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Background: 

In the literature, there are many structural theories for the analysis of composite 

laminated plates under temperature field. The various methods are used to analyse the 

laminated plates subjected to thermal loadings.  The fundamental theory known as 

Kirchhoff’s [1] thin plate theory or classical plate theory, Mindlin’s first order theory 

[2] and Reddy’s higher order theory [3] uses virtual work method and presented in the 

book written by Reddy [4]. An exact method is presented by Bhaskar et.al [5] to 

evaluate the thermal deformations in laminated plates. Higher order theory using 12 

variables has been presented by Khare et al [6] for thermal bending analysis of 

Abstract: In case of laminated platesdetermination of stresses and 

displacements under thermal loads is important as it results in delamination 

under thermal loads. One has to develop the equations of motion or 

governing equations before computing thermal deformations. A variational 

formulation or virtual work method is useful tool to develop the governing 

equations. Once the governing equations are established, Navier’s method is 
required to apply for the determination of displacements and stresses under 

thermal load. A Navier’s method assumes trigonometric solution that satisfy 
the boundary conditions. This combination (variational formulation and 

Navier’s method) is a powerful analytical tool for solving laminated plate 
problems. A variational formulation is widely used in structural mechanics 

especially for composite laminates. Some of the structural theories like 

classical, first order, higher order and layer-wise theories are using virtual 

work method or variational formulation for laminated plates. This method 

consists of mainly three vital point as given below. An application of virtual 

work principle or virtual formulation to composite laminated plates. Use of 

integration by parts for further solution and development of governing 

equations. Apply Navier’s method to obtain thermal deformations (stresses 
and displacements) in the laminated composite plate. 

Keywords: Virtual work method, Navier’s method, analytical tool, structural 
theories. 
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laminated plates. A plate theory known as discrete layer-theory was presented by He 

[7] for the square plate subjected to thermal loading.  The exact method was used by 

Reddy and Hsu [8] and transverse displacements were obtained for two-layer 

laminated beam. A thermal response of laminated plates was presented by Zenkour [9] 

by using unified shear deformation plate theory. Ali et al. [10] presented a 

displacement field based on higher order theory for the thermal/mechanical analysis 

of laminated plates.  

The laminated composite plate consists of multiple layers with different orientation 

and properties. The virtual work method helps to derive governing equations for 

flexural analysis.    

 

Method details: 

The method is applied on a composite laminated plate which has the length aalong x 

axis and width b along y axis. The thickness of the plate along z axis is h as shown in 

figure 1. The z axis considered as positive in downward direction.  

 
Figure 1. Plate geometry  

A four variable trigonometric structural theory (FVTST) is selected and virtual work 

method has been applied to composite laminated plate. The displacement field of this 

theory has four variables and the field is represented by following equations.         [𝑢(𝑥, 𝑦, 𝑧, 𝑡)] = [𝑢0(𝑥, 𝑦, 𝑧) − 𝑧 𝜕𝑤𝑏(𝑥,𝑦)𝜕𝑥 − (𝑧 − ℎ𝜋 𝑠𝑖𝑛 𝜋𝑧
ℎ
) 𝜕𝑤𝑠(𝑥,𝑦)𝜕𝑥 ]                                                                           

(1) [𝑣(𝑥, 𝑦, 𝑧, 𝑡)] = [𝑣0(𝑥, 𝑦, 𝑧) − 𝑧 𝜕𝑤𝑏(𝑥,𝑦)𝜕𝑦 − (𝑧 − ℎ𝜋 𝑠𝑖𝑛 𝜋𝑧
ℎ
) 𝜕𝑤𝑠(𝑥,𝑦)𝜕𝑦 ]                                                                           

(2) [𝑤(𝑥, 𝑦, 𝑧, 𝑡)] = [𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦)]                                                                                                                   
(3) 

