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Abstract: In case of laminated platesdetermination of stresses and
displacements under thermal loads is important as it results in delamination
under thermal loads. One has to develop the equations of motion or
governing equations before computing thermal deformations. A variational
formulation or virtual work method is useful tool to develop the governing
equations. Once the governing equations are established, Navier’s method is
required to apply for the determination of displacements and stresses under
thermal load. A Navier’s method assumes trigonometric solution that satisfy
the boundary conditions. This combination (variational formulation and
Navier’s method) is a powerful analytical tool for solving laminated plate
problems. A variational formulation is widely used in structural mechanics
especially for composite laminates. Some of the structural theories like
classical, first order, higher order and layer-wise theories are using virtual
work method or variational formulation for laminated plates. This method
consists of mainly three vital point as given below. An application of virtual
work principle or virtual formulation to composite laminated plates. Use of
integration by parts for further solution and development of governing
equations. Apply Navier’'s method to obtain thermal deformations (stresses
and displacements) in the laminated composite plate.

Keywords: Virtual work method, Navier’s method, analytical tool, structural

theories.

Background:

In the literature, there are many structural theories for the analysis of composite
laminated plates under temperature field. The various methods are used to analyse the
laminated plates subjected to thermal loadings. The fundamental theory known as
Kirchhoff’s [1] thin plate theory or classical plate theory, Mindlin’s first order theory
[2] and Reddy’s higher order theory [3] uses virtual work method and presented in the
book written by Reddy [4]. An exact method is presented by Bhaskar et.al [5] to
evaluate the thermal deformations in laminated plates. Higher order theory using 12
variables has been presented by Khare et al [6] for thermal bending analysis of
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laminated plates. A plate theory known as discrete layer-theory was presented by He
[7] for the square plate subjected to thermal loading. The exact method was used by
Reddy and Hsu [8] and transverse displacements were obtained for two-layer
laminated beam. A thermal response of laminated plates was presented by Zenkour [9]
by using unified shear deformation plate theory. Ali et al. [10] presented a
displacement field based on higher order theory for the thermal/mechanical analysis
of laminated plates.

The laminated composite plate consists of multiple layers with different orientation
and properties. The virtual work method helps to derive governing equations for
flexural analysis.

Method details:

The method is applied on a composite laminated plate which has the length aalong x
axis and width b along y axis. The thickness of the plate along z axis is h as shown in
figure 1. The z axis considered as positive in downward direction.
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Figure 1. Plate geometry

A four variable trigonometric structural theory (FVTST) is selected and virtual work
method has been applied to composite laminated plate. The displacement field of this

theory has four variables and the field is represented by following equations.

[ux,y,2,0] = [uo(x,y,2) = 22520 — (7 = Zsin77) 2222

h dx
(1)
R e s s
(2)
[W(X, Y, Z, t)] = [Wb (X, y) + WS(.X, y)]
(3)

In the above equations u, v and w are displacements along x, y and z directions
respectively. The mid-plane displacements in x and y directions are represented by u,
and v, respectively. The bending and shear components of deflection are w;, and wy
respectively.
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The normal strains and shear strains are computed by using following equations.

u ov ou ov oou ow ov ow
[é‘x —any —aHny —5+a]'[yxz —a+a]'[yyz —5+5]
(4)

The normal stress and transverse shear stress are computed by using following stress —
strain relations.

k
o\ [Qu Q2 0 (&~ @dT N k k
_ _ xz)" _[@ss O Yxz
{ay} B [le Vil ] &7 oAl and {TYZ} B [ 0 Q44] {Vyz}
0 0 Qe

Txy Yxy

(5)

The stiffness coefficients Q;; are expresses as given below.

{Q11 = L}:{le = 2% },{sz = 5 }

1-p12021 1-f12H21 1-p12021
(6)

{Qc6 = G12},{Qs5 = G13},{Q4s = G323}
(7)

E;, G;j and y;jrepresents the Young’s modulus, shear modulus and Poisson’s ratios
respectively. The distribution of temperature across the thickness of composite
laminated plate is considered as below.

AT(x»J’;Z) = To(x»Y) + %Tl(xﬂy)
(8)

In the above equation the base temperature is represented by T,(x,y) and
temperature gradient across the thickness is represented by T, (x,y). The z coordinate
is through the thickness from top (-h/2) to bottom (+h/2). Where h is the total
thickness of the plate. This implies that the temperature varies linearly with thickness
coordinate (z) and the slope of this variation is computed by T;(x,y)/h. On
completion of the above steps this method moves towards the use of variational
principle.

