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I. Introduction 

The first use of ultrasound (US) for brain surgery 

was reported by Chandler et al., describing the 

surgical results of 21 cases using two-dimensional 

imaging (2D-US), allowing real-time 

visualization of the underlying anatomy and 

pathology throughout the pathology 

performance. Since then, without being exposed 

to ionizing radiation, the use of intraoperative 

ultrasound has allowed surgeons to make better 

decisions 

duringasurgicalprocedure.Smallerprobesandmor

eseamless integration with neuron navigation 

systems are examples of how the technology has 

advanced along with theadvancements in 

neuroimaging modalities and image quality. The 

development of related developments is another 

in the contextof these advances, we use the 2D-

US in comparison to other modalities for fetal 

braindevelopment. 

 To extract pertinent information from the photos and categorize

using the algorithms. 

 

 

 

 

 

 

 
Figure 1. Fetal Images 

 

 

Figure.1 displays actual samples of fetal 

brainimages.  

 

 

This method has the potential to significantly 

increase the accuracy and early diagnosis of fetal 

brain abnormalities, enabling earlier 

interventions and treatments that can 

significantly enhance the result both for the 

mother and the fetus. However, as this is a new 

subject, more study is required to enhance the 

precision and dependability of the techniques 

employed in the classifying and prognostication 

of diseases from unborn baby brain images.  

Because of the increased prevalence of genetic 

problems in newborns, the application of 

ultrasound 2D fetal developing brain picture 
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categorization and illness prediction is becoming 

more and more crucial. The prognosis for the 

afflicted children and their families can be 

considerably improved by early detection and 

treatment of these diseases. 

 

In this discipline, several machine learning 

techniques are utilized to evaluate ultrasound 

pictures and categorize the fetus into normal or 

pathological categories. These algorithms 

include like deep-neuralnetworks and decision 

trees, and lastly support-vector machines. 

Additionally, the likelihood of certain illnesses 

may be predicted by algorithm.                 Despite the potential advantages of this strategy, furthe

subject. The variation in the pictures brought 

on by the various acquisition methods and the 

location of the fetus inside the uterus presents 

another difficulty. 

 

Considering these difficulties, the topic of 

ultrasound 2D fetal developing brain picture 

categorization and illness prediction has 

significant promise for enhancing fetal brain 

problem detection and therapy. Healthcare 

providers may improve care for pregnant 

women and their fetuses by developing 

technologies and improving the algorithms they 

employ. 

 

Recent developments include the 

categorization and illness prediction of Fetal 

brain ultrasound imaging in two dimensions. 

Implementing methods for deep learning such 

as convolutional neural networks, is one such 

approach (CNNs),to increase the precision of 

illness prediction and fetal brain picture 

categorization. 

The time and effort needed by medical 

professionals to manually examine the pictures 

would be reduced if automated solutions for 

ultrasound 2D fetal brain image processing were 

developed. Additionally, this would enhance the 

consistency and precision of the analysis, 

improving patient outcomes. 

The ethical and legal issues associated with 

the categorization and illness prediction of 

ultrasound 2D fetal brain images are also 

significant. This covers concerns about 

informed consent, confidentiality, and data 

protection, as well as the precision and 

dependability of the forecasts produced by 

these methods. 

 

 

Additionally, more study is required to confirm 

the precision and dependability of these methods 

and to ascertain any potential long-term 

consequences of ultrasound radiation exposure on 

the growing fetus. To guarantee consistency and 

comparability of results across various studies and 

populations, additional standardization in the 

acquisition and processing of ultrasound images is 

also required. 

Overall, the field of ultrasound 2D fetal brain 

image classification and disease prediction holds 

great promise for enhancing mother and baby 

health and well-being, but it is crucial to take 

into account and address the various ethical, 

legal, and practical issues associated with its 

creation and application. 

 

II. Methodology 

 

The descriptiveness and discrimination 

capability of de- rived features are essential for 

achieving effective analysis performance in 

image analysis tasks.  Becausethefeaturesfor 

recognition may be automatically extracted by 

training, deep learning has the 

benefitthatthissortofmethodcan be extended to 

difficult situations with very complicated 

characteristics. 

 

A. Convolutional Neural Network 

Artificial neural networks known as deep 

neural networks (ConvNets or CNNs) are used 

for natural language processing as well as 

image and video recognition. They are made to 

handle data having a grid-like architecture, 

such as an image while maintaining the spatial 

link between the pixels by employing 

convolutional layers to learn local 

characteristics. 

