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Abstract: Tooth cavity detection is a critical aspect of orthodontic diagnosis, 

facilitating timely intervention to prevent further dental deterioration. 

Traditional methods for cavity detection, such as visual inspection and 

radiographic analysis, often suffer from limitations in accuracy and consistency, 

highlighting the need for advanced computational techniques.Therefore, in this 

study, we propose a novel approach combining an optimized Fuzzy Neural 

Network (OptFuzNet) with a modified Generative Adversarial Network (m-

GAN) for accurate and efficient cavity detection. First, we pre-process dental 

images to reduce noise and improve image quality. The m-GAN is then 

employed to generate synthetic cavity images, augmenting the training dataset 

and improving model robustness. Then, the GLCM features such as contrast, 

Homogeneity, Energy, Correlation, and Dissimilarity are extracted from each 

image. Subsequently, the selected features are given to the OptFuzNet classifier 

to classify an image as a tooth or cavity. To improve the efficiency of the FuzNet 

classifier, the weight values are optimally selected using The Lyrebird 

Optimization Algorithm (LyOA). Our experimental results, validated on a 

benchmark dataset, demonstrate the superior performance of the proposed 

approach compared to traditional methods, achieving a high accuracy of 94.29% 

in cavity detection. The proposed framework offers a promising solution for 

accurate tooth cavity detection, thereby facilitating early diagnosis and effective 

orthodontic treatment planning. 

Keywords: - Tooth cavity detection, optimized Fuzzy Neural Network, modified 

Generative Adversarial Network, and Lyrebird Optimization Algorithm. 
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1. Introduction 

 

In the fields of orthodontics and oral and maxillofacial surgery, diagnosing the 

necessity for orthognathic surgery is crucial. [1] In addition to being costly, 

orthodontic surgery carries the danger of general anesthesia. As a result, orthodontic 

therapy is typically preferred by patients over orthognathic surgery. However, 

orthodontic therapy is not always sufficient to address cranial structural issues. Only 

orthognathic surgery can treat an asymmetric jaw, a prominent chin, and a retrusive 

mandible. [2] When orthodontic therapy is insufficient to achieve the desired cosmetic 

change, orthognathic surgery is also a viable option. Dental clinics commonly employ 

many kinds of radiography, each with unique characteristics. For diagnosis and 

subsequent treatment planning, they visualize several locations of interest. [3] 

Initially, one of the most popular visualization methods in dentistry was panoramic 

radiography, which scans a large region at a comparatively low radiation dosage. They 

make it possible for specialists to diagnose a wide range of abnormalities, illnesses, 

and lesions. However, diagnosing a case or interpreting a critical situation might be 

challenging due to complex anatomical features, diseases, and imaging distortions. 

Systems for computer-assisted diagnosis can support physicians in making decisions. 

 

Computerized dental X-rays are presently widely used, mostly because of their 

advantages in speed, storage, and image quality. Here are some benefits of 

computerized radiography: It is faster and easier to use than traditional methods; it 

needs a lower radiation dosage; and it doesn't employ artificial chemicals to create 

images. It also produces high-quality images that can identify ailments [4]. The 

traditional machine learning methods cannot accurately distinguish orthodontic 

images due to their limited capacity [5]. A subfield of machine learning called deep 

learning is particularly good at processing high-dimensional data, like text and images. 

Certain classic machine learning-based computer vision tasks, such as detection, and 

classification, have been entirely superseded by deep learning.  

 

Deep learning has started to be used in dental research for screening, diagnosis, and 

decision-making. For instance, one study employed deep learning with a sizable 

dataset of lateral cephalograms (5890 images) to help orthodontists with skeletal 

categorization. Those authors claimed that their deep learning model achieved >90% 

sensitivity, specificity, and accuracy in vertical and sagittal skeleton categorization 

after training and verifying the model. Support vector machines (SVM), [6] 

feedforward neural networks (NNs), and sequence alignment algorithms were utilized 

for tooth classification. All things considered, computerized dental X-rays produced 

an enhanced image quality than traditional oral X-rays since dental professionals may 

quickly acquire another image if the one that was procured wasn't up to speed. 
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To begin with, we assembled a wide range of dental images that included teeth 

deterioration at different stages. [7] Next, we utilized a modified GAN (m-GAN) 

architecture designed specifically for dental image augmentation, which increased the 

amount and variety of the dataset while maintaining the fundamental properties of 

tooth cavities [8]. This was followed by feature extraction, with an emphasis on 

obtaining gray-level co-occurrence matrix (GLCM) features. The main distinguishing 

qualities necessary for cavity identification were identified by extracting these 

properties [9]. In addition, the Optimized Fuzzy Neural Network (OFNN) model is 

presented, which uses dental images to categorize them into groups corresponding to 

the presence or lack of cavities. Additionally, the Lyrebird Optimization Algorithm 

(LOA) is employed to improve the fuzzy neural network's performance, guaranteeing 

the efficacy of the classification model while reducing computational cost [10]. 

 

2. Literature survey 

 

A deep learning model using DeepID was created by Shihao et al. [11] to categorize and 

preserve orthodontic images. Orthodontic image classification, archiving, and 

monitoring were achieved using deep learning techniques more quickly and accurately 

than manual methods. They demonstrated the improved DeepID-based model's 

outstanding orthodontic image classification performance. Additionally, deep learning 

reduced the strain on dentists by improving the efficiency of dental follow-up and 

treatment. However, their study had various limitations. Firstly, as their strategy relied 

on orthodontically needed images, the outcomes should be interpreted cautiously. 