This method further uses variational principles like minimum potential energy,
principle of virtual work or Hamilton’s principle to determine equations of motion and
boundary conditions. The principle of virtual work when applied to laminated
composite beams then it leads to:

b (h/2
foa N f_h/2[0x5€x + 0,88, + Ty OVxy + Txz 0¥z + Ty, 07y, | dxdydz —

b

Jy Iy a(x,y) dwdxdy = 0(9)

The above equation (9) is solved by using integration by parts and final governing
equations are developed as given below. In the above equation § represents the virtual
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variation. Integrating the above Eq. (9) by parts and then after collecting the
coefficients of dug, vy, Swy, and Swsequal to zeroone can evaluate the equations as
below.

a? 22 a2 a3 a3
{Buok: —(A1) 55" = (Aee) 5y — (Arz + Aee) 550 + Buy 532 + (Bia + 2Boe) 55 +
d3ws 3wy Ty 10T
(By1 — E11) 55 + (Bip — Eyp + 2Bgg — 2Eg) axajz = —(Bl + B3 )7 5n
(10)
a2 22 a2 a3 a3
{6170} e (A12 + A66) ax:;; — 422 szo - A66 170 + (312 + 2366) dx 2‘4‘;b 22 ngb +

o WS + (Byz — E12 + 2Bgg — 2E66) Ows —(312 + Bszy 2on (11)

(BZZ EZZ) 3x2dy h dy

6 Vo 63170 a4Wb
28y 22 ay3

+ (2D15 — 251, + 4Dgg —

1927y
h 0x2

a3 uo aSuO
{owp}: —311 — (B2 + 2Bgg) == 9xdy?

6Wb
dx20y2

— (Byx + 2B66)

o* Wb a4 wS

(2Dy; + 4Dg) + Dzz + (Dyy — 511)

0*wyg

9*wg
4S66) s + (Dyy — 522) :_(D1{C+D1sz

dx20y?2
(12)

19%T
” ay?

— (DI + D))

auo aWb

9*wg
+ (D11 + Hyy — 2511) - ( Bi; + Ei; —

aWb
262

[2(D12 + H12 - 2512) +

63u0

+ (=Bi2 + E13 — 2Bgg + Egs) 7= 9x0y? — (By — Ezz)

0%wy

{ows}:— (B — E11)

6170

9y9xZ + [2(D12 —S12) + 4(D66 566)]

6wb
262

+ (Dy1 — 511)

2Bge + 2Eq6) (=By2 + E12 2Bge +

63170

2E66) m + [Z(DIZ - 512) + 4'(1)66 566)]

o* 0wy
y29x2

+ (DZZ + HZZ 2522)

aUO

4(Dgg + Hge — 2566)]
04 92 s 92 s
(Dy2 — 522) Wb a;:; 44 a;;

16 Ty Tx Txy 1 02Ty Ty 10°Ty
(D12 - 512 hoxz (D13 — S13 hoyz (D h 9y? t4q (13)

16 T
h 0x2

7 — Css = (DT - S1P)=

where, the stiffness coefficients (Al jrBijseeninn ) are as follows.

{Aij’Bl]’ l]} [z Q(k) (1'Z'ZZ)dZ]

(k) hesi @z h nz -
(Eij,SU, U) ZQ —51n7(1,z,E51n7>dz

N -
h nZz
(BlT]x, DlT]x, STx [z 75 o f (z 7%, 7— - sin 7) dz
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k+1

T Ty T %)
(Buy'Duy'S y) [ZQ h

h nz
(z, 7%, z—sin —) dz]
s

hi+1 wz
(Caq,Cs5) = [z Q(k) cos? sz]
Navier’s Method
This Navier’s solution technique is used further to obtain deformations. It is in the
form of trigonometric series. On the edges of simply supported plate following
boundary conditions are satisfied.

attheedges{x =0andx =a}:vo=w, =wg =N, =M =M =0 (14)
attheedges{y =0andy =b}:ug=wp =wy =N, =M) =M; =0 (15)

The thermal and mechanical loads are presented in double trigonometric series as
given below.

{Tl} = {Tlm”} sin 2= sin2 (16)
q Qmn a b

The solution for (ugy, vy, wy, wg) is of the form as given below which satisfies the
boundary conditions given by equation (14).

_ mnox nny-
Ugmn COS —— Sin —=
Ug 77.' nn’y
vo | [Vomnsin——cos ==

- nrw.

Wb Wbmnsm—sm by
Ws mnx . nmwy

| WsmnSin—sin—=|

(17)

where, (Uomn, Vomn, Wemn» Wsmn,) are arbitrary parameters. Substitution of this solution
form into governing equations (10) — (13) of laminated plate one can obtain following

equations.
ki1 kiz kiz  kia] (Yomn f
kiz kaz kiz  kaal|) Vomn _ f2
kiz kaz ks ksa| | Womn f3
k14 k24 k34 k44 Wsmn f4
(18)
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where, the elements of stiffness matrix [K] are as given below.