 
Figure 2. CNN Architecture 
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A ConvNet is composed of an input layer, 

hidden convolutional layers, pooling layers, 

fully connected layers, and output layers. The 

convolutional layers, which apply filters to the 

incoming data, create the feature map. The 

pooling layer reduces the spatial size of the 

feature map, the number of variables in the 

network, and allows for the detection of 

features of varying sizes.Fig.2explains the 

process of a Convolutional Neural Network. 

 

B. Google-Net 

GoogleNet and other The use of 

Convolutional Neural Networks (CNNs) in 

analysis of ultrasound images in fetal imaging 

to improve the accuracy of fetal diagnostics. 

CNNs have shown promising results in a 

number of fetal imaging applications, including 

fetal growth estimation, fetal biometry 

measurement, and fetal anomaly detection. 

 

In fetal ultrasound imaging, CNNs can be 

mainly used to the – automation of the extract 

features from the ultrasound images and make 

predictions about various aspects of the fetus, 

such as gestational age, fetal weight, and the 

presence of anomalies. These predictions can 

then be used to support or improve clinical 

decision-making. 

 

One of the major benefits of utilizingCNNs 

for fetal ultrasound analysis is was their - 

ability to learn from large amounts of data, 

which can improve the accuracy of their 

predictions.  

 

In addition, they can be trained end-to-end, 

which means that they can learn to make 

predictions directly from raw ultrasound 

images, without the necessity for 

segmentation algorithm or feature extraction. 

Overall, the use of CNNs in fetal 

ultrasound imaging has the potential to 

improve the accuracy of fetal diagnostics and 

make them more accessible to a wider range 

of healthcare providers. 

 

It's important to keep in mind that the 

application of CNNs in fetal ultrasound 

imaging is still an emerging field, and further 

research is needed to fully evaluate their 

performance and assess their impact on 

clinical practice. 

 

 However, the potential benefits of using 

CNNs in fetal ultrasound imaging are 

significant and demonstrate the potential for 

deep learning to transform healthcare and 

improve patient outcomes. 

 

 
 

Figure 3. GoogleNet 

 

Figure 3. clearly explains In the modern 

world, GoogleNet is utilized for a variety of 

computer vision applications, that is Object 

Detection as well as Image Classification.  

 

C. Discretewavelet Transform(DWT) 

 The ima

or thresholder to reduce their impact on the 

image. The resulting wavelet coefficients are 

then inverse-transformed back into the image 

domain to produce a denoised and improved 

version of the original image. This process can 

enhance the visibility of fine structures and 

improve the diagnostic accuracy of the 

ultrasound examination. 

 

Table 1 

Comparison of Data Performance 

 
Figure 4  Data performance 

 

The above table shows Figure 4 each stage of the 

comparison of DWT and CNN. 

 Image acquisition: The original image is 
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acquired using a 2D ultrasound 

machine. 

 Decomposition: The image is 

decomposed using a wavelet transform, 

resulting in a set of wavelet coefficients 

that represent the image's numerous 

frequency components. 

 Thresholding: The In the context of 2D 

fetal ultrasound, DWT (Discrete 

Wavelet Transform) is used to improve 

high-frequency coefficients, which 

contain most of the noise, the threshold 

to reduce their impact on the image. 

This can be done using various 

thresholding methods, such as hard 

thresholding or soft thresholding. 

 Reconstruction: The threshold 

coefficients are inverse-transformed back 

to the image domain-produce a 

denoised and updated version of the real 

image. 

 Image display: The resulting image is 

displayed on the ultrasound machine's 

screen for interpretation by a trained 

medical professional. 

 
 

Figure 5.Histograms Data of K Means, DWT 

and CNN 

The Fig.5 clearly shows the difference between 

the progress of K Means, DWT, and CNN. 

For the DWT wavelet, the wavelets are sampled 

at regular intervals. DWT provides data about 

both the spatial and sensitive attributes of a 

picture at the same time. To evaluate an image, 

the Discrete wavelet transform method can 

combine the analyzing filters bank and decimate 

operation. 

 Each decomposition level's low and high pass 

filters are included in the analysis filter bank. 

While a less-level band pulls the necessary 

details from data, this same higher-level gathers 

elements like edges. Two distinct 1D transforms 

are used to create the 2D transform. In a 1-

dimensional Discrete wavelet transform, the 

approximate coefficients pattern frequency 

components whereas the detailed components 

convey higher frequency components.  

