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Abstract

Background: Brain metastases are common secondary brain tumors that create
major challenges for diagnosis and treatment. The differences in their
appearance and molecular features make them difficult to classify. Methods:
This review followed PRISMA 2020 guidelines. Research papers published
between 2015 and 2025 were searched in Pub Med, Scopus, Web of Science, IEEE
Xplore, and Science Direct. Only English-language studies focused on
histopathology, immunohistochemistry, molecular testing, and Al-based digital
pathology were included. Results: A total of 687 studies were found, and 54 met
the inclusion criteria. Traditional stains such as hematoxylin and eosin (H&E)
and markers like TTF-1, CK7, CK20, GFAP, and GATA3 are still useful for
identifying the origin of tumors. Newer techniques like multiplex
immunohistochemistry and molecular testing provide more detailed information
about tumor genetics. Artificial intelligence applied to whole-slide images
improves accuracy and consistency in diagnosis. However, most Al studies are
limited by small datasets and lack standardization across laboratories.
Conclusions: Combining molecular testing with Al-based digital pathology can
help doctors diagnose brain metastases more accurately and predict patient
outcomes better. Future studies should include larger datasets, use explainable
Al systems, and follow standardized laboratory methods.
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1 Introduction

Brain metastases are the most common secondary brain tumors in adults and are seen in
nearly 40% of cancer patients during the course of their illness [1,2]. The primary sources
are usually cancers of the lung, breast, skin (melanoma), kidneys, and digestive system
[3,4]. The higher occurrence of brain metastases in recent years is partly due to better
systemic therapies that extend patient survival, giving cancer more time to spread to the
central nervous system (CNS) [s5]. Even with progress in imaging and treatment, tissue-
based diagnosis continues to play a crucial role in confirming metastasis and deciding
therapy [6,7]. Conventional histopathology using hematoxylin and eosin (H&E) staining
remains a key diagnostic tool, but it often cannot clearly identify the primary tumor site
[8]. Immunohistochemistry (IHC) therefore serves as a valuable method to detect lineage
and tissue-specific markers, such as thyroid transcription factor-1 (TTF-1), cytokeratins
(CK7 and CK20), glial fibrillary acidic protein (GFAP), and GATA3 [9-12]. These markers
assist in differentiating metastatic lesions from primary brain tumors and are especially
important in cases where the primary cancer site is unknown [13].

The field has advanced with the introduction of multiplex immunohistochemistry
(mIHC) and multiplex immunofluorescence (mIF) which make it possible to observe
several biomarkers on one tissue sample. This allows researchers to study spatial
relationships and molecular variations within tumors [14,15]. Similarly, molecular
pathology methods—such as next-generation sequencing (NGS), fluorescence in situ
hybridization (FISH) and RNA-based assays—provide deeper information about tumor
genetics and help detect clinically significant mutations [16-18]. Digital pathology
combined with artificial intelligence (AI) is now transforming histopathology. Deep
learning models trained on whole-slide images (WSIs) can identify tumor areas, classify
subtypes, and even predict genetic changes with improved precision [19-22]. These
techniques enhance diagnostic accuracy, minimize observer bias, and allow for large-scale
analysis across institutions [23,24].

However, the lack of standardization in sample preparation, variation in biomarker
expression, and limited generalizability of Al algorithms remain significant barriers to
clinical application [25-28]. There is also a growing need to validate new diagnostic
methods and to integrate molecular, digital, and morphological data for more reliable
clinical use [29, 30].

Objective: This review summarizes recent progress in histopathological, molecular and

Al-based methods used to study brain metastases. It also identifies current research gaps
and suggests areas for improvement.
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2 Review Methodology

To ensure clarity and scientific accuracy throughout the review process, the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards were
followed [31].

2.1 Search Strategy

A detailed search was performed to collect studies related to the histopathological
analysis of brain metastases. The databases PubMed, Scopus, Web of Science, IEEE
Xplore, and Science Direct were used to find relevant peer-reviewed research papers
published between 2015 and 2025.

The search terms were developed using keywords and controlled vocabulary. Four main

areas were covered:

e Histopathology - terms such as “H&E staining,” “histological analysis,” and
“morphology.”

e Brain Metastases - terms like “brain metastases,” “intracranial secondary tumors,”
and “CNS metastasis.”

e Immunohistochemistry (IHC) - including “TTF-1,” “CKy,” “CKz20,” “GFAP,” and
“multiplex IHC.”

e Artificial Intelligence and Digital Pathology - including “deep learning,” “whole-slide

imaging,” “CNN,” and “Al in pathology.”