Secondly, many training samples with excellent annotation were required for deep 

learning to function well. 

 

Jae-Jun et al. [12] developed DCNN techniques for the cephalometric radiograph 

image-based differential diagnosis of orthognathic surgical indications. The deep 

learning diagnosis featured differentiating each image versus evaluating everyone's 

image with a specific measurement. This approach had the advantage of recognizing 

nuances that measurements could not capture. Grad-CAM visualization demonstrated 

the capability of descriptive AI and verified the ROI required for classification. They 

discovered that DCNNs were quite useful in differentiating between orthognathic and 

surgical reasons. However, their study had limitations, including the need for different 

deep learning architectures, an adequate amount of datasets, and image sets with 

validated labels. 

 

Modern deep learning models gave rise to tests that were dependable and robust for 

clinical decisions, as introduced by Mahmut Emin Celik [13]. This advanced patient 

treatment planning and physician health management by supporting dentists in their 
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decision-making. It was demonstrated that the detection of third molars worked for all 

four models. The application of machine learning in dentistry showed great promise 

for highly precise and accurate diagnostics. They succeeded in demonstrating how AI-

based tools had become prevalent in hospitals and how important they were for 

making diagnostic recommendations. However, their work was limited in two ways. 

First, the quantity of data was constrained. Second, since they were more common, 

mandibular third molars were utilized in this study. 

 

Computer-aided diagnosis created by Dmitry et al. [14] was on par with expert level. 

Based on these results, the approach for automated dental radiograph analysis might 

find practical use and require further assessment. Completing digital dental charts was 

made easier by computer-assisted tooth recognition and numbering. When only 

assessment and small adjustments were required, a radiologist could utilize its output 

for automatic charting rather than supplying data, as its efficiency level was nearly at 

the expert level. They succeeded in automating processes, which might enhance time 

savings and the accuracy of electronic dental data. However, the study had several 

drawbacks regarding the use of bounding boxes for tooth isolation. 

 

Al Kheraif et al. [15] developed a dental illness prediction technique based on CNN and 

the hybrid graph-cut technique. Dental 2D image files were first gathered using an X-

ray camera model, which successfully captured about 1500 images. The images were 

separated into training (800) and testing (700) sets to form a data set. Next, the 

quality of the images was assessed by examining their pixels. Subsequently, the 

impacted areas were divided by creating a scribbling line on the image to anticipate 

the different sections. They effectively analyzed different statistical dental images 

based on anomalous or disease-related aspects. Finally, an evaluation of the system 

using dental images was conducted. Their shortcomings did not lie in fewer errors or 

better dental care. 

 

Leite et al. [16] introduced an AI-driven tool for quick and precise segmentation and 

tooth recognition on panoramic radiographs, achieved through the refined use of two 

distinct deep-learning algorithms. Tooth segmentation was found to be more 

challenging than bone segmentation due to several factors, including the number of 

teeth in each jaw, the closeness of neighboring tooth structures, the variation in 

densities within teeth, and dental growth. They achieved the tool attained both 

sensitivity and accuracy for tooth detection. However, the limitations of a panoramic 

scan made this approach considerably harder. They were unable to improve the 

ultimate accuracy or convergence speed of the segmentation task. 

 

An effective dental diagnostic method was created by Geetha et al. [17]. They applied 

adaptive thresholding, morphological operations, and the Laplacian filter for image 
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enhancement. Sixteen statistics extracted from the segmented image were then 

applied to a Backpropagation Neural Network (BPNN) for classification, resulting in 

an effective classifier. The diagnostic system was found to distinguish better between 

decayed and normal X-ray images. They discovered that the BPNN performed 

remarkably well in diagnosing decay in dental radiographs. In dental practice, 

advanced algorithms and large, high-quality datasets could provide superior decay 

diagnosis. However, the caries depth categorization method has never been improved. 

 

A unique strategy based on the deep learning model YOLOv3 was developed by 

Almalki, et al. [18] for the detection and classification of the four most prevalent tooth 

problems: cavities, root canals, dental crowns, and broken-down roots. Unlike other 

automated tooth issue detection and sorting applications, dental disease datasets are 

distinct in that access to tagged medical datasets presents substantial difficulty. They 

developed an automated program capable of recognizing and categorizing dental 

issues on dental panoramic X-ray pictures (OPG) using deep learning. Because a 

dataset was not available, they created their collection of dental X-rays. After training, 

the YOLOv3 model was tested on test images and succeeded. One of the 

methodology's limitations is that dental anomalies will be detected in realtime. 

 

3. Problem definition with contribution 

 

The rapid advancements in artificial intelligence have catalyzed the development of 

numerous technologies in the healthcare sector. Among these, tooth cavity detection 

stands out as a crucial aspect of dental healthcare, essential for timely intervention 

and decay prevention. Traditional methods of cavity detection rely heavily on visual 

examination by dentists or dental hygienists. They search for visual cues such as 

discoloration, soft spots, or visible cavities. Diagnostic aids like dental radiography 

provide detailed images of tooth structure, aiding in cavity identification. However, 

these methods are not without limitations. Visual inspection can be subjective and 

prone to variability between practitioners. Additionally, radiography exposes patients 

to radiation and may miss early-stage cavities or lesions in certain areas. In recent 

years, machine learning has emerged as a powerful tool for improving tooth cavity 

detection, addressing the limitations of traditional methods. Machine learning 

architecture has demonstrated remarkable capabilities in accurately recognizing 

patterns and features in dental images relevant to cavity detection. Through training 

on extensive datasets of dental images, neural networks can efficiently learn complex 

patterns indicative of tooth cavities, thereby enabling automated and precise 

detection. Moreover, machine learning techniques allow for the integration of various 

data sources and modalities pertinent to cavity detection. Our study aims to 

contribute significantly to the field of tooth cavity detection through cutting-edge 

machine-learning techniques. 
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 Firstly, we collected a diverse dataset comprising dental images encompassing 

various stages of tooth decay.  

