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1. Introduction 

Cd has been recognized as the most ecotoxic heavy metal that adversely affects all biological processes of a 

plant, animal and humans (Cuypers et al., 2010). According to US Environmental Protection Agency (EPA), 

Cd ranked third major contaminant after Hg and Pb (Jamers et al., 2013) that has contaminated around 20 

million hectares of cultivable land around the globe (Liu et al., 2015). Cd enters different ecosystems through 

natural (Mahmood et al., 2012) and anthropogenic activities like mining, fertilizers, sewage sludge and 

wastewater irrigation, etc. (Baghaie, 2021; Wuana and Okieimen, 2011). The cause of concern is its long 

residual time and non-biodegradable nature (Smolders et al., 1999). Plants readily absorb Cd through the soil 

and transportit to edible parts leading to an accumulation(McLaughlin et al., 2006). Various metabolic 

processes get disturbed due to the production of reactive oxygen species (ROS) causing oxidative stress (Chen 

et al., 2019). ROS damages cellular organelles like mitochondria and chloroplast and other components such 

as membrane lipids, nucleic acid, proteins andenzymes leading to cell death and losses in yield (Gill and 

Tuteja, 2010). Many studies have indicated the losses in photosynthetic pigments mainly chlorophyll and 

carotenoids under Cd stress (Baszynski et al., 1980; Katoch and Singh, 2014). The reduced formation of 
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This pot experiment was designed to study interaction between cadmium(Cd)- a toxic element and zinc 

(Zn)- an essential micronutrient, in soybean. Soybean plants were treated with Cd (0.3 and 0.6mM) alone 

and in combination with Zn (0.3 and 0.8mM). Zn only (0.3 and 0.8 mM) treatments were also given for 

comparison. Cadmium had a deleterious effect on the leaf pigments (chlorophyll and carotenoids) and 

relative leaf water content (RLWC). Cd application caused a decrease in chlorophyll (25-31%), carotenoids 

(24-30%) and RLWC (3-7%) in comparison to the control plants. The plants showed accumulation of starch 

(39-53%), total sugars (42-49%) and reducing sugars (62-83%) and a higher leakage of electrolytes (25-42%), 

apparently caused by Cd-induced oxidative stress. Zn supplementation in combination improved the water 

status and photosynthetic pigments level of the crop. Further, Zn application was also counteractive in 
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chlorophyll precursors and disrupted thylakoid membrane were linked to Cd caused oxidative stress 

(Alyemeni et al., 2018; Imonova et al., 2007), activation of chlorophyllase enzyme responsible for its 

catabolism (Hashem et al., 2019). Cd was also reported to slow down the activity ofRibulose-1,5-bisphosphate 

carboxylase-oxygenase (RuBPCase) by substituting magnesium(Mg) ions needed as a cofactor in 

carboxylation reactions (Siedlecka et al., 1998). 

 

Cadmium ions are responsible for the damage to cell membrane lipids and proteins, enhanced electrolyte 

leakage and water deficit conditions (Prasad, 1995).Thiswas attributed to Cd caused oxidative stress restricting 

water and nutritional uptake by the roots (Dinakar et al., 2009), photosynthesis and transpiration inhibition 

(Shi et al., 2010)and nutrientim balance (Ouariti et al., 1997)]. Amongst the various strategies adopted, the 

overproduction of antioxidants and osmolytes maintains the cellular integrity of membranes in a stressed plant 

(Ahmad et al., 2015). Carbohydrate metabolism provides significant protection by maintaining the integrity of 

membranes during oxidative stress (Jha and Dubey, 2004; Rosa et al., 2009). 

 

Zinc (Zn) participates in the biosynthesis of chlorophyll, carotenoids, cytochrome C, Indole-3-acetic 

acid(IAA), carbohydrate metabolism, nitrogen metabolism and in the stabilization of ribosomal fractions 

(Broadley et al., 2007; Cherif et al., 2011). It also serves as a cofactor in many enzymatic and non-enzymatic 

reactions (van de Mortel et al., 2006) and protects the vital cell components like chlorophyll, lipids and –SH 

groups from oxidative and peroxidative damages (Bettger and O'Dell, 1981). Low water status during Zn 

deficiency increases membrane permeability causing cellular impairment (Cakmak, 2000).The optimum Zn 

levels in soil restrict the entry of Cd due to the antagonistic effect (Baghaie and Aghilizefreei, 2020; Rizwan et 

al., 2019).Zinc deficiency in the soil promotes Cduptake by the plants (Adiloğlu, 2002; Hassan et al., 2005). 