 

 
Figure 6  Graph Level Of DWT, CNN, K-

Means 

The input signal is split up into four separate 

subsets when 2-dimensional DWT is used: lower 

frequencies elements as in longitudinal and 

transverse directions (cA), lower frequencies 

elements inside the longitudinal and high-

frequencies elements from the parallel bars (cV), 

higher-frequencies elements with the 

longitudinal and minimal wavelet coefficients of 

the parallel bars (cH), and higher - frequencies 

elements in the longitudinal then the transverse 

direction. Usually referred to as cA, cV, cH, and 

cD, respectively. A reconstruction of 

the following 1-level Discrete wavelet transform 

and Using Eq. 1, the post arises provided. 

I=I1
a+I1

h+I1
v+I1

d(1) 

       Where I1 h, I1 v, and I1 d stand for 

horizontal, vertical, and diagonal features, 

respectively, and I1 is a representation of the 

input image's closest estimate.The strengths of 

the words reveal the level of breakdown. By 

gradually decomposing the LL subband, 

additional decompositions can be made, and the 

resulting image can then be divided into several 

bands. Eq. 2 represents a picture after 5-level 

DWT decomposition. 

I=I5
a+5∑i=1{I1h

1+Iv
1+Id

1}                                         

(2) 

We used the reverse biorthogonal family of 

wavelets as well as wavelets in one and two 

dimensions for our paper. By implementing 

edge-tracked scale normalization before the 

DWT procedure, effective feature extraction was 
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accomplished. The scaled basis function is used 

by the biorthogonal and reverse biorthogonal 

wavelets in order to decompose and rebuild an 

image from one resolution level to the next.  

The converted data can be sorted with a 

resolution that is appropriate for its scale thanks 

to the usage of DWT as a feature extractor. 

Small and large characteristics can both be seen 

since they may be investigated individually 

thanks to the converted image's multi-level 

representation.  

Since DWT are not similar or match to 

theTrigonometric function transform, DWT 

handles data discontinuities better than Discrete 

Cosine Transform (DCT). As an outcome, DWT 

is a powerful decoder for complex data such as 

Color FERT and cmu pie, resulting in higher 

results 

 

III. Block Diagram 

 

 
Figure 6. Block diagram of Proposed Method 

 

The above block diagram which is Figure.6 

shows the actual process of how the images will 

be trained and classified. 

The data flow in the use of CNNs for fetal 

ultrasound imaging can be described as follows: 

 Input image: The input to the system is 

an ultrasound image of a fetus, typically 

acquired using a transabdominal or 

transvaginal probe. The image may need 

to be pre-processed to correct for 

artifacts, such as speckle noise, and to 

enhance the picture quality. 

 Training: The data are given as source 

and they may undergo various pre-

process steps, such as cropping, resizing, 

and normalization, to standardize the 

size and format of the images and 

improve the performance of the CNN. 

 Feature extraction: The CNN then 

extracts features from the pre-processed 

image. This involves a series of 

convolutional, pooling, and 

normalization operations that are 

designed to identify and isolate relevant 

features in the image. 

 Apply algorithm: The extracted features 

are then used to make predictions about 

various aspects of the fetus, such as 

gestational age, fetal weight, or the 

presence of anomalies. This is done by 

applying an algorithm, such as a multi-

layer perceptron or a support vector 

machine, to the extracted features. 

 

 

IV. Pseudo code 

 

 
Figure 7. Pseudo code of GoogleNet 

The distinctive architecture of GoogleNet, which 

consists of a number of inception modules, is 

well recognized. A sophisticated building piece 

called an inception module is made up of several 

branches, each with a unique arrangement of 

filters and kernel sizes. By doing this, the 

network may extract many complementing 

characteristics from the input image. 

 

V. Result 

 

 Initially, the images are pre-loaded and 

the data are saved and then it is pre-processed. 

The images are selected from the database and 

then the images are started to train. Discrete 

wavelet transformation is used to make the 

image more accurate and it changes the low-level 

and unclear images into clear images. It helps 

the user to find the normal/abnormalities in that 

image. Then by using the convolution neural 

network algorithm google net, the images are 
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scanned and found whether it is normal or 

abnormal. If it results in abnormality, it shows 

the details of that disease and what precautions 

can be done. 

The classification of 2D fetal developing brain 

pictures and the prediction of linked disorders 

using CNNs can yield promising results. 

