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Abstract: Explainable Artificial Intelligence (XAI) has risen as a pivotal
advancement in dealing with the challenges of interpretability and
transparency in Al-driven healthcare systems. Al’s rapid integration into
healthcare has shown immense potential in diagnostics, prognosis,
personalized medicine, and decision-making. However, the absence of
proper explainability in traditional Al models has raised critical concerns
regarding trust, ethical accountability, and clinical adoption. The research
paper examines both XAI methodologies and healthcare applications in
present scenario, emphasizing how these techniques help increase the
interpretability in case of complex models without compromising
predictive accuracy. It delves into the pivotal part of XAl in improving
clinical decision support systems, risk stratification, and patient
engagement, while also addressing regulatory compliance and ethical
considerations. By analyzing recent advancements, challenges, and future
prospects, this paper provides insights into how XAI can bridge the gap
between real-world healthcare applications and Al innovations, cultivating
trust while enabling safer, more effective healthcare delivery.
Kevwords: XAI, CNN, LORE,CDSS, DCIP

Introduction

Explainable Artificial Intelligence (XAI) is being progressively more recognized as
essential for the adoption of Al-driven medical systems, ensuring veracity, trust, and
decision-making. Research has evaluated the role of explain ability from diverse
perspectives—technical, legal, medical, and patient-centered, highlighting its
importance in fostering informed and better decision-making. The ethical
implications of XAl have been evaluated using biomedical principles, reinforcing its
necessity for just and proportionate healthcare practices. XAl helps build confidence
in Al tools, encourages ethical use, and supports better decision-making in clinical
settings. Studies have also explored the cognitive gap between the developers and
the clinicians in designing explainable Al solutions, identifying key variations in
their mental models and goals. To account for these challenges, several
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methodologies have been proposed such as causal inference models, personalized
explanations, and balancing exploratory and quantitative approaches. Various XAl
techniques, including local rule-based explanations, interpretable ML models, and
data visualization methods, have been utilized to further enhance model
transparency in such clinical settings. In this paper multiple techniques of XAI have
been explored so as to make the model decisions more interpretable and how its
applied in the medical field. This paper provides a method-oriented review of XAl
techniques in healthcare. We categorize, compare, and critically evaluate existing
approaches based on their technical foundations, interpretability capabilities, and
relevance in clinical applications. By doing so, we aim to support both Al
researchers and healthcare professionals in selecting and applying the right explain
ability tools for safe, transparent, and effective Al deployment in medicine. This
paper tells about the research in the field of Explainable Artificial Intelligence and
how it's helping to make the healthcare system more transparent and reliable for
the patients. Through Explainable Artificial Intelligence we can bridge the gap
between high level technology and the patient.

Related Work

The research by Aman et al. [1] examined medical Al explain ability needs
thoroughly while conducting an ethical assessment about explain ability's role in Al
tool implementation in clinical care. The medical Al explainability assessment by
these Al-based clinical decision support systems used multidisciplinary surveys to
evaluate explainability importance across medical, patient and legal and
technological domains. The authors conducted ethical investigations to determine
medical Al require explainability after their conceptual analysis and employing the
Beauchamp and Childress principles as an evaluation tool (autonomy, beneficence,
nonmaleficence, and justice). The researchers emphasized explainability serves as a
means for patients together with healthcare providers to make wise independent
healthcare choices which maintains patients at the center of their care. The
implementation of explainability systems helps achieve equal resource distribution
among patients.

The authors of Bienefeld et al. [2] published their research results from a multi-
method longitudinal study which brought together 112 developers and clinicians
who worked together to build an XAl solution for clinical decision support systems.
Researchers revealed three fundamental distinctions which exist between mental
models held by developers and medical clinicians about XAI through their study.
These differences involved conflicting objectives between model interpretability and
clinical plausibility as well as separate truth sources between data and patients
alongside different approaches to new versus existing knowledge exploitation. To
tackle this, the authors proposed a more collaborative, human-centered approach to
building XAI systems. They argue that developers should work side-by-side with
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clinicians, involving them early in the design process. This ensures the tools that get
built are not just explainable in theory, but actually helpful in practice.

For Al to truly support healthcare, the explanations it provides must be designed
with the end-user in mind. Their research findings enabled them to propose
solutions which incorporated causal inference models together with personalized
explanations alongside dual mindsets that support exploration and exploitation.
Both developer and clinical perspectives need attention in XAl system design
according to this research which also offers useful guidelines for healthcare XAl
effectiveness improvements. They interviewed 112 healthcare professionals (nurses
and physicians) along with three software developers (one data scientist and two
senior software engineers and one senior visualization designer) who worked in
Switzerland at a large university hospital during the co-creation process of the DCIP
(an ML-based CDSS for aSAH patient Delayed Cerebral Ischemia prediction). The
analysts used IBM SPSS version 23 for their statistical analysis by performing
descriptive measurements and regression models on survey data. High-fidelity
interface development incorporated an interactive Ul prototype that drew its design
from the DCIP system.