In the above equations u, v and w are displacements along x, y and z directions 

respectively. The mid-plane displacements in x and y directions are represented by 𝑢0 

and 𝑣0 respectively. The bending and shear components of deflection are 𝑤𝑏 and 𝑤𝑠 

respectively. 
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The normal strains and shear strains are computed by using following equations.  [𝜀𝑥 = 𝜕𝑢𝜕𝑥] , [𝜀𝑦 = 𝜕𝑣𝜕𝑦] , [𝛾𝑥𝑦 = 𝜕𝑢𝜕𝑦 + 𝜕𝑣𝜕𝑥] , [𝛾𝑥𝑧 = 𝜕𝑢𝜕𝑧 + 𝜕𝑤𝜕𝑥] , [𝛾𝑦𝑧 = 𝜕𝑣𝜕𝑧 + 𝜕𝑤𝜕𝑦]                                                                 
(4) 

The normal stress and transverse shear stress are computed by using following stress – 

strain relations. 

{ 𝜎𝑥𝜎𝑦𝜏𝑥𝑦}𝑘 = [𝑄11 𝑄12 0𝑄12 𝑄22 00 0 𝑄66]
𝑘 {𝜀𝑥 − 𝛼𝑥𝛥𝑇𝜀𝑦 − 𝛼𝑦𝛥𝑇𝛾𝑥𝑦 }𝑘

and {𝜏𝑥𝑧𝜏𝑦𝑧}𝑘 = [𝑄55 00 𝑄44]𝑘 {𝛾𝑥𝑧𝛾𝑦𝑧}𝑘
                                                      

(5)  

The stiffness coefficients 𝑄𝑖𝑗 are expresses as given below. 

 {𝑄11 = 𝐸11−𝜇12𝜇21} , {𝑄12 = 𝜇12𝐸21−𝜇12𝜇21} , {𝑄22 = 𝐸21−𝜇12𝜇21}                                                                                               

(6) 

 {𝑄66 = 𝐺12}, {𝑄55 = 𝐺13}, {𝑄44 = 𝐺23}                                                                                                                   
(7) 

 𝐸𝑖, 𝐺𝑖𝑗 and 𝜇𝑖𝑗represents the Young’s modulus, shear modulus and Poisson’s ratios 

respectively. The distribution of temperature across the thickness of composite 

laminated plate is considered as below.  

 𝛥𝑇(𝑥, 𝑦, 𝑧) = 𝑇0(𝑥, 𝑦) + 𝑧
ℎ
𝑇1(𝑥, 𝑦)                                                                                                                        

(8) 

 

In the above equation the base temperature is represented by 𝑇0(𝑥, 𝑦) and 

temperature gradient across the thickness is represented by 𝑇1(𝑥, 𝑦). The z coordinate 

is through the thickness from top (-h/2) to bottom (+h/2). Where h is the total 

thickness of the plate. This implies that the temperature varies linearly with thickness 

coordinate (z) and the slope of this variation is computed by 𝑇1(𝑥, 𝑦)/ℎ. On 

completion of the above steps this method moves towards the use of variational 

principle.  

This method further uses variational principles like minimum potential energy, 

principle of virtual work or Hamilton’s principle to determine equations of motion and 

boundary conditions. The principle of virtual work when applied to laminated 

composite beams then it leads to: ∫ ∫ ∫ [𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑦𝛿𝜀𝑦 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜏𝑦𝑧𝛿𝛾𝑦𝑧]ℎ 2⁄−ℎ 2⁄𝑏0𝑎0 𝑑𝑥𝑑𝑦𝑑𝑧 −∫ ∫ 𝑞(𝑥, 𝑦)𝑏0𝑎0 𝛿𝑤𝑑𝑥𝑑𝑦 = 0(9) 

The above equation (9) is solved by using integration by parts and final governing 

equations are developed as given below. In the above equation 𝛿 represents the virtual 
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variation. Integrating the above Eq. (9) by parts and then after collecting the 

coefficients of 𝛿𝑢0, 𝛿𝑣0, 𝛿𝑤𝑏 and 𝛿𝑤𝑠equal to zeroone can evaluate the equations as 

below. 