Conversely, there are reports also which show their synergistic behavior in soil (Almeida et al., 2019; Shen et 

al., 2006). Keeping in mind, the present study was aimed at Zn interaction lowering Cdcaused changes in 

photosynthetic apparatus, water content, electrolytes and carbohydrate metabolism in soybean crop. 

 

2. Material and Methods 

Soybean [Glycine max (L.) Merr.] var.palam soya seeds procured from CSK Himachal Pradesh Agriculture 

University, Palampur, India was surface sterilized in 0.1% HgCl2, washed and soaked overnight in a thick 

slurry of rhizobium culture mixed with activated charcoal and acacia gum. Plants were raised in pots filled 

with river-washed sand. Five seeds were sown in each pot and maintained under natural daylight conditions in 

out-houses. Cadmium (0.3 and 0.6mM as CdSO4.7H2O) and zinc (0.3 and 0.8mM as ZnSO4.7H2O) treatments 

alone and in combinations were applied 8 DAS (days after sowing) along with the nutrient medium (Minchin 

and Pate, 1975), till first flowering at 20 days interval. Plants irrigated with nutrient medium served as control 

(C). The nutrient medium comprised of (1) Trace elements common to both the solutions- H3BO3 (3 mg/L), 

FeCl3 (11.4 mg/L), MnCl2.4H2O (1.7 mg/L), NaMoO4.2H2O (0.02 mg/L), CuCl2 (0.04 mg/L), ZnSO4.7H2O 

(2.3 mg/L), CaCl2 (0.01 mg/L); (2) Major elements of N+ medium- KNO3 (0.4 g/L), KH2PO4 (0.14 g/L), 

MgSO4.7H2O (0.49 g/L), Ca(NO3)2 (0.66 g/L); (3) N- medium- KH2PO4 (0.14 g/L), MgSO4.7H2O (0.49 g/L), 

CaCl2 (0.11 g/L), KCl (0.07 g/L). 

 

2.1 Biochemical Analysis 

2.1.1 Photosynthetic pigments 

Photosynthetic pigments were extracted by grinding fresh leaves (200 mg) in 80% acetone, followed by 

filtration with What man’s filter papers. The absorbance of the supernatant was measured at 480, 645 and 663 

nm using Thermo scientic spectrophotometer. Total chlorophyll was calculated according to equation of 

Arnon (1949) and carotenoids according to equation of Kirk and Allen (1965). 
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2.1.2 Relative Leaf Water Content (RLWC) 

The RLWC was measured according to the method of Chen et al. (2009). Fresh leaf (100 mg) was cut and 

their fresh weight (FW) was recorded. Further, the leaves were oven dried for 24 h at 110 0C in oven and 

weighed again (DW). RLWC was calculated as follows:-  

Relative leaf water content (RLWC %) = [(FW – DW)/FW]* 100  

 

2.1.3 Membrane damage (as electrolyte leakage) 

Electrolyte leakage was used to assess permeability of cell membrane as described by Lutts et al. (1996). 

Leaves were collected, washed with deionized water and placed in test tubes containing 10 ml of deionized 

water and incubated over night at 250C. Electrical conductivity of the solution (C1) was measured after 24 h. 

Samples were then put in boiling water bath for 10–15 min and conductivity reading (C2) was measuring after 

cooling to 250C. The electrolyte leakage was calculated using the formula-  EL% = C1/C2 x 100 

 

2.1.4 Total sugar 

Total sugars were determined using anthrone reagent method of Yemm and Willis (1954). Dried plant 

material was homogenized in 80% ethanol followed by centrifugation for 10 min. To 4.0 ml of chilled anthr 

one reagent, 1.0ml of ethanol extract was added. The test tubes were placed in boiling water bath for 10 min 

and then cooled in ice bath prior to determining absorbance at 625 nm. 

 

2.1.5 Reducing sugars 

Reducing sugars were measured according to the method given by Sumner (1935). Dried plant material was 

homogenized in ethanol (80%) and centrifuged for 10 min. To 1.0 ml of dinitro salicylic acid (DNSA) reagent, 

ethanol extract (1 ml) was added and the absorbance was read at 560 nm.   

 

 

2.1.6 Starch content 

Estimation of starch was done by the method of Mc Cready et al. (1950). The residual mass obtained after the 

extraction of soluble sugars was washed with 80% ethanol to remove any traces of sugars. Next, 5 ml distilled 

water and 6.5 ml of 52% perchloric acid was added to the residue followed by centrifugation for 20 minutes. 