Figure 1 visually summarizes the differences in mindset and interpretability needs
between developers and clinicians, and provides actionable recommendations. It
supports discussions on interdisciplinary challenges, stakeholder perspectives, and
strategies for bridging the gap when designing XAl for clinical use.

Mental Models about XAl

ML Developers Clinicians

R S ifferences ~ --------- »>
Differences Clinical Plausibility:

Model Interpretability:

« The model itself must be A * The model results must be plausible
interpretable. in the clinical context.

Data-centered assessment m Patient

= Data tells the truth. + The patient tells the truth.

Exploration: Exploitation:

= Discovering new knowiledge. n + Confirming old knowledge.

Recommendations to
Reduce the Differences
Build ML models that allow for hypothetical/counter-factual queries.

N -

Develop an ambidextrous mindset allowing clinicians to switch between exploration and
exploitation of knowledge depending on context (clinical research vs. acute care setting)

w

Create adaptive design solutions to meet both XAl goals of interpretability & plausibility (e.g.,
via multiple-layer design)

~

Enable a holistic patient assessment by providing context information and cohort-level as
integral parts of the system (e.g., from EHR, diagnostic imaging, and physical examinations)

2

Visualize how different types of data interrelate based on pathophysiological relationships and
how this impacts the overall risk/outcome (e.g., visual patient avatars)

Figure 1: Mental Models about XAI - ML Developers vs Clinicians,
Recommendations to Reduce the Differences

Metta et al. [3] research involves Local XAI methods and specifically the LORE
i.e. Local Rule-Based Explanations technique used in healthcare and medical fields.
This research revealed the sensitivity to clarification of the Al system and its
transparency in detection methods in terms of diagnosis accuracy as well as
prediction and generating treatment. The efficient LORE framework produces
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efficient local explanations and interpretable explanations for machine learning
models. In LORE, we use a genetic algorithm to develop synthetic data to set up a
training base for the development of local interpretable prediction models. Built in
logic provides the meaning through which the model decides on its decisions and
understanding their interpretation is the strength of the predictor. Its approach was
to build local interpretable models to cover analytical predictions and as a result,
LORE functioned to create customized explanations. The first instance to be
explained is picked by the method itself. The synthetic dataset generated by the
genetic algorithm was found to replicate the local characteristics of original
instance. The local dataset trained a decision tree for approximate modeling of the
complex model behavior within this area. This brought up critical understanding on
the complex health care XAI systems and potential benefits, as well as the
significant problems health care professionals face.

Farahani et al. [4] developed a data extraction sheet that they applied to random
studies to adapt it to its final form. The data were obtained in a procedure through
which one review author (KF) checked the selected studies while a second review
author (FF) confirmed the collected data. The analysis consisted of taxonomic topic,
first author and year of publication, essential contributions, used XAI model along
with sample size (if appropriate). All the conflicting views of the two review authors
were resolved through discussion between them or BL or WK as required for final
review. The co-occurrence relationships among the common points of the analyzed
studies (such as XAl methods, diseases and ML/DL terminology as well as imaging
modalities) were reviewed and analyzed by the authors. The development of the co-
occurrence network requires first finding text keyword and then calculating co-
occurrence frequency for network examinations and word clustering with central
terms detection.

XAI visualization was used by Papanastasopoulos et al. [5] to understand features
trained by their DCNN classifying ER+ versus ER- breast status of DCEMRI images.
Minimum scanning with two contrast scans and total collection of 1395 ER+ and 729
ER- regions-of- interest (ROI) on 148 patients were obtained. Based on Alex Net
model trained on Image Net, a dual domain transfer trained DCNN architecture was
developed by the researchers as they used spatial and dynamic data from each DCE-
MRI ROI as the input to that architecture. The performance of AUC is measured for
network evaluation is obtained from a leave-one case out cross validation. In this
context, XAl methodologies and its attribution methods (Integrated Gradients and
Smooth Grad noise algorithm) were applied on training set ROISs to visualize DCNN
learning. However, our DCNN extracted suitable spatial and dynamic domain
features and the contributing features differed between domains according to their
analysis. Their observation: DCNN learnt irrelevant pre-processing artifacts and
concluded that to extract features from these.
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Boutorh et al. [6] developed Support Vector Machine (SVM) and Random Forest
(RF) through analyzing Bio-data symptoms in combination with deep Convolutional
Neural Network (CNN) analysis of chest computed tomography (CT) images to
detect COVID-19 positive cases. We needed to prove the possibility of explaining
XAl systems through LIME as an interpretable framework for model explanations
about positive virus patients. The experimental outcomes exceeded the present
standard of practice. Evaluation of the CT-scan image revealed accuracy of 96%
along with Fi-score, and SVM outperformed RF as 9o% accuracy and 91% specificity
were recorded over the Bio-data. Finally, for the XAI-Img and XAl-bio models, we
obtained interpretable results of trained SVM and CNN black box models after
arriving COVID1g dataset of different kinds through LIME explanations. This
improved examination procedure proves to enhance trust degrees, whereas experts
find new patterns of the pandemic.