 {𝛿𝑢0}: −(𝐴11) 𝜕2𝑢0𝜕𝑥2 − (𝐴66) 𝜕2𝑢0𝜕𝑦2 − (𝐴12 + 𝐴66) 𝜕2𝑣0𝜕𝑥𝜕𝑦 + 𝐵11 𝜕3𝑤𝑏𝜕𝑥3 + (𝐵12 + 2𝐵66) 𝜕3𝑤𝑏𝜕𝑥𝜕𝑦2 +(𝐵11 − 𝐸11) 𝜕3𝑤𝑠𝜕𝑥3 + (𝐵12 − 𝐸12 + 2𝐵66 − 2𝐸66) 𝜕3𝑤𝑠𝜕𝑥𝜕𝑦2 = −(𝐵11𝑇𝑥 + 𝐵12𝑇𝑦) 1
ℎ

𝜕𝑇1𝜕𝑥                                                        

(10) 

 {𝛿𝑣0} : − (𝐴12 + 𝐴66) 𝜕2𝑢0𝜕𝑥𝜕𝑦 − 𝐴22 𝜕2𝑣0𝜕𝑦2 − 𝐴66 𝜕2𝑣0𝜕𝑥2 + (𝐵12 + 2𝐵66) 𝜕3𝑤𝑏𝜕𝑥2𝜕𝑦 + 𝐵22 𝜕3𝑤𝑏𝜕𝑦3 +(𝐵22 − 𝐸22) 𝜕3𝑤𝑠𝜕𝑦3 + (𝐵12 − 𝐸12 + 2𝐵66 − 2𝐸66) 𝜕3𝑤𝑠𝜕𝑥2𝜕𝑦 = −(𝐵12𝑇𝑥 + 𝐵22𝑇𝑦) 1
ℎ

𝜕𝑇1𝜕𝑦      (11)  

 {𝛿𝑤𝑏} : −𝐵11 𝜕3𝑢0𝜕𝑥3 − (𝐵12 + 2𝐵66) 𝜕3𝑢0𝜕𝑥𝜕𝑦2 − (𝐵12 + 2𝐵66) 𝜕3𝑣0𝜕𝑥2𝜕𝑦 − 𝐵22 𝜕3𝑣0𝜕𝑦3 + 𝐷11 𝜕4𝑤𝑏𝜕𝑥4 +(2𝐷12 + 4𝐷66) 𝜕4𝑤𝑏𝜕𝑥2𝜕𝑦2 + 𝐷22 𝜕4𝑤𝑏𝜕𝑦4 + (𝐷11 − 𝑆11) 𝜕4𝑤𝑠𝜕𝑥4 + (2𝐷12 − 2𝑆12 + 4𝐷66 −4𝑆66) 𝜕4𝑤𝑠𝜕𝑥2𝜕𝑦2 + (𝐷22 − 𝑆22) 𝜕4𝑤𝑠𝜕𝑦4 = −(𝐷11𝑇𝑥 + 𝐷12𝑇𝑦) 1
ℎ

𝜕2𝑇1𝜕𝑥2 − (𝐷12𝑇𝑥 + 𝐷22𝑇𝑦) 1
ℎ

𝜕2𝑇1𝜕𝑦2 + 𝑞                                                       

(12) 