These terms were combined using Boolean operators (AND/OR) to increase search
accuracy [31-33]. Only full-text English-language articles were included. Conference
abstracts, editorials, and theses were excluded to keep the focus on original research. The
search strategy and keywords were checked against earlier systematic reviews to ensure
completeness [34,16]. A total of 687 articles were identified through this initial screening
process. Table 1 outlines the search strategy and keyword combinations.

Database Years Covered Search Terms / Keywords Boolean Used

“brain metastases”,

Pub Med 2015-2025 “histopathology”, “IHC”, “CNN”, AND, OR

“digital pathology”
“multiplex IHC”, “deep 1 ing”,
Scopus 2015-2025 m ‘1‘p ex ) .eep .ear”nlng AND, OR
whole-slide imaging
W.eb of 2015-2025 “metastatic brain tumo”r”, “Al- AND, OR
Science based pathology

“CNN”, “U_N t”’ “t f

IEEE Xplore 2015-2025 € ranstormet AND, OR

models”, “digital pathology”

Table 1: Search strategy and keywords used in the systematic review
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al. (2019) images supervised CNN
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Coudray et al. Res Net-based Accuracy “ fl 1.on
(2018) TCGA dataset CNN Yy prediction
270 (EGFR, KRAS)
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risk
Metastasis Sensitivi Automated
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Lu et al. (2020) CNN Rl metastasis
dataset 92% .
detection
Optimized
Nicholson et Institutional Standard : t}llr:llje
al. (2018) dataset histology P 8y
protocol

Table 2: Summary of Included Studies

Table 2 summarizes representative studies that applied artificial intelligence and digital
pathology models to histopathological datasets, including work by Campanella et al. [22],
Coudray et al. [20], Wang et al. [24], Lu et al. [23].

2.2 Inclusion and Exclusion Criteria

Studies were included if they met the following conditions:

e Focused on histopathological, immunohistochemical, or Al-based analysis of brain
metastases [9-24].

e Used multiplex staining, digital pathology, or computational imaging approaches.

e Reported measurable diagnostic or prognostic results with statistical evidence.

The following were excluded:

e Non-English papers.

e Studies without quantitative histological data.

e Reviews, case reports, letters or editorials.

e Research that focused only on primary brain tumors rather than metastases.

2.3 Study Selection Process
Three primary stages comprised the selection process: identification, screening, and
ultimate inclusion (shown in Figure 1). Following the initial removal of duplicates, 534
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papers remained for screening. 480 of these were eliminated after the abstracts and titles

were examined. 54 articles were ultimately chosen for in-depth qualitative examination.

Prior to screening,
duplicate records (n =
153) were eliminated.

Records excluded**
(n =480)

Reports not retrieved
(n =0)

Excluded reports: Reason 1
(n =241)

Reasons 2 (n =132),3 (n =
99), and so forth.

Id
en The following records
tifi were found:
ca Databases (n =687) >
tio Registers (n = 0)
: }
Records screened
(n =534)
Sc
= Reports sought for retrieval
en| | (n=54)
in
"" }
Eligibility reports evaluated (n =
54)
In The review's included studies
cl (n=54)
ud Reports from the 54 included
ed studies

Figure 1 PRISMA flowchart

Main reasons for exclusion were:

Insufficient histopathological data (241 studies).

Lack of relevance to brain metastasis (132 studies).

Weak methodology or unclear results (99 studies).

Unavailable full text (19 studies).

2.4 Quality Assessment and Data Extraction

To ensure scientific quality, each selected paper was reviewed using the Critical Appraisal

Skills Programme (CASP) checklist for diagnostic studies and reporting standards such as
TRIPOD and CLAIM [32,33].
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The following information was extracted from each study:

e Type of study and number of samples.

e Biomarkers used (e.g., TTF-1, CK7, CK20, GFAP, GATA3).

¢ Imaging methods (e.g., WSI, mIHC, mIF).

e Al models or computational approaches (CNN, U-Net, transfer learning, ensemble
methods).

e Diagnostic metrics such as sensitivity, specificity, and AUC values.