 Subsequently, we employed a modified GAN (m-GAN) framework tailored for 

dental image augmentation, enhancing the dataset's size and diversity while 

preserving the underlying characteristics of tooth cavities. 

 Following that, feature extraction was conducted, focusing on the extraction of 

Gray-level co-occurrence matrix (GLCM) features. These features were 

extracted to pinpoint the most discriminative characteristics essential for cavity 

detection. 

 Moreover, we introduce the Optimized Fuzzy Neural Network (OptFuzNet) 

model, to classify dental images indicative of cavity presence or absence. 

 Furthermore, the Lyrebird Optimization Algorithm (LyOA) is utilized to 

enhance the performance of the Fuzzy neural Network, ensuring the 

classification model's effectiveness while minimizing computational overhead. 

 

4. Proposed Tooth cavity detection using OptFuzNet 

 

The primary objective of this paper is to identify and diagnose areas of decay in teeth 

accurately and efficiently. By detecting cavities early, dental professionals can initiate 

timely interventions to prevent further progression of decay, minimize the risk of 

complications such as infection and tooth loss, and ultimately preserve the patient's 

oral health and well-being. Additionally, early detection allows for less invasive and 

more conservative treatment options, reducing patient discomfort and treatment 

costs. So, in this study, we focused on tooth cavity detection. Figure 1 illustrates the 

proposed structure of tooth cavity detection. The proposed work consists of three 

stages namely, pre-processing, data augmentation, and classification. Initially, data are 

collected pre-processed. Then, the pre-processed data are given to the augmentation 

process. In this paper, we employed m-GAN for data augmentation, aiming to enhance 

the diversity and quantity of our dataset, thereby improving the robustness and 

accuracy of tooth cavity detection. Then, the GLCM features are extracted from newly 

generated images. After that, the extracted features are given to the OptFuzNet 

classifier to classify an image as a tooth or cavity. Here, the performance of FuzNet is 

enhanced using LyOA.  
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Figure 1: Overall structure of proposed cavity detection 

 

4.1 Pre-processing  

 

Consider the dataset (Zenodo's Dental Caries Dataset) ),...,2,1(, NjD j  which consists 

of N number of tooth images. Initially, we downloaded the images from the dataset 

and Dataset and uploaded them to Google Drive for ease of access. Following this, all 

images are transformed into grayscale to standardize their color representation and 

subsequently resized to dimensions of 256x256 pixels to ensure uniformity and 

facilitate efficient processing. These pre-processing steps set the foundation for 

accurate analysis and detection of cavities in tooth images. 

 

4.1 Image augmentation using m-GAN 

 

Data augmentation is an important technique to improve the classification process, 

especially when the initial dataset is insufficient. By creating different and artificial 

variations of existing data, it increases their accuracy and robustness while making 

predictions. Data augmentation aims to increase the diversity and robustness of a 

dataset to improve the performance of algorithms in data analysis and prediction 

tasks. For augmentation, in this paper m-GAN is used. GAN is a popular generative 

model in deep learning, which is used to generate realistic synthetic data by training 

two neural networks in opposition: a generator that creates data and a discriminator 

that evaluates its authenticity. This technique is used to produce high-quality data 

samples for various applications, such as image generation, data augmentation, and 



Scope 
Volume 14 Number 02 June 2024 

 

1287 www.scope-journal.com 

 

improving machine learning models. To enhance the performance of GAN, in this 

paper m-GAN is proposed.  

 

GAN 

 

The original GAN has two components: a generator and a discriminator. The 

generator's input is random noise, and the discriminator's input is both real data and 

so-called fake data (generated by the generator). The discriminator's goal is to 

accurately distinguish between the real data and the generated fake data. The 

structure of GAN is given in Figure 2. 

 
 

Figure 2: The structure of traditional GAN 

 

In GANs, both the generator and discriminator are trained using feedforward 

networks and the dropout algorithm. These two components improve each other 

adversarial: the discriminator keenly learns to distinguish real samples and provides 

feedback on synthetic samples, while the generator uses this feedback to create 

increasingly realistic samples. The model converges when the discriminator can no 

longer tell the difference between real and generated data. To generate the data and 

classify data, the generator and discriminator, both have various objective functions: 

the discriminator aims to maximize likelihood, while the generator aims to minimize 

the error rate of the discriminator [19]. The maximum likelihood function is calculated 

using equation (1). 

   


n

i
ixfLik

1

                                                  (1) 

Where; n represent the total number of images given to the input of the discriminator 

and sample data created from the generator is represented as x . The comparison of 

the two samples is utilized to assess their similarity, which ultimately determines the 

acceptability of the generated sample. The mathematical function of error is given in 

equation (2). 
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tan                                (2)     

Where qandp  represent data points used to evaluate the modification between the 

created data and the original data. GANs have proven useful in balancing datasets, but 

the use of basic GANs to classify data with small sample sizes has not been extensively 

studied. Traditional GANs introduce random noise into the original dataset to 

generate synthetic models, which is not optimal for the sensitive application area of 

dental cavity detection. Therefore, in this paper, we propose the use of m-GAN for 

tooth cavity detection. 

