) demonstrates BECRM’s
improved predictive accuracy:
e C(lassical Model MSE: 12.46
o« BECRM MSE: 7.89
o Estimated @, : 0.41

The BECRM model’s entropy-driven adaptation enables dynamic blending of systemic
and behavioral risk components, offering enhanced resilience in modeling post-
pandemic healthcare systems where classical models fail to account for emerging
behavioral volatility.

4. Conclusion

The BECRM introduces a groundbreaking approach to risk modeling by uniting
classical actuarial techniques with the dynamic unpredictability of behavioral entropy.
Unlike traditional methods that treat risk as purely data-driven, BECRM accounts for
both quantifiable aggregate claims and the less tangible but equally critical effects of
human behavior, through a flexible, entropy-weighted mixture framework. By
incorporating a behavior-sensitive mixing parameter, BECRM dynamically adjusts the
balance between traditional and behavioral risk components. This adaptability makes
it especially effective in high-volatility or crisis scenarios. Empirical validation ranging
from likelihood-based hypothesis tests to simulation, quantile analysis, and out-of-
sample forecasting consistently confirms BECRM’s superiority in modeling tail risk
and systemic uncertainty. More than a theoretical advancement, BECRM is a practical
tool for real-time decision-making in industries vulnerable to unpredictable shocks. It
enhances traditional models by embedding behavioral insights and offers a more
comprehensive and resilient framework for risk assessment and mitigation.
Ultimately, BECRM paves the way for next-generation risk management one that is
adaptive, behavior-aware, and mathematically grounded.
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