Anomalies like ventriculomegaly and 

encephalocele, as well as other anomalies, can be 

accurately detected in fetal brain scans using 

CNNs, according to several studies. With some 

research claiming accuracy rates of over 90%, 

these results have demonstrated that CNNs can 

detect these anomalies with a high degree of 

consistency and precision. 

Additionally, by automating laborious and 

arbitrary processes like manual feature extraction 

and segmentation, CNNs can increase the 

effectiveness of fetal brain diagnosis. In 

particular, in situations with low resources, this 

can lessen the workload of healthcare 

professionals and increase the accessibility of 

prenatal brain diagnostics. 

         Initially, the images are pre-loaded and the 

data are saved and then it is pre-processed. The 

images are selected from the database and then 

the images are started to train. Discrete wavelet 

transformation is used to make the image more 

accurate and it changes the low-level and unclear 

images into clear images. It helps the user to find 

the normal/abnormalities in that image. Then by 

using the convolution neural network algorithm 

google net, the images are scanned and found 

whether it is normal or abnormal. If it results in 

abnormality, it shows the details of that disease 

and what precautions can be done. 

That's really crucial to remember that a variety 

of elements, including the caliber of the input 

images, the choice of CNN architecture, and the 

availability of annotated training data, might 

influence the outcomes of utilizing CNNs for 

fetal brain imaging categorization and disease 

prediction. As a result, it's crucial to thoroughly 

assess eachstudy's findings and to take these 

things into account when interpreting them. 

 
Figure 8.Sample Output 

 

       Fig.8 is nothing but it is the sample output of 

the brain image classification. 

Overall, the results of utilizing CNNs to classify 

2D images of the developing brain in fetuses and 

forecast disorders associated with them are 

encouraging, and also have the ability and 

knowledgeof machine learning to increase the 

precision and accessibility of fetal brain 

diagnostics. To thoroughly evaluate their 

effectiveness and determine their impact on 

clinical practice, more research is necessary. 

 

VI. Conclusion 

 

In conclusion, the use of CNNs for the 

classification of 2D fetal developing brain images 

and the prediction of related diseases has the 

potential to transform fetal brain diagnostics and 

improve patient outcomes, but further research 

and development are needed to fully realize its 

potential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Scope 

Volume 13 Number 01 March 2023 

 

 

522 www.scope-journal.com 

 

VII. References 

 

[1] American College of Radiology, “ACR-SPR 

practice parameter for the safe and optimal 

performance of fetal magnetic resonance 

imaging (MRI), resolution 45,” (2020). 

[2] C. L. Herrera, J. J. Byrne, H. R. Clark, D. 

M. Twickler, and J. S. Dashe, “Use of fetal 

magnetic resonance imaging after 

sonographic identification of major 

structural anomalies,” Journal of Ultrasound 

in Medicine, vol. 39, no. 10, pp. 2053–2058, 

Oct. (2020). 

[3] A. Gholipour, J. A. Estroff, and S. K. 

Warfield, “Robust super-resolution volume 

reconstruction from slice acquisitions: 

Application to fetal brain MRI,” IEEE 

Transactions on Medical Imaging, vol. 29, no. 

10, pp. 1739–1758, Oct. (2010). 

[4] M. Kuklisova-Murgasova, G. Quaghebeur, 

M. A. Rutherford, J. V. Hajnal, and J. A. 

Schnabel, “Reconstruction of fetal brain 

MRI with intensity matching and complete 

outlier removal,” Medical Image Analysis, vol. 

16, no. 8, pp. 1550–1564, Dec. (2012). 

[5] B. Hou, B. Khanal, A. Alansary, S. 

McDonagh, A. Davidson, M. Rutherford, J. 

V. Hajnal, D. Rueckert, B. Glocker, and B. 

Kainz, “3-D reconstruction in canonical co-

ordinate space from arbitrarily oriented 2-D 

images,” IEEE Transactions on Medical 

Imaging, vol. 37, no. 8, pp. 1737–1750, Aug. 

(2018). 

[6] S. S. M. Salehi, S. Khan, D. Erdogmus, and 

A. Gholipour, “Real-time deep pose 

estimation with geodesic loss for image-to-

template rigid registration,” IEEE 

Transactions on Medical Imaging, vol. 38, no. 

2, pp. 470–81, Feb. (2019). 

[7] M. Ebner, G. Wang, W. Li, M. Aertsen, P. 