 

Modified GAN 

 

We present m-GAN, where based on conventional GAN, the discriminator is trained 

with the original image.However, diverging from the conventional approach, the 

generator in our model is fed both the original image and noise (information about 

the original image) with distribution  nP , as input. The structure of m-GAN is given 

in Figure 3. This modification aims to enhance the generator's ability to produce more 

realistic and diverse synthetic samples by incorporating the variability introduced by 

the noise. Here, the generator creates a synthetic sample which is executed by a 

function generator,  AGg . The resultant produced by the generator is used as input 

for the discriminator. The discriminator has a function called `discriminate`, denoted 

as  dD .  

 

The resultant produced by the generator is used as input for the discriminator, which 

has a function called discriminate, denoted as  dD . The discriminate function,

  AGD gd , evaluates the likelihood between the generated and original samples to 

determine the status of the generated sample. If rejected, feedback is passed to the 

generator, which calculates the error difference and updates it to produce a new 

synthetic sample. 
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Figure 3: Structure of m-GAN 

 

Algorithm 1: m-GAN 

Input: 

Discriminator: input image, generated image 

Generator: Gaussian noise and information about the original image 

Output:  

       Generated synthetic image 

Begin 

Generator 

     Synthetic sample = Generate (Gaussian noise+ image information) 

Do 

{ 

Discriminator  

Differentiate (synthetic sample images) 

Evaluatethe maximum likelihood factor to distinguish the generated sample    

from the input samples 

Synthetic samples are accepted if the likelihood is high 

  Otherwise, create feedback and transferit to the generator. 

Generator 

      Synthetic data=Generate (Feedback+ Gaussian noise+ Image information)  

The generator evaluates the standard error difference to produce new data 

      } 

While  (synthetic sample=accepted) 

The accepted generated samples are added to the dataset 
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4.3 Feature extraction 

 

After the data augmentation process, the newly generated image datasets are fed into 

the feature extraction stage.  For feature extraction, we extract the texture GLCM 

features such as contrast, Homogeneity, Energy, Correlation, and Dissimilarity from 

the generated images. 

 

Energy: - It is also known as uniformity or the angular second moment. It is a 

statistical measure that quantifies the texture uniformity or repeated pair patterns in 

an image. It is calculated as the sum of the squared elements in the GLCM, providing a 

measure of textural uniformity. Mathematically, it is expressed as: 

 
ji

jiPEnergy
,

2
,                                        (3) 

Where,  jiP , represent the normalized frequency of pixel pairs with gray levels i  and 

j  in the GLCM. High energy values indicate less texture complexity and more 

homogeneity, while lower values indicate more texture variation and complexity. 

 

Contrast: - The "contrast" feature in the GLCM measures the intensity difference 

between a pixel and its neighbor over the whole image, highlighting the amount of 

local variation. For tooth cavity detection, this feature helps identify areas with 

significant differences in pixel intensity, which often correspond to the presence of 

cavities. Mathematically, it is defined as: 

    
ji

jiPjiContrast
,

2
,.                                        (4) 

Higher contrast values indicate greater differences in intensity, which can be useful for 

detecting the variations in tooth density and structure associated with cavities. 

 

Homogeneity:- The "homogeneity" feature in GLCM measures the closeness of the 

distribution of elements in the GLCM to the GLCM diagonal, reflecting the similarity 

or smoothness of the image texture. For tooth cavity detection, this feature helps 

identify areas where pixel intensities are similar, as healthy tooth regions typically 

exhibit more uniform texture compared to the irregularities caused by cavities. 

Mathematically, homogeneity is defined as: 

  


ji ji

jiP
yHomogeneit

, 1

,
                               (5) 

Higher homogeneity values indicate more uniform regions, which can help distinguish 

healthy tooth areas from those with cavities, as cavities often disrupt the uniform 

texture of the tooth surface. 

 

Correlation: The "correlation" feature in the GLCM measures the linear dependency 

of gray levels between pixels at specified positions relative to each other. For tooth 
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cavity detection, this feature helps identify the degree to which pixel intensities are 

correlated, which can reveal structural patterns or disruptions caused by cavities. 

Mathematically, correlation is defined as: 

  
yx

ji yxjiPji
nCorrelatio



 
 ,

,..
                                  (6) 

Where;  jiP , represent the normalized frequency of pixel pairs with gray levels i  and 

j  in the GLCM, x and y  are the mean value, yxand are the standard deviation of 

the marginal distribution of  jiP , .High correlation values indicate a strong linear 

relationship between the pixel intensities, which typically corresponds to consistent 

and uniform textures found in healthy tooth regions. Lower correlation values may 

indicate the presence of cavities, as these areas often disrupt the regularity and 

introduce more variability in the texture. 

 

Dissimilarity: The "dissimilarity" feature in theGLCM quantifies the average 

difference in intensity between a pixel and its neighbor over the entire image. For 

tooth cavity detection, this feature helps identify areas where there are significant 

variations in pixel intensity, potentially indicating the presence of cavities or 

irregularities in tooth structure. Mathematically, dissimilarity is defined as:  

  
ji

jiPjiityDissimilar
,

,.                                      (7) 

Higher dissimilarity values indicate greater intensity differences between neighboring 

pixels, which can be indicative of areas with irregularities or cavities. Therefore, 

dissimilarity is a useful feature for detecting textural variations associated with tooth 

cavity detection. 