Data extraction was done separately by two reviewers. Discussions with a third reviewer
helped to settle disagreements. Cohen's kappa coefficient was used to measure reviewer
consistency (K = 0.87), indicating strong agreement [34].

2.5 Data Synthesis
The results of the selected studies were grouped and analyzed through narrative synthesis
rather than statistical pooling, due to variation in data types and metrics. The studies
were classified based on four themes:

e Traditional histological methods.

¢ Immunohistochemical markers.

e Advances in digital pathology.

e Al-based image processing and prediction models.

No meta-analysis was performed because of differences in imaging platforms, staining
methods, and reporting standards.

3 Literature Analysis

The study of brain metastases through histopathology has developed quickly in recent
years. Researchers have focused on improving traditional staining methods, discovering
new biomarkers, and applying digital and artificial intelligence (Al) tools to analyze tissue
samples. The goal of these advances is to improve diagnostic accuracy, reduce observer
bias, and identify the primary origin of metastatic tumors. This section reviews the major
developments in histopathological, molecular, and Al-based techniques that support
better understanding and diagnosis of brain metastases.

3.1 Traditional Histopathological and IHC Techniques

Conventional staining methods such as hematoxylin and eosin (H&E) remain the first
step in examining brain metastases [9, 12]. These stains allow visualization of tumor
structure and cellular details. However, morphology alone often cannot confirm the
origin of the tumor. Therefore, immunohistochemistry (IHC) plays an essential role in
diagnosis. It uses antibodies to detect proteins that indicate the tissue or organ of origin.
Recent studies demonstrate that Al-based histopathology can predict the development of
brain metastases from lung cancer [19] and meta-analyses have confirmed the diagnostic
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accuracy of digital pathology models across multiple tumor types [20]. Moreover,
common immunohistochemical markers such as thyroid transcription factor-1 (TTF-1),
cytokeratins (CK7 and CK20), glial fibrillary acidic protein (GFAP), and GATA3 are
essential for distinguishing primary brain tumors from secondary (metastatic) lesions [11-
13]. For instance, Miettinen et al. [11] showed that TTF-1 and CK7/CK2o0 patterns can help
distinguish lung and colorectal metastases. Deep learning algorithms have shown
superior performance in detecting micro-metastases and predicting patient outcomes
from histopathological images [19-20].Integration of molecular profiling with Al-based
image analysis enables more accurate classification and prognosis of brain metastases
[18].

Recent studies have expanded traditional IHC by introducing multiplex
immunohistochemistry (mIHC) and multiplex immunofluorescence (mlIF). These
methods can detect several markers on the same tissue section, preserving spatial and
structural information. They help pathologists study how tumor cells interact with their
microenvironment and immune cells [14,15]. Overall, IHC and multiplex staining remain
reliable methods for diagnosing and characterizing brain metastases.

3.2 Molecular and Digital Pathology Techniques

Molecular testing and digital imaging have become key additions to classical pathology.
Techniques such as next-generation sequencing (NGS), RNA sequencing, and
fluorescence in situ hybridization (FISH) have identified important genetic mutations in
metastatic tumors [16, 17]. Recent studies have shown that deep learning-based
histopathological analysis can significantly improve both diagnostic accuracy and
prognostic prediction in brain metastases [18].

Digital pathology allows histology slides to be scanned and analyzed on a computer.
Whole-slide imaging (WSI) enables large-scale storage and study of tissue architecture.
Using Al and machine learning models, digital pathology can detect and classify tumor
regions automatically. For example, Campanella et al. [22] and Cruz-Roa et al. [19] used
convolutional neural networks (CNNs) to accurately identify metastases in histology
slides. These methods reduce diagnostic time and improve consistency among
pathologists [20]. Wang et al. [24] demonstrated that Al models can predict the
likelihood of brain metastases from lung cancer samples, showing the predictive value of
image-based analysis. Overall, digital pathology has transformed how tissues are
examined by combining speed, accuracy and scalability with molecular data.