The supernatant was decanted and collected and the whole process was repeated thrice. Supernatant of each 

step was then poured and the final volume was made 100 ml with distilled water. To 0.5 ml of diluted extract, 

4.5 ml of distilled water and 10 ml of cold anthrone reagent were added in ice bath. The mixture was heated 

for 8 min at 100°C and cooled to room temperature and the absorbance was read at 630nm. 

 

2.2 Statistical analysis 

All values were in triplicates and represented as mean ± SE (standard error). Data were statistically analyzed 

using one-way ANOVA in SPSS-16 by taking the probability level of 5%. In the post hoc test, Fisher’s least 

significant difference (LSD) was used to separate the means of various treatments. 

 

3. Results 

3.1 Chlorophyll Content 

Zn alone treatments promoted chlorophyll content by 7.20% (Zn0.3mM) and 12.68% (Zn0.8mM), while, it dropped 

by about 25.52% (Cd0.3mM) and 31.32% (Cd0.6mM) to that of control with Cd application. Zn supplementation to 

Cd treatments prevented this drop and raised chlorophyll levels 7.29% (Cd0.3+Zn0.3mM), 27.17% (Cd0.3+Zn0.8mM) 
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and 3.06% (Cd0.6+Zn0.8mM) more than the control. Further, the chlorophyll loss in Cd0.6+Zn0.3mM treatment was 

checked to 7.81% (Fig 1). 

 

 
Fig 1: Effect of Cd and Zn alone and in combination on chlorophyll content in soybean plants. Each bar 

represents Mean ± SE of three replicates and asterisk denotes significant difference to the control 

(LSD0.05=0.27). 

 

3.2 Carotenoids Content 

Similarly, carotenoids content was enhanced by 4.93% and 6.76% with Zn alone treatments (0.3 and 0.8mM), 

while, it declined by about 24.35% and 30.82% with Cd (0.3 and 0.6mM) in comparison to the control. In the 

combination treatments, Zn effectively raised the levels of carotenoids 0.83% (Cd0.3+Zn0.3mM) and 18.35% 

(Cd0.3+Zn0.8mM) more than the control, while, pigment drop in Cd0.6+Zn0.3mM and Cd0.6+Zn0.8mM treatments was 

restricted to 15.43% and 1.49%, respectively(Fig 2). 
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Fig 2:Effect of Cd and Zn alone and in combination on carotenoids content in soybean plants. Each bar 

represents Mean ± SE of three replicates and asterisk denotes significant difference to the control 

(LSD0.05=0.24). 

 

3.3 Relative Leaf Water Content (RLWC) 

RLWC enhanced by 0.7% (0.3mM) and 1.85% (0.8mM) with Zn alone application, while its loss in Cd 

treatments was 3.96% (0.3mM) and 7.37% (0.6mM) in comparison to control. In the combination treatments, 

such losses were lowered to 2.27% (Cd0.3+Zn0.3mM), 0.41% (Cd0.3+Zn0.8mM), 5.76% (Cd0.6+Zn0.3mM) and 2.66% 

(Cd0.6+Zn0.8mM) to that of control (Fig. 3). 

 

 

Fig 3: Effect of Cd and Zn alone and in combination on RLWC in soybean plants. Each bar represents Mean 

± SE of three replicates and asterisk denotes significant difference to the control (LSD0.05=1.74). 
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3.4 Electrolyte Leakage 

In Zn alone treatments (0.3 and 0.8 mM) electrolyte leakage was 5.68% and 9.14% lesser in comparison to 

control. A sharp rise in electrolyte leakage was noticed with Cd0.3mM (25.46%) and Cd0.6mM (42.31%) 

treatments. In combination treatments such rise in electrolyte leakage was lowered to 13.83% (Cd0.3+Zn0.3mM), 

4.57% (Cd0.3+Zn0.8mM), 31.41% (Cd0.6+Zn0.3mM) and 18.11% (Cd0.6+Zn0.8mM) to that of control (Fig. 4). 

 

 

Fig 4: Effect of Cd and Zn alone and in combination on electrolyte leakage in soybean plants. Each bar 

represents Mean ± SE of three replicates and asterisk denotes significant difference to the control 

(LSD0.05=4.09). 
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Fig. 5: Effect of Cd and Zn alone and in combination on starch content in soybean plants. Each bar represents 

Mean ± SE of three replicates and asterisk denotes significant difference to the control (LSD0.05=5.34). 

 

3.6 Total Sugars 
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Fig. 6:Effect of Cd and Zn alone and in combination on total sugars content in soybean. Each bar represents 

Mean ± SE of three replicates and asterisk denotes significant difference to the control (LSD0.05=6.11). 