 

4.4 Tooth cavity detection using Optimized Fuzzy Neural Network (OptFuzNet) 

 

After the feature extraction process, the extracted features are given to the OptFuzNet 

for the cavity detection process. The proposed OptFuzNet classifier is a combination 

of a fuzzy inference system (FIS) and a neural network (NN). To enhance the 

performance of FuzNet, the parameter present in the classifier is optimally selected 

usingthe Lyrebird Optimization Algorithm (LyOA).In this work, we consider the 

problem of multi-attribute decision-making and build a multi-input, single-output 

(MISO) FuzNet, as shown in Figure 3. We use different features of the tooth image as 

input vectors and the cavity as the output vector. The proposed FuzNet consists of 

four layers namely, input, membership function, rule, and output layers.The first layer 

of nodes represents input variables, with individual nodes representing linguistic 

descriptions of contrast, Homogeneity (Hm), Energy (E), Correlation (Co), and 

Dissimilarity (Di).Layer 2 computes membership values based on the linguistic terms 

associated with the variables specified in Layer 1. Layer 3 generates the fuzzy rules 
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based on the membership values (Takes from layer 2). Layer 3 takes the input and 

applies fuzzy rules to determine the rule firing strength (outputs), which are then used 

in subsequent layers for further processing. Finally, Layer 4, acting as the output layer, 

integrates the information representing the output of the cavity detection. 

 
 

Figure 4: Structure of the Fuz Net model 

The FIS uses the bell membership function (MF) in the second layer layer. However, to 

improve the performance of the rule generation process, the proposed method utilizes 

the Gaussian kernel MF. Besides, to improve the performance of FuzNet, weight values 

are optimally selected by adaptive LyOA. The two basic rules of Fuzzy are given in 

below equations; 

 

Rule nR : If 
1F is nQ1  and ... mF is mnQ .... and 

KF is KnQ Then O is nd ,    (8) 

Where n=1, 2,..., N and mnQ are the input variables fuzzy sets, mF , i=1,2,...K and nd are 

the consequent parameter of O. To simplify the analysis, a fuzzy rule 0 is introduced. 

Rule 0:  If 
1F is 10Q  and ... mF is 0mQ .... and KF is 0KQ Then O is 0d ,    (9) 

Where 0KQ  is a universal fuzzy set, whose fuzzy degree is 1 for any input value mF , 

i=1,2,...K, and 0d is the consequent parameter of Oin the fuzzy rule 0. Define )(K
O and 

)(K
X as theoutput and input variables of a node in layer K, respectively. 

 

Layer 1: Input layer: -Initially, the extracted features (Hm, E,C, and Di) are given to 

the input of the input layer. The input layer is in the form of crisp variables (L, H, M).  
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There is no computation in this layer. Each node in this layer, directly transmits the 

corresponding input variable to the next layer. 

mm FXO  )1()1(         (10) 

Where mF , i=1,2,...K are the input variables of the FuzNet. 

Layer 2: MF layer: - Every node in this layer performs MF that resembles one 

linguistic label of one of the input variables in Layer 1. In this paper, the Gaussian 

kernel membership function is used. 

)(
)2()()2(

m

n

m XO        (11) 

Where )(
)( n

m  is anMF. With the use of GMF, the operation is performed. The GMF is 

calculated using equation (12). 

)/)(()2(
22)2(
mnmnm cX

eO
       (12) 

Where mnc represents the center (mean) and mn represents the width (or variance) of 

the GMF of the nthterm of the mthinput variable fm. 

Step 3: Rule layer:Links are used in this layer to match fuzzy logic rules' 

preconditions, and each rule node has a single antecedent link that comes from a 

linguistic variable. To fuzzify the inputs, fuzzy operators are used, such as AND. 

)]([)]([

1

)3()3( nn
T

nn czDiaczDia
K

m

m eXO





      

(13) 

Where )1,...,1( 1 Knnm diagDia  , ,],...,[ 21

T

Knnnn cccc  T

KFFFFF ],.....,[ 3,21 is the FNN 

input vector.  

Step 4-Output layer: The single node )4(
O in this layer is labeled with , and it 

computes the overall output by summing all the input signals. 

0

1

)4()4(
dXdO

N

m

mm 
  

                                                                                        (14) 

Where, md represents the output action strength of Layer 4 and the scalar 0d  is a bias. 

Therefore, the FuzNet mapping can be reformulated in the subsequent input-output 

structure: 

0

1

)(

1

0

1

)4()4(
)( dFddXdO m

K

m

n

m

N

n

n

N

n

nn  



   

(15) 

The following illustration shows how FuzNet processes input data through layers, 

interprets fuzzy rules, and produces output representing cavity detection. 

 The input layer represents input variables such as Hm, E, C, and Di, and each 

node transmits linguistic descriptions {Low, Medium, High} to the next layer. 

 Layer 2 computes membership values based on linguistic terms from Layer 1 

using Gaussian MFs. For example, if Di is high, the MF in Layer 2 calculates the 

degree of membership in the 'high' fuzzy set using a Gaussian function with 

specific mean and variance parameters. 
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 In Layer 3, the nodes create the fuzzy logic rules and perform precondition 

matching using the AND operation for each Layer 2 node. The model rule is 

presented below;  

 

RULE:"If Hm is Low AND E is Medium AND C is High AND Di is Medium, 

THEN Iin is Cavity,"  

Table 1: Sample Fuzzy Rules 

INPUTS OUTPUT 

Hm E C Di Iin 

High Low Medium Low Cavity 

Low Medium Medium Medium Non-Cavity 

High High Medium High Cavity 

Medium Low High Low Cavity 

Low High High High Non-Cavity 

High Low Low Low Non-Cavity 

 

 In Layer 4, a singular node computes the total output by aggregating all inputs, 

considering connecting weights and biases. The resulting overall output is 

represented in binary form, where 0 denotes the presence of a cavity and 1 

indicates its absence. 