In the context of pulmonary nodule diagnosis Wang et al. [7] set up a deep
learning model that is explainable as a multi-task system. In addition to identifying
diagnostic signs, the neural system makes both lesion malignancy predictions.
Researchers can then display the location of each manifestation for the purposes of
visual interpretability. Experimental results obtained from the LIDC public database
demonstrated a test AUC value of 0.992 and a test AUC of 0.923 using the in-house
dataset. Experimental outcomes demonstrate that integrating manifestation
identification tasks into the multi task model enhances the accuracy level in cancer
classification. Effective systems can improve radiologist-clinical activities through
the proposed multi task explainable model.

In healthcare, Explainable Al (XAI) is recognized as ‘necessary’ by S. S. Band et al.
[8], in the context of challenges related to interpretability in Al driven decision
making. Our team evaluated different XAI evaluation methods including LRP,
LIME, SHAP, Grad-CAM and t-SNE for medical diagnosis application. The results
were found to show widely used explainability methods of various nature along with
visual descriptions in the medical field then rule based and numerical approach.
Attention maps, saliency maps, heat maps and other visualizations demonstrate
better effectiveness in helping medical professionals with the decision making
process during diagnosis. It was discovered that explainability can help align deep
learning models better with clinical decision making, by increasing trust,
transparency and adoption.

The use of XAl in smart healthcare applications allowed U. Pawar et al. [g] to
enhance Al system transparency and responsibility according to their research. By
using the clinical knowledge (and dedicated work) in combination with existing XAI
models, they were able to get greater advantages in the system based on Al to
validate prediction, improve the model and make decisions. It was stressed that
intuitive interfaces perform well in supporting intuitive interpretation, fulfilling
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regulatory requirements for traceable decisions of health care based Al. Finally, it
was found that continuous advancements in XAl are needed to allow its seamless
integration in the Al enabled healthcare systems and increase adoption and
usefulness.

XAI is used by T. Shahzad et al. [10] to explain a decision made by Al, when
diagnosed using diabetic retinopathy using retinal images dataset. For the
convergence history plots of the model, it is validated that the model can achieve
94% accuracy using LIME technique of XAI. XAI integration in the deep learning
algorithm for the diagnosis of diabetic retinopathy facilitates for clinicians and
stakeholders to access to the reasoning account behind algorithmic decisions built
their trust by the use of Al to support their patient’s care.

The research team led by S. Shridevi [11] developed an XAl-integrated machine
learning framework to forecast and study Neck direction in head impact events
through muscle force evaluation with suitable explanations for proper decision-
making. The implementation of six Machine learning algorithms includes Logistic
Regression among others while XGBoost presents the highest accuracy at 98.6% in
the model framework. The XAl technique called LIME applied to XGBoost models
provides explainable features to healthcare workers who require transparent Al
predictions for optimal clinical choices.

The research of S. Ahmed et al. presented a Logistic Regression model for
Diabetes predictions that utilized XAI methods [12]. Both LIME and SHAP
techniques boost explainability through an accuracy rate of 86% in the model. The
explainability of models increases through LIME because it delivers local
explanations for individual instances which provides deeper understanding of model
operations. SHAP leverages Shapley values to deliver explanations that remain
consistent while being applicable on all datasets and produce stable interpretations
for enhanced model interpretability. When both approaches are merged it generates
complete understanding of model operation which leads to better healthcare
outcomes while encouraging user trust in Al-based diabetes prediction.

P. A. Moreno-Sanchez et al. [13] designed an explainable machine learning model
which predicted Chronic Kidney Disease from data within the CKD UCI-ML
repository. The research aimed to demonstrate XAl capabilities for improving
predictive models in medicine by increasing their accuracy and interpretability
standards. XGBoost technique proved suitable because it delivers high accuracy
along with explainability while maintaining important features for healthcare
models requiring interpretability. This model secures 99.2% training accuracy
together with 97.5% accuracy on new data that outperforms alternative classifiers.
XAI methods confirm that hemoglobin stands as the main risk factor for Chronic
Kidney Disease based on their evaluation of key features. This approach uses XAl
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while helping healthcare providers trust Al diagnostic systems which deliver
comprehensive information about early detection processes.