 

3.7 Reducing Sugars 

Similarly, reducing sugars content increased significantly by 62.66% (Cd0.3mM) and 83.73% (Cd0.6mM) in Cd 

treated plants, whereas, the increase was 9.61% (Zn0.3mM) and 18.11% (Zn0.8mM) in Zn alone treated plants, 

compared to the control. Zn supplementation with heavy metal Cd reduced the buildup to 36.04% in 

Cd0.3+Zn0.3mM and 14.97% in Cd0.3+Zn0.8mM; to 62.66% in Cd0.6+Zn0.3mM and 41.22% in Cd0.6+Zn0.8mM 

treatments to that of control (Fig. 7). 

 

 

Fig. 7: Effect of Cd and Zn alone and in combination on reducing sugars content in soybean. Each bar 

represents Mean ± SE of three replicates and asterisk denotes significant difference to the control 

(LSD0.05=0.58). 
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A drop in the RLWC was proportionately linked to a rise in Cd levels of soybean plants. A decrease in relative 

water content was reported in many Cd stressed crops like coon-tail (Aravind and Prasad, 2004), soybean 

(Thakur and Singh, 2012) and moth bean (Vijendra et al., 2016).Such a decrease in water absorption was also 

attributed to disrupted translocation owing to reduction in size and number of xylem vessels and hormonal 

imbalance (Poschenrieder and Barceló, 1999), modification of secondary root branching and their geotropic 

response (Costa and Spitz, 1997; Singh and Thakur, 2014), hydraulic conductivity with a partial blockage of 

xylem elements by cellular debris (Rucińska-Sobkowiak, 2016). Our results clearly pointed out the improved 

water status with elevated RLWC upon Zn supplementation of Cd stressed soybean plants. Zn application 

leads to better development of root system with more number of root tips promoting water uptake (Zaman et 

al., 2018).Zn improved vascular tissue formation and hence RLWC thus, preventing its destruction during 

unfavorable conditions (Gadallah and Ramadan, 1997). Improved water content, leaf pigments level, 

photosynthetic rate and reduced electrolyte leakage in mustard plants under Cd stressed was correlated with 

Zn supplementation (Ahmad et al., 2017). 

 

In the present study, more electrolyte leakage (EL) was noticed with a rise in Cd concentration. Cd initiates 

the oxidation of NADPH to produce superoxide radicals (O2
.-) and accumulating more H2O2 (Kawano et al., 

2001). The cell membrane is one of the primary targets of an oxidative burst in plants (Levitt, 1972), disrupting 

membrane lipids and proteins due to ROS generation (Smeets et al., 2005). According to Pireh et al. (2017),an 

increase in Cd levels of soybean relates to more EL accompanied by reduced photosynthesis and yield 

parameters. The role of Zn in maintaining the integrity of cell membranes was also highlighted which can 

protect lipids and proteins against ROS species (Cakmak and Marschner, 1988; Qin et al., 2018).In fact, Zn 

supplementation improved RWC to offset the negative effects of Cd-caused water deficit and also preventing 

leakage of ions with a better membrane stability index (MSI). The findings of Bashir et al. (2020) also 

supported our viewpoint that Zn supplementation to Cd stressed plants improves the content of leaf pigments 

like chlorophyll and carotenoid accompanied by reduced electrolyte leakage. 

 

It was also seen that the buildup of sugars including starch and reducing sugars depleted with Zn 

supplementation in Cd stressed soybean crop. As reported by Rosa et al. (2009) abiotic stress adversely affects 

carbon assimilation including the source-sink mechanism of sugar translocation [23]. Plants raise the level of 

the soluble sugars in leaves to maintain osmotic homeostasis, water potential including the base metabolism 

(Verma and Dubey, 2001; Zoufan et al., 2020). Besides the role of sugars in osmo-protection, they also 

participate in many important processes like energy production, signaling, maintaining the integrity of cellular 

membranes and turgor pressure (Nayer and Reza, 2008). Interference of Cd with the enzymes of the Calvin 

cycle and carbohydrate metabolism also alters the antioxidative metabolism (Khan et al., 2009; Shi et al., 

2010). The depletion of such osmolytes was reported with Zn application in stressed soybean cultivars 

(Gadallah, 2000; Karami et al., 2016). An increment in carbohydrate level with Zn application is linked to its 

direct participation in photosynthetic activity and activation of enzymes like starch synthetase (Jyung et 

al.,1975; Singh et al., 2014).  

 

5. Conclusions 

Thus, it can be stated based on current observations that Zn supplementation improves the photosynthetic 

capacity of soybean plants by raising its pigments level and water status, translocation of carbohydrates and 

preventing ion leakage through membranes. Zn has an antagonistic interaction with the heavy metal Cd to 

ameliorate its toxicity. 
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