 

4.4. 1 Weight optimization using LyOA 

 

The Lyrebird Optimization Algorithm is a nature-inspired computational technique 

modeled after the behavior of the lyrebird, known for its exceptional mimicry skills 

[20]. This algorithm leverages the lyrebird's ability to adapt and imitate various sounds 

to find optimal solutions in complex problem spaces. By simulating the mimicry and 

adaptive behaviors of the lyrebird, the algorithm explores and exploits the search 

space efficiently, balancing exploration and exploitation. It is particularly useful for 

solving optimization problems where traditional methods may struggle, providing a 

robust and flexible approach to finding high-quality solutions. The steps involved in 

weight optimization using LyOA are given below; 

Step 1: Solution initialization 

In the initialization stage of the optimization algorithm, we first define the solution 

space and constraints. An initial population of candidate solutions is generated 

randomly to ensure diversity. In this study, we initialize weight parameters (

nwww ,..., 21 ) present in the FuzNet.  The solution can be represented as follows; 

 ni yyyyY ,...,, 321 (16) 

Where the solution 
1y can be represented as follows,  

 
nwwwy ,..211

, (17) 
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Step 2: Opposite solution generation: Then, the opposite solutions are created for 

each initialized solution. The opposite solution is given in equation (18) 

ii YbaY  (18) 

Where,  baYi , is a real number 

 

Step 3: Fitness calculation: After initializing the solutions, we calculate the fitness of 

each one. In this paper, accuracy is used as the fitness function. A good system should 

aim to achieve the maximum fitness value. The fitness function is defined in Equation 

(19). 

 

 AccuracyMaxFitness (19) 

NPNP

NP

FaFaTrTr

TrTr
Accuracy





(20) 

Where; TrP represents the true positive value, TrN represents the true negative value, 

FaP represents the false positive value and FaN represents the false negative value. 

 

Step 4: Updation process 

In the LyOA approach design, the location of population members is updated in each 

iteration based on the lyrebird's strategy for sensing danger. In the LyOA design, the 

population optimization process mimics the lyrebird's behavior, consisting of two 

phases: (i) escape and (ii) hiding. Using Equation (21), the decision-making process 

between these strategies is simulated. Thus, in each iteration, each LyOA member's 

state is updated based on either escape or hiding. 



 


elsephaseonBased

RaphaseonBased
YutionUpdatedsol

p

i
,2

55.0,1
                                  (21) 

Where; pR  represent the random value [0,1]. 

Phase 1: Escaping strategy  

In the LyOA, the Escaping Strategy involves updating the position of each population 

member to simulate a lyrebird moving from a dangerous area to a safe one. This 

movement results in significant positional changes, allowing the algorithm to explore 

different regions of the search space effectively. Each member considers the positions 

of others with better objective function values as secureplaces. Thus, the set of secure 

places for each member is calculated using equation (22), enhancing LyOA's global 

search exploration capability. 

   ,,..,2,1,,...,2,1, NiWhereNkandFitFitYSA ikki                                      (22) 
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Where, iSA  represent the set of secure places for the th
i  lyrebird and kY  represent the 

th
k  row of Y the matrix, which has a better objective function value (i.e., kF ) than the 

th
i  LyOA member (i.e, ik FF  ). 

In the LyOA design, each lyrebird arbitrarily escapes to one of the identified safe areas. 

A new location for each member is evaluated using a specific displacement model 

using Equation (23). If this new location results in an improved objective function 

value, it replaces the member's previous position according to Equation (24). 

 
jijijijiji

P

ji yISSAryy ,,,,,

1

, ..                                (23) 



 


elseY

FFY
Y

i

i

P

i

P

i

i
,

,
11

                                       (24) 

Here, iSSA  represent the selected secure area for th
i  lyrebird, jiSSA , represent the th

j

dimension, 1P

iY  represent the new locationevaluated for the th
i  lyrebird based on the 

escaping strategy of the proposed LOA, 1

,

P

jiy    represent the th
j  dimension, 1P

iF  

represent the objective function value, jir , represent the arbitrary value [0.1], and jiI ,  

are random value which is selected as for this paper. 

 

Phase 2: Hiding Strategy (Exploitation Phase) 

 

In this LyOA phase, each population member's position is updated by emulating a 

lyrebird's strategy of hiding in nearby safe areas. This involves small, precise 

movements to scan the environment, showcasing LyOA's local search exploitation 

ability. A new location for each member is calculated using Equation (25) and replaces 

the old location if it improves the objective function value based on Equation (26). 

 
t

LBUB
ryy

jj

jiji

P

ji


 .21 ,,

2

,                                     (25) 



 


elseY

FFY
Y

i

i

P

i

P

i

i
,

,
22

                                      (26) 

Where, 2P

iY  represent the new locationevaluated for the th
i  lyrebird based on the 

hiding strategy of the proposed LyOA, 2

,

P

jix  represent the th
j   dimension, 2P

iF  

represent the objective function value, jir ,  represent the arbitrary value [0,1], and t  

represent the iteration counter. 