 {𝛿𝑤𝑠} : − (𝐵11 − 𝐸11) 𝜕3𝑢0𝜕𝑥3 + (𝐷11 − 𝑆11) 𝜕4𝑤𝑏𝜕𝑥4 + (𝐷11 + 𝐻11 − 2𝑆11) 𝜕4𝑤𝑠𝜕𝑥4 (−𝐵12 + 𝐸12 −2𝐵66 + 2𝐸66) 𝜕3𝑣0𝜕𝑦𝜕𝑥2 + [2(𝐷12 − 𝑆12) + 4(𝐷66 − 𝑆66)] 𝜕4𝑤𝑏𝜕𝑦2𝜕𝑥2 (−𝐵12 + 𝐸12 − 2𝐵66 +2𝐸66) 𝜕3𝑣0𝜕𝑦𝜕𝑥2 + [2(𝐷12 − 𝑆12) + 4(𝐷66 − 𝑆66)] 𝜕4𝑤𝑏𝜕𝑦2𝜕𝑥2 + [2(𝐷12 + 𝐻12 − 2𝑆12) +4(𝐷66 + 𝐻66 − 2𝑆66)] 𝜕4𝑤𝑠𝜕𝑦2𝜕𝑥2 + (−𝐵12 + 𝐸12 − 2𝐵66 + 𝐸66) 𝜕3𝑢0𝜕𝑥𝜕𝑦2 − (𝐵22 − 𝐸22) 𝜕3𝑣0𝜕𝑦3 +(𝐷22 − 𝑆22) 𝜕4𝑤𝑏𝜕𝑦4 + (𝐷22 + 𝐻22 − 2𝑆22) 𝜕4𝑤𝑠𝜕𝑦4 − 𝐶55 𝜕2𝑤𝑠𝜕𝑥2 − 𝐶44 𝜕2𝑤𝑠𝜕𝑦2 = (𝐷11𝑇𝑥 − 𝑆11𝑇𝑥) 1
ℎ

𝜕2𝑇1𝜕𝑥2 −(𝐷12𝑇𝑦 − 𝑆12𝑇𝑦) 1
ℎ

𝜕2𝑇1𝜕𝑥2 − (𝐷12𝑇𝑥 − 𝑆12𝑇𝑥) 1
ℎ

𝜕2𝑇1𝜕𝑦2 − (𝐷22𝑇𝑦 − 𝑆22𝑇𝑦) 1
ℎ

𝜕2𝑇1𝜕𝑦2 + 𝑞    (13) 

 

where, the stiffness coefficients (𝐴𝑖𝑗 , 𝐵𝑖𝑗, . . . . . . ) are as follows.  {𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗} = [∑ 𝑄̄𝑖𝑗(𝑘) ∫ (1, 𝑧, 𝑧2)𝑑𝑧ℎ𝑘+1
ℎ𝑘

𝑁
𝑘=1 ] 

 (𝐸𝑖𝑗, 𝑆𝑖𝑗, 𝐻𝑖𝑗) = [∑ 𝑄̄𝑖𝑗(𝑘)𝑁
𝑘=1 ∫ ℎ𝜋 𝑠𝑖𝑛 𝜋𝑧

ℎ
(1, 𝑧, ℎ𝜋 𝑠𝑖𝑛 𝜋𝑧

ℎ
)ℎ𝑘+1

ℎ𝑘 𝑑𝑧] 
 (𝐵𝑖𝑗𝑇𝑥, 𝐷𝑖𝑗𝑇𝑥, 𝑆𝑖𝑗𝑇𝑥) = [∑ 𝑄̄𝑖𝑗(𝑘)𝑁

𝑘=1 𝛼𝑥 ∫ (𝑧, 𝑧2, 𝑧 ℎ𝜋 𝑠𝑖𝑛 𝜋𝑧
ℎ

)ℎ𝑘+1
ℎ𝑘 𝑑𝑧] 
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(𝐵𝑖𝑗𝑇𝑦, 𝐷𝑖𝑗𝑇𝑦, 𝑆𝑖𝑗𝑇𝑦) = [∑ 𝑄̄𝑖𝑗(𝑘)𝑁
𝑘=1 𝛼𝑦 ∫ (𝑧, 𝑧2, 𝑧 ℎ𝜋 𝑠𝑖𝑛 𝜋𝑧

ℎ
)𝑘+1

ℎ𝑘 𝑑𝑧] 
 (𝐶44, 𝐶55) = [∑ 𝑄̄𝑖𝑗(𝑘) ∫ 𝑐𝑜𝑠2 𝜋𝑧

ℎ
𝑑𝑧ℎ𝑘+1

ℎ𝑘
𝑁

𝑘=1 ] 
 

Navier’s Method 

This Navier’s solution technique is used further to obtain deformations. It is in the 

form of trigonometric series. On the edges of simply supported plate following 

boundary conditions are satisfied.  