3.3 AI-Driven Models and Hybrid Approaches

Artificial intelligence has become a powerful tool in pathology. Models based on deep
learning, such as U-Net, Res Net, and transformer-based networks, can automatically
segment tumors, identify microstructures, and even predict mutations [20,22]. Coudray et
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al. [22,23] applied CNNs to classify lung adenocarcinomas and predict EGFR and KRAS
mutations directly from H&E-stained images. These studies demonstrate that Al can
provide both diagnostic and molecular insights from a single image source. Recent
progress in explainable artificial intelligence (XAI) has improved the interpretability of
Al-assisted histopathological models, helping pathologists understand model predictions
[26].

Integration of artificial intelligence and digital pathology continues to enhance tumor
characterization and improve diagnostic precision in metastatic brain lesions
[24].Standardization in digital pathology has been identified as a key step toward
ensuring reproducibility and interoperability across laboratories [27,28].

4. Research Gaps and Limitations

Despite major progress in histopathological and Al-based analysis of brain metastases,
several gaps and limitations still exist that affect clinical use and scientific consistency.
Addressing these gaps will be essential to improve diagnostic precision and develop more
reliable, standardized systems for patient care.

4.1 Research Gaps

Limited Multicenter Datasets

Many artificial intelligence and digital pathology studies are based on small datasets
collected from single institutions. This limits how well these models can perform on data
from other hospitals or populations. Larger, multicenter datasets are needed to improve
the generalization and reliability of Al models across different regions, scanners, and
patient groups.

Weak Integration Between Molecular and Al Data

Although Al models are effective in analyzing digital slides, few studies combine this
information with molecular data such as genetic mutations or RNA profiles. Integrating
these two types of data could create stronger diagnostic and prognostic models that
better reflect tumor biology.

Lack of Standardization in Image Processing

There are major differences in how researchers prepare and process images. Color
normalization, slide scanning, and artifact removal techniques vary widely, making it
hard to compare results across studies. The absence of standard image-preprocessing
guidelines reduces reproducibility and affects model accuracy.

Limited Use of Explainable Al
Most Al models work as “black boxes,” meaning they provide results without explaining
how the decision was made. There is little research using explainable Al (XAI) tools that
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can show which features influenced a diagnosis. Improving interpretability is important
for clinical acceptance and regulatory approval.

Underuse of Multiplex Staining in Routine Practice

Although multiplex immunohistochemistry (mIHC) and multiplex immunofluorescence
(mIF) offer detailed insights into tumor biology, they are not widely used in clinical
laboratories. The reasons include high cost, long processing time, and lack of technical
expertise. Simplifying these methods could help them become part of everyday diagnostic
work.

4.2 Limitations of the Review

e This review also has several limitations that should be acknowledged:

e Language Restriction: Only English-language studies were included. Research
published in other languages may contain useful information that was not reviewed.

¢ Exclusion of Unpublished Work: Preprints, theses, and conference proceedings were
excluded to maintain quality, but this might have left out new and emerging findings.

e Heterogeneous Evaluation Metrics: The selected studies used different statistical
measures such as AUC, sensitivity, and F1 score, which made direct comparison
difficult.

e Computational Bias: Many Al-based studies focused mainly on accuracy and ignored
aspects such as interpretability, robustness, or clinical utility.

e Narrow Scope: This review mainly focused on tissue-based histopathology. Other
diagnostic tools such as radiomics or liquid biopsy were not discussed, even though
they may complement histological findings.

5. Conclusions

Histopathology remains central to diagnosing brain metastases, but it is becoming more
powerful when combined with molecular testing and Al-assisted digital pathology.
Together, these methods improve diagnostic precision and allow better understanding of
tumor biology. For clinical application future studies should develop larger, multi-center
datasets, adopt explainable Al models, and follow standardized laboratory procedures.

List of Abbreviations

Al - Artificial Intelligence

AUC - Area under the Curve
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CK2o0 - Cytokeratin 20
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DL - Deep Learning
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GFAP - Glial Fibrillary Acidic Protein

H&E - Hematoxylin and Eosin

IHC - Immunohistochemistry

mIHC - Multiplex Immunohistochemistry

mlIF - Multiplex Immunofluorescence

NGS - Next-Generation Sequencing

PRISMA - Preferred Reporting Items for Systematic Reviews and Meta-Analyses
Res Net - Residual Neural Network

TTF-1 - Thyroid Transcription Factor-1

TRIPOD - Transparent Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis

U-Net - Convolutional Neural Network Architecture for Image Segmentation
WSI - Whole-Slide Imaging

XAI - Explainable Artificial Intelligence
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