 

Step 5: Termination criteria:The process of updating the population is repeated 

until the final iteration of the algorithm. If not, the algorithm will terminate when the 

optimal fitness is attained.Upon completion of adaptive LyOA, the best solution 
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(weight) found is output as the problem's solution. The updated weight value is given 

to the OptFuzNet. 

 

Algorithm 2: Pseudocode of Adaptive LyOA 

Input: population size (N), iteration (T), number of weights, parameters of LyOA 

Output: optimal solution (weight) 

Start LyOA 

 Create the initial population using weight values 

    Evaluate the opposite solution (18) 

Evaluate fitness for each solution using equation (19) 

               For t=1 to T 

                    For  i=1  to N 

Equation (21) can be used to select the updating strategy  

  If 5.0pRa 5   (select phase 1) 

Evaluate secureregions for th
i lyrebird using equation (22) 

evaluate the new location of the th
i lyrebird using equation (23) 

Update th
i lyrebird member using equation (24) 

                                 Else (select phase 2) 

Evaluate the new location of the th
i  LOA member using equation (25) 

                                Update th
i  LOA member using equation (26) 

                           End if 

                    End for  

Store the best solution 

          End  for  

Select the optimal best solution. 

End LyOA 

 

 

5.Results and discussion 

 

In this section, the findings of the study are presented and explained in the context of 

the research objectives. This section clarifies the significance of the results and 

explores their implications for the wider field of study. The proposed methodology is 

implemented using Python and the experimental used system has Windows 10 with an 

Intel Core i5 processor and 6GB of RAM. The efficiency of the presented technique is 

discussed using accuracy, precision, recall, F-measure, and positive predictive value 

(PPV). For experimental analysis, Zenodo's Dental Caries Dataset is utilized. 
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5.1 Experimental results 

 

In the Experimental Results section, we present the outcomes of our experiments. We 

describe how we conducted the tests and explain what we observed. These results will 

help us understand our findings better in the upcoming discussion.The confusion 

matrix for cavity detection is shown below, where the values represent the percentage 

of instances in each category: 

 
Figure 5: Confusion matrix (a) OptFuzNet, (b) neural network, fuzzy logic, 

fuzzy-neural network, and SVM 
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In Figure 5(a),the matrix indicates that 46.33% of the instances were correctly 

identified as cavities (True Positives), while 47.96% were correctly identified as non-

cavities (True Negatives). Misclassification rates include 1.22% of non-cavity instances 

incorrectly labeled as cavities (False Positives) and 4.48% of cavity instances 

incorrectly labeled as non-cavities (False Negatives). The high percentages of True 

Positives and True Negatives demonstrate the model's effectiveness in accurately 

detecting cavities, with minimal error rates, indicating strong overall performance in 

distinguishing between cavity and non-cavity instances. 

 

 
Figure 6: ROC curve of the proposed method 

 

Figure 6 illustrates the ROC curve, this is a graphical representation used to evaluate 

the performance of a binary classifier by plotting the True Positive Rate (TPR) against 

the False Positive Rate (FPR) across various thresholds. The area under the ROC curve 

(AUC-ROC) quantifies the overall ability of the classifier to distinguish between 

positive and negative classes, with values ranging from 0 to 1. In our work, we attained 

an AUC-ROC of 0.95;which indicates excellent model performance, meaning there is a 

95% chance that the classifier will correctly differentiate between a positive instance 

and a negative instance. This high value reflects the model's strong ability to minimize 

both false positives and false negatives, making it highly reliable for tasks requiring 

accurate classification.Moreover, figure 7 illustrates the existing methods of ROC cure. 
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Figure 7: ROC curve of exiting model (a) Fuzzy neural network, (b) fuzzy logic system, 

(c) Neural network, and (d) SVM 

 

Figure 7 illustrates the ROC curve performance for different classification models.The 

obtained ROC curve values for different models indicate varying levels of performance 

in distinguishing between positive and negative classes: the fuzzy neural network 

achieves an AUC-ROC of 0.83, suggesting good discrimination ability; the fuzzy logic 

model has an AUC-ROC of 0.50, indicating performance equivalent to random 

guessing; the neural network attains an AUC-ROC of 0.60, reflecting marginally better 

than random performance; and the SVM (Support Vector Machine) shows strong 

performance with an AUC-ROC of 0.81. The proposed model, with an AUC-ROC of 

0.95, significantly outperforms all other models, demonstrating exceptional 

classification ability and a robust capability to correctly identify positive and negative 

instances, thus representing a substantial improvement over the existing methods. 
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Figure 8: Epochs vs. loss and Accuracy plot for training and validation 

 

A plot of epochs versus loss and accuracy for the proposed model is shown in Figure 8, 

which indicates a steady decrease in training and validation loss, indicating effective 

learning and over-fitting over time. Both the training and validation accuracy curves 

exhibit an upward trend, which improves the performance and generalization 

capabilities of the model. This visualization underscores the robustness and efficiency 

of the model in achieving high classification accuracy while maintaining low error 

rates across epochs. 
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Measures Proposed 

OptFuzNet 

Fuzzy 

neural 

network 

Fuzzy 

logic 

system 

Neural 

network 

SVM 

Accuracy 94.2973 89.3805 69.2404 78.9308 86.8497 

Precision 91.1826 86.8055 60.6866 83.9024 85.3837 

Recall 95.58359 91.9117 70.2933 75.3284 85.2573 

F-

measure 

94.20289 89.2857 69.1046 79.38461 87.0738 

PPV 90.9909 86.7977 60.6866 83.9024 85.9695 

Table 2: proposed tooth cavity detection performance 

 