 

at the edges {𝑥 = 0 and 𝑥 = 𝑎} : 𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 𝑁𝑥 = 𝑀𝑥𝑏 = 𝑀𝑥𝑠 = 0     (14) 

at the edges {𝑦 = 0 and 𝑦 = 𝑏} : 𝑢0 = 𝑤𝑏 = 𝑤𝑠 = 𝑁𝑦 = 𝑀𝑦𝑏 = 𝑀𝑦𝑠 = 0   (15) 

 

The thermal and mechanical loads are presented in double trigonometric series as 

given below. 

 {𝑇1𝑞 } = {𝑇1𝑚𝑛𝑞𝑚𝑛 } 𝑠𝑖𝑛 𝑚𝜋𝑥𝑎 𝑠𝑖𝑛 𝑛𝜋𝑦𝑏  (16) 

 

The solution for (𝑢0, 𝑣0, 𝑤𝑏 , 𝑤𝑠) is of the form as given below which satisfies the 

boundary conditions given by equation (14).  

 

[𝑢0𝑣0𝑤𝑏𝑤𝑠] =
[  
   𝑢0𝑚𝑛𝑐𝑜𝑠 𝑚𝜋𝑥𝑎 𝑠𝑖𝑛 𝑛𝜋𝑦𝑏𝑣0𝑚𝑛𝑠𝑖𝑛 𝑚𝜋𝑥𝑎 𝑐𝑜𝑠 𝑛𝜋𝑦𝑏𝑤𝑏𝑚𝑛𝑠𝑖𝑛 𝑚𝜋𝑥𝑎 𝑠𝑖𝑛 𝑛𝜋𝑦𝑏𝑤𝑠𝑚𝑛𝑠𝑖𝑛 𝑚𝜋𝑥𝑎 𝑠𝑖𝑛 𝑛𝜋𝑦𝑏 ]  

                                                                                                                                  
(17) 

 

where, (𝑢0𝑚𝑛, 𝑣0𝑚𝑛 , 𝑤𝑏𝑚𝑛, 𝑤𝑠𝑚𝑛) are arbitrary parameters. Substitution of this solution 

form into governing equations (10) – (13) of laminated plate one can obtain following 

equations.  

 

[𝑘11 𝑘12 𝑘13 𝑘14𝑘12 𝑘22 𝑘23 𝑘24𝑘13 𝑘23 𝑘33 𝑘34𝑘14 𝑘24 𝑘34 𝑘44
] {𝑢0𝑚𝑛𝑣0𝑚𝑛𝑤𝑏𝑚𝑛𝑤𝑠𝑚𝑛} = {𝑓1𝑓2𝑓3𝑓4}                                                                                                            

(18) 
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where, the elements of stiffness matrix [𝐾] are as given below. 