A. Patel, R. Aughwane,A. Melbourne, T. 

Doel, S. Dymarkowski, P. D. Coppi, A. L. 

David, J. Deprest, S. Ourselin, and T. 

Vercauteren, “An automated framework for 

localization, segmentation and super-

resolution reconstruction of fetal brain 

MRI,” NeuroImage, vol. 206, no. 116324, 

Feb. (2020). 

[8] A. Singh, S. S. M. Salehi, and A. Gholipour, 

“Deep predictive motion tracking in 

magnetic resonance imaging: Application to 

fetal imaging,” IEEE Transactions on Medical 

Imaging, vol. 39, no. 11, pp. 3523–3534, 

Nov. (2020). 

[9] E. Ferrante and N. Paragios, “Slice-to-

volume medical image registration: A 

survey,” Medical Image Analysis, vol. 39, pp. 

101–123, Jul. (2017). 

[10] A. Uus, T. Zhang, L. H. Jackson, T. A. 

Roberts, M. A. Rutherford, J. V. Hajnal, 

and M. Deprez, “Deformable slice-to-

volume registration for motion correction of 

fetal body and placenta MRI,” IEEE 

Transactions on Medical Imaging, vol. 39, no. 

9, pp. 2750–2759, Sep. (2020). 

[11] A. Largent, K. Kapse, S. D. Barnett, J. D. 

Asis-Cruz, M. Whitehead, J. Murnick, L. 

Zhao, N. Andersen, J. Quistorff, C. Lopez, 

and C. Limperopoulos, “Image quality 

assessment of fetal brain MRI using multi-

instance deep learning methods,” Journal of 

Magnetic Resonance Imaging, vol. 54, no. 3, 

pp. 818–829, Sep. (2021). 

[12] G. Ongie, A. Jalal, C. A. Metzler, R. G. 

Baraniuk, A. G. Dimakis, and R. Willett, 

“Deep learning techniques for inverse 

problems in imaging,” IEEE Journal on 

Selected Areas in Information Theory, vol. 1, 

no. 1, pp. 39–56, May (2020). 

[13] W. Shi, G. Yan, Y. Li, H. Li, T. Liu, C. 

Sun, G. Wang, Y. Zhang, Y. Zou, and D. 

Wu, “Fetal brain age estimation and 

anomaly detection using attention-based 

deep ensembles with uncertainty,” 

NeuroImage, vol. 223, no. 117316, Dec. 

(2020). 

[14] M. F. Beg, M. I. Miller, A. Trouve, and L. 

Younes, “Computing large´ deformation 

metric mappings via geodesic flows of 

diffeomorphisms,” International Journal of 

Computer Vision, vol. 61, no. 2, pp. 139–157, 

Feb. (2005). 

[15] R. Heckel and P. Hand, “Deep decoder: 

Concise image representations from 

untrained non-convolutional networks,” 

arXiv:1810.03982v2, Feb. (2019),  

[16] P. W. Holland and R. E. Welsch, “Robust 

regression using iteratively reweighted least-

squares,” Communications in Statistics - Theory 

and Methods, vol. 6, no. 7, pp. 813–827, 

(1977). 



Scope 

Volume 13 Number 01 March 2023 

 

 

523 www.scope-journal.com 

 

[17] R. A. Maronna, R. D. Martin, V. J. Yohai, 

and M. Salibian-Barrera,´ Robust statistics, 

Theory and Methods (with R), 2nd ed., ser. 

Wiley Series on Probability & Statistics. 

John Wiley & Sons Ltd, (2019). 

[18] C. S. Burrus, J. A. Barreto, and I. W. 

Selesnick, “Iterative reweighted least-squares 

design of FIR filters,” IEEE Transactions on 

Signal Processing, vol. 42, no. 11, pp. 2926–
2936, Nov. (1994). 

[19] D. C. Noll, F. E. Boada, and W. F. Eddy, 

“A spectral approach to analyzing slice 

selection in planar imaging: Optimization 

for throughplane interpolation,” Magnetic 

Resonance in Medicine, vol. 38, no. 1, pp. 

151–160, jul(1997). 

[20] A. Mang and L. Ruthotto, “A Lagrangian 

Gauss–Newton–Krylov solver for mass- and 

intensity-preserving diffeomorphic image 

registration,” SIAM Journal on Scientific 

Computing, vol. 39, no. 5, pp. B860–B885, 

Sep. (2017). 