Table 2 presents the performance metrics of different methods for tooth cavity 

detection, including Proposed OptFuzNet, Fuzzy Neural Network, Fuzzy Logic 

System, Neural Network, and Support Vector Machine (SVM). The metrics evaluated 

are Accuracy, Precision, Recall, F-measure, and Positive Predictive Value 

(PPV).OptFuzNet achieved the highest accuracy at 94.2973%, significantly 

outperforming the Fuzzy Neural Network (78.9308%), Fuzzy Logic System 

(69.2404%), Neural Network (89.3805%), and SVM (86.8497%). In terms of precision, 

OptFuzNet also leads with 91.1826%, followed by the SVM at 87.3837%. The recall is 

highest for OptFuzNet at 95.58359%, indicating its robust ability to correctly identify 

true positives, in contrast to the lower recall rates of the other models. The F-measure, 

a balance between precision and recall, is also greatest for OptFuzNet at 94.20289%, 

reinforcing its overall effectiveness. Additionally, the Positive Predictive Value (PPV) 

for OptFuzNet is 90.9909%, again surpassing the other methods. These results 

underscore the significant performance improvement of OptFuzNet over existing 

techniques in tooth cavity detection. 

 

The reason behind the excellent results is that, firstly, OptFuzNet combines the 

advantages of fuzzy logic and neural networks, using fuzzy rules to handle uncertainty 

and neural networks to learn complex patterns in data. This hybrid approach allows 

for more accurate and robust cavity detection. Additionally, the optimization process 

used in OptFuzNet, fine-tunes model parameters to increase performance, resulting in 

better results compared to other methods. Overall, the combination of fuzzy logic, 

neural networks, and optimization techniques in the Proposed OptFuzNet method 

enables it to achieve the maximum output in tooth cavity detection, showcasing its 

potential for clinical application in dental diagnostics. 
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4.3. Comparison with published work 

In this section, we compare our findings with those reported in the existing literature 

to contextualize and validate our results. By exploring similarities and contrasts, we 

aim to contribute to the ongoing dialogue in the field and highlight the novelty or 

significance of our contributions. 

 

Ref 

No 

Authors Algorithm Accuracy Precision Recall F-

Score 

[11] Li et al. 

(2022) 

DeepID 92.4 - - - 

[12] Lee et al. 

(2020) 

DCNN 

techniques 

83.8 - 75.0 - 

[13] Celik 

(2022) 

Modern deep 

learning models 

76.7 88 93 - 

[14] Tuzoff et 

al. (2019) 

Deep CNNs 89 90.98 91.80 - 

[15] Al Kheraif, 

et al. (2019) 

CNN and the 

hybrid graph-cut 

technique 

91.2 89 92 94 

[16] Leite, et al. 

(2021) 

Deep learning 

algorithms 

86.9 90 92 93.1 

[17] Geetha, et 

al. (2020) 

Backpropagation 

Neural Network 

(BPNN) 

92.1 90.2 92.1 93.1 

[18] Almalki, et 

al. (2021) 

Deep learning 

model YOLOv3 

91.3 92 91.7 92.5 

Prop

osed  

 OptFuzNet 94.2973 91.1826 95.583

59 

94.202

89 

 

Table 3: Comparison with already published work 

Table 3 compares the performance of the proposed OptFuzNet model with several 

existing models in terms of accuracy, precision, recall, and F-score. The proposed 

OptFuzNet model achieves the highest accuracy of 94.30%, outperforming previous 

models such as the DeepID by Li et al. (92.4%) and the Deep CNNs by Tuzoff et al. 

(89%). It also demonstrates superior precision (91.18%), recall (95.58%), and F-score 
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(94.20%) compared to other methods. For instance, the Backpropagation Neural 

Network (BPNN) by Geetha et al. reports an accuracy of 92.1% with a precision of 

90.2% and recall of 92.1%, while the CNN and hybrid graph-cut technique by Al 

Kheraif et al. show an accuracy of 91.2%, precision of 89%, and recall of 92%. The 

proposed OptFuzNet's balanced and high scores across all metrics indicate its 

robustness and effectiveness, making it a significant improvement over the existing 

methods. 

 

6. Conclusion 

The study on tooth cavity detection using the OptFuzNet and m-GAN for orthodontic 

diagnosis demonstrates significant advancements in the field. The purpose of 

OptFuzNet in this study is to leverage optimized fuzzy neural network techniques to 

accurately classify and detect tooth cavities, improving diagnostic precision. The m-

GAN enhances data augmentation, ensuring the robustness and reliability of the 

diagnostic process in orthodontics. The proposed OptFuzNet model achieved an 

outstanding accuracy of 94.30%, surpassing various existing models such as DeepID, 

DCNN techniques, and YOLOv3. Additionally, it exhibited superior precision of 

91.18%, recall of 95.58%, and F-score of 94.20%, indicating a high level of reliability 

and effectiveness in detecting tooth cavities. The integration of the optimized fuzzy 

neural network with m-GAN techniques contributes to enhanced feature extraction 

and improved classification performance, making it a robust tool for orthodontic 

diagnostics. These results highlight the potential of the proposed method to 

significantly improve the accuracy and efficiency of tooth cavity detection, ultimately 

contributing to better orthodontic care and diagnosis. Future work could explore real-

time implementation and scalability of the model in clinical settings, and investigate 

its performance across different demographic groups and varying dental conditions to 

further validate its efficacy. 
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