 𝐾11 = [𝐴11 𝑚2𝜋2𝑎2 + 𝐴66 𝑛2𝜋2𝑏2 , 𝐾12 = (𝐴12 + 𝐴66)𝑚𝑛𝜋2𝑎𝑏 ] 
 𝐾13 = [−𝐵11 𝑚3𝜋3𝑎3 − (𝐵12 + 2𝐵66)𝑚𝑛2𝜋3𝑎𝑏2 ] 
 𝐾14 = [−(𝐵11 − 𝐸11)𝑚3𝜋3𝑎3 − (𝐵12 − 𝐸12 + 2𝐵66 − 2𝐸66)𝑚𝑛2𝜋3𝑎𝑏2 ] 
 𝐾22 = [𝐴22 𝑛2𝜋2𝑏2 + 𝐴66 𝑚2𝜋2𝑎2 ] 
 𝐾23 = [−(𝐵12 + 2𝐵66)𝑚2𝑛𝜋3𝑎2𝑏 − 𝐵22 𝑛3𝜋3𝑏3 ] 
 𝐾24 = [−(𝐵22 − 𝐸22) 𝑛3𝜋3𝑏3 − (𝐵12 − 𝐸12 + 2𝐵66 − 2𝐸66)𝑚2𝑛𝜋3𝑎2𝑏 ] 
 𝐾33 = [𝐷11 𝑚4𝜋4𝑎4 + (2𝐷12 + 4𝐷66)𝑚2𝑛2𝜋4𝑎2𝑏2 + 𝐷22 𝑛4𝜋4𝑏4 ] 
 𝐾34 = [(𝐷11 − 𝑆11)𝑚4𝜋4𝑎4 + (2𝐷12 − 2𝑆12 + 4𝐷66 − 4𝑆66)𝑚2𝑛2𝜋4𝑎2𝑏2 + (𝐷22 − 𝑆22) 𝑛4𝜋4𝑏4 ] 
 𝐾44 = [(𝐷11 + 𝐻11 − 2𝑆11)𝑚4𝜋4𝑎4 + (2𝐷12 + 2𝐻12 − 4𝑆12 + 4𝐷66 + 4𝐻66 − 8𝑆66)𝑚2𝑛2𝜋4𝑎2𝑏2+ (𝐷22 + 𝐻22 − 2𝑆22) 𝑛4𝜋4𝑏4 + 𝐶55 𝑚2𝜋2𝑎2 + 𝐶44 𝑛2𝜋2𝑏2 ] 
 

The force vector {𝑓}has following elements.  

 𝑓1 = [−(𝐵11𝑇𝑥 + 𝐵12𝑇𝑦) 1
ℎ

𝑇1𝑚𝑛 𝑚𝜋𝑎 ] 
 𝑓2 = [−(𝐵12𝑇𝑥 − 𝐵22𝑇𝑦) 1

ℎ
𝑇1𝑚𝑛 𝑛𝜋𝑏 ] 

 𝑓3 = [(𝐷11𝑇𝑥 + 𝐷12𝑇𝑦) 1
ℎ

𝑇1𝑚𝑛 𝑚2𝜋2𝑎2 + (𝐷12𝑇𝑥 + 𝐷22𝑇𝑦) 1
ℎ

𝑇1𝑚𝑛 𝑛2𝜋2𝑏2 + 𝑞] 
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 𝑓4 = [(𝐷11𝑇𝑥 − 𝑆11𝑇𝑥) 1
ℎ

𝑇1𝑚𝑛 𝑚2𝜋2𝑎2 + (𝐷12𝑇𝑦 − 𝑆12𝑇𝑦) 1
ℎ
𝑇1𝑚𝑛 𝑚2𝜋2𝑎2 + (𝐷12𝑇𝑥 − 𝑆12𝑇𝑥) 1

ℎ
𝑇1𝑚𝑛 𝑛2𝜋2𝑏2+ (𝐷22𝑇𝑦 − 𝑆22𝑇𝑦) 1

ℎ
𝑇1𝑚𝑛 𝑛2𝜋2𝑏2 + 𝑞] 

 

Once the parameters (𝑢0𝑚𝑛, 𝑣𝑜𝑚𝑛, 𝑤𝑏𝑚𝑛, 𝑤𝑠𝑚𝑛) are computed thermal displacements 

and stresses can be obtained. The shear stresses are evaluated by using the equilibrium 

equations (19) and (20).  