m2m? n?m? mnr?
K = A117 + Age 7:1(12 = (A12 + Aee) ab

m3m3
K13 - Bll a - (B12 + 2366)

mnnl

m37'[3 mn27T3
K1y = |—(B11 — E11)7 — (B2 — E12 + 2Bge — 2E66)T

n?m? m?m
Ky, = |42 Bz + Age 2

m?nm3 nim
Ky = [—(B1z + ZBGG)W — By, ?

n3m3 m?nm3

Kp4 = |—(Byz — E3z) ? — (B1z — E12 + 2Bge — 2Eg6) W
mArt 2n2n4 -
K33 = ID11 + (2D13 + 4Dg6) —55— + D22 Wl

4 4 m2n2 4

s nt*m*
K34- - (Dll - Sll) + (2D12 - 2512 + 4D66 4566)W + (DZZ - 522)7

47.[4- m2n2n4

K44- = l(Dll + Hll 2511) + (2D12 + 2H12 - 4512 + 4D66 + 4H66 8566)W
nmt m?m? n?m?
+ Dy + Hpp — 2522)? tCss—7—+ Caa 7]

The force vector {f}has following elements.

1 mn

fi= [_(B{f + BlTZy)ZTlmn _]
a

nmw
f2= [_(Bgc - ) Tymn—— b

2.2
T m-n T nm
f3=[(Dl +D y) Tymn —— pw + (DI¥ +D22y) Tymn —— 12 +ql
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m2m? 22 n?m?

1 1 mem 1
f4 = (DlT{C - S{{C)ZTlmn_z-l' (szy _szy)_TlmnT-l' (DIZx x) Tlmn b2

n TL'
+(D2sz ) Tlmn b2 +CI

Once the parameters (Uomn, Vomn, Womn Wsmn) are computed thermal displacements
and stresses can be obtained. The shear stresses are evaluated by using the equilibrium
equations (19) and (20).

do. ot it
%o
ax dy 0z

(19)

[aay O0Tyxy | 0Tyz 0]
dy ox 9z

(20)

Method Validation and discussion
To validate the results an example of bilayer composite laminated beam subjected to
thermal field is considered and transverse shear stresses are obtained. Transverse
shear stresses are very prominent in composite laminated beams. The continuity of
shear stress at the interface is very necessary under thermal load. Thermal load causes
delamination at the interface due to temperature effect, hence the continuity of shear
stress is necessary.The following material properties of graphite-epoxy are considered
in the analysis.
E; = 25 % 10° psi,E, = 10° psi, G;, = G;3 = 0.5 X 10° psi, G,3 = 0.2 X 10° psi, u;,
= w3 = 0.25
Transverse shear stresses(fxz,fyz)and transverse displacements (w)are evaluated for
length to thickness ratio 5 and 10. The aspect ratio is denoted by S in the table. The
aspect ratio is defined as length to thickness ratio of plate (S=a/h). Transverse shear
stresses and transverse displacements are computed by using following normalized
forms.
(sz, Tyz) 104
(sz;Tyz) (“1T1E2a)

These stresses are evaluated at the point 7,, (O,g, 0) ' Tyz (%, 0,0).
B (a b ) 10hw
wWil=,=, = T o~
2°2 (a,Tya?)
Table 1. Normalized stresses in two layer laminated square plate (0/90) subjected to
thermal load. (T, =0,T; = 1,9 = 0,a, = 3a;)
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S Model w(z =0) T,,(z =0) 7y,(z =0)
5 FVTST (Present) 1.1421 -0.0875 -0.0875
HOST12 [6] 1.1478 -0.0364 -0.0364
He [7] 11557 -0.0740 -0.0740
CPT [1] 1.1504 -0.0880 -0.0880
Exact Method [8] 1.2224 - -
10 FVTST (Present) 1.1483 -0.0220 -0.0220
HOST12 [6] 1.1497 -0.0103 -0.0103
He [7] 11519 -0.0210 -0.0210
CPT [1] 1.1504 -0.0220 -0.0220
Exact Method [8] 11365 - -
+ Present
[ I Zx\
-0.04 0.02 0.04
-0.25 —
-0.50 —
Figure 2. The continuity of shear stress at the interface
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Figure 3. The continuity of shear stress at the interface
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The table 1 shows the results of thermal deformations obtained by present four
variable trigonometric structural theory (FVTST) by using virtual work and Navier’s
method. Transverse displacement (W) and transverse shear stresses (fxz, fyz)evaluated
are compared with other higher order theories. The transverse displacement (w)
evaluated is compared with exact method for aspect ratio 5 and 10. The percentage
difference between transverse displacement obtained for aspect ratio 5 is 6.7%. When
the aspect ratio changes from 5 to 10, this percentage difference reduces to 1.0%. The
transverse shear stresses are continuous at the interface as shown in figures 2 and 3.
This important from the point of view of delamination under thermal loading.

Conclusion

The laminated composite plates have heterogeneous properties. This method of
virtual work simplifies the analysis using energy principles and by avoiding direct
force calculations. This method of virtual work is versatile and applicable to various
loading conditions.
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