 [𝜕𝜎𝑥𝜕𝑥 + 𝜕𝜏𝑥𝑦𝜕𝑦 + 𝜕𝜏𝑥𝑧𝜕𝑧 = 0]                                                                                                                                           
(19) 

 [𝜕𝜎𝑦𝜕𝑦 + 𝜕𝜏𝑥𝑦𝜕𝑥 + 𝜕𝜏𝑦𝑧𝜕𝑧 = 0]                                                                                                                                           
(20) 

 

Method Validation and discussion 

To validate the results an example of bilayer composite laminated beam subjected to 

thermal field is considered and transverse shear stresses are obtained. Transverse 

shear stresses are very prominent in composite laminated beams. The continuity of 

shear stress at the interface is very necessary under thermal load. Thermal load causes 

delamination at the interface due to temperature effect, hence the continuity of shear 

stress is necessary.The following material properties of graphite-epoxy are considered 

in the analysis.  𝐸1 = 25 × 106 psi,𝐸2 = 106 psi,  𝐺12 = 𝐺13 = 0.5 × 106 psi, 𝐺23 = 0.2 × 106 psi,  𝜇12= 𝜇13 = 0.25 

Transverse shear stresses(𝜏̄𝑥𝑧 , 𝜏̄𝑦𝑧)and transverse displacements (𝑤̄)are evaluated for 

length to thickness ratio 5 and 10. The aspect ratio is denoted by S in the table. The 

aspect ratio is defined as length to thickness ratio of plate (S=a/h). Transverse shear 

stresses and transverse displacements are computed by using following normalized 

forms.  (𝜏̄𝑥𝑧 , 𝜏̄𝑦𝑧) = (𝜏𝑥𝑧 , 𝜏𝑦𝑧)10ℎ(𝛼1𝑇1𝐸2𝑎).  

These stresses are evaluated at the point 𝜏̄𝑥𝑧 (0, 𝑏2 , 0) , 𝜏̄𝑦𝑧 (𝑎2 , 0,0). 𝑤̄ (𝑎2 , 𝑏2 , 0) = 10 ℎ 𝑤(𝛼1𝑇1𝑎2) 

Table 1. Normalized stresses in two layer laminated square plate (0/90) subjected to 

thermal load. (𝑇0 = 0, 𝑇1 = 1, 𝑞 = 0, 𝛼2 = 3𝛼1) 
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S  Model 𝑤̄(𝑧 = 0) 𝜏̄𝑥𝑧(𝑧 = 0) 𝜏̄𝑦𝑧(𝑧 = 0) 

5 FVTST (Present) 1.1421 -0.0875 -0.0875 

 HOST12 [6] 1.1478 -0.0364 -0.0364 

 He [7] 1.1557 -0.0740 -0.0740 

 CPT [1] 1.1504 -0.0880 -0.0880 

 Exact Method [8] 1.2224 - - 

     

10 FVTST (Present) 1.1483 -0.0220 -0.0220 

 HOST12 [6] 1.1497 -0.0103 -0.0103 

 He [7] 1.1519 -0.0210 -0.0210 

 CPT [1] 1.1504 -0.0220 -0.0220 

 Exact Method [8] 1.1365 - - 

 

 
Figure 2. The continuity of shear stress at the interface 

 
Figure 3. The continuity of shear stress at the interface 
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The table 1 shows the results of thermal deformations obtained by present four 

variable trigonometric structural theory (FVTST) by using virtual work and Navier’s 

method. Transverse displacement (𝑤̄) and transverse shear stresses (𝜏̄𝑥𝑧, 𝜏̄𝑦𝑧)evaluated 

are compared with other higher order theories. The transverse displacement (𝑤̄) 

evaluated is compared with exact method for aspect ratio 5 and 10. The percentage 

difference between transverse displacement obtained for aspect ratio 5 is 6.7%. When 

the aspect ratio changes from 5 to 10, this percentage difference reduces to 1.0%. The 

transverse shear stresses are continuous at the interface as shown in figures 2 and 3. 

This important from the point of view of delamination under thermal loading.  

Conclusion   

The laminated composite plates have heterogeneous properties. This method of 

virtual work simplifies the analysis using energy principles and by avoiding direct 

force calculations. This method of virtual work is versatile and applicable to various 

loading conditions.    
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