G. V. Aiosa et al. [14] created an XAl-based advanced clinical decision support
system (CDSS) for forecasting obesity-related co morbidities risk factors and detect
non-direct links between these diseases and non-communicable conditions. The
predictive analysis employed different kinds of ML algorithms consisting of Multi-
Layer Perceptron (MLP), Extreme Gradient Boosting (XGB), Logistic regression
(LR), Nearest Neighbors (NN), Random Forest (RF), Decision Tree (DT), and Linear
Support Vector Machine (LSV). SHAP plots within XAI systems helped explain
predictions from the most effective models by demonstrating how features
contribute to individual results in specific cases along with overall SHAP bee swarm
plot distributions. The XAI-CDSS included a graphical user interface which allowed
medical staff to see how obesity affects patient health throughout time while linking
it to other potential medical conditions. The CDSS obtained greater transparency
when XAl worked together with SHAP values to demonstrate model predictions and
service explanations for healthcare experts who relied on feature contributions for
building trust.

R. Kumar et al. [15] proposed a machine learning framework in integration with
XAl techniques for predicting chronic pediatric respiratory diseases. Numerous
machine learning algorithms processed extensive datasets of clinical variables to
discover patterns and co-relationships within the information which human
professionals may not foresee easily. Four XAl methods were used on Random
Forest that performed the best to identify key features like ICU transfer, kaliemia,
creatinine levels, cyanosis, and natremia. This approach shows potential for
improving clinical diagnosis and decision-making across various diseases through
ML and Al

M. Radhakrishnan et al. [16] developed an XAl-integrated Deep Learning model
for Ovarian Cancer Classification using 500 histopathological images 100 for 5
subtypes of Ovarian Cancer. Dataset augmentation was integrated and the
examination revealed InceptionV3 as the most accurate DL model among
MobileNetVz2, VGG19, ResNet18, ResNeXt, Xception and Efficient Net by reaching
97.96% accuracy. XAl techniques, including grad-cam, saliency map, integrated
gradient, and Deep Lift, were integrated to enhance interpretability and
trustworthiness. These methods provided visual explanations of the model’s
decisions, highlighting key image regions influencing predictions, thereby
increasing transparency, identifying biases or errors, and supporting clinician trust
and decision-making.

Based on dataset in UCI ML repository, M. Azad et al. [17] built an XAI-driven ML
framework for the accurate obesity estimation and insight into the factor on most
influencing obesity. Utilities of the stacking ensemble technique with final estimator
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itself being SGD classifier with a 98.82% accuracy were used in the model. The XAl
method LIME was implemented to advance model interpretability and reliability
through its widespread usage as it imparts model interpretability by finding the
contribution of each feature in individual predictions thus providing explanation of
obesity classification and revealing important factors that shape the decisions and
improve trust in the reliability of the model.

Shiva Prasad Koyyada et al. [18] developed a methodology through an explainable
artificial intelligence model that detects local indicators and lung diseases in X-ray
images. They used the COVID-19 radiography dataset from Kaggle that contains
2396 images belonging to COVID-19 class and 1341 images from Normal class. The
Custom CNN model received training through 3437 images which included 2396
COVID images along with 1041 Normal images from the available dataset. The
remaining images were used for testing the Custom CNN model. The result of the
CNN model utilised LIME to become more explainable.

It would work, model would be used in helping identify what the preferred
features are and then be masked and shown. By using these local discriminant
features along with normal images another CNN model was trained which increases
the accuracy and made the model more understandable. The testing Accuracy of the
final CNN model was 99.97 and training Accuracy was 99.63.

Sagheer Abbas et al. [19] developed an efficient method for predicting eye
diseases through Explainable Artificial Intelligence. They selected Ocular Disease
Recognition Dataset from Kaggle for their case study because it features left and
right eye fundus images for 5000 patients. The information contained in this dataset
was divided into sections amounting to three. The training stage included 60% of
images while testing was done with 20% of images and validation utilized another
20% of the dataset images. The model creation employed Efficient Net as a pre-
trained model together with LIME as explainable artificial intelligence to achieve
accurate results which humans can understand and reproduce. LIME selected the
crucial image areas to display for better human understanding. During model
training the Machine Learning Model achieved 0.9996 accuracy while the validation
scores reached 0.9574.

Using machine learning and explainable artificial intelligence, to diagnose
aplastic anemia from iron deficienct anemia, B. S. Dhruva Darshan, et. al. [20]
suggested a method to analyze Blood. The dataset of AA and IDA dataset was used
for the study and the researchers obtained blood test attributes from the Kasturba
Medical College, Manipal Academy of Higher Education based in India. The
research dataset consisted of 500 samples among which 266 were associated with
IDA and 234 were associated with AA. Before starting machine learning
development the research team divided their data into 80% train data and 20% test
data distribution. The investigators applied the first stack deployment that involved
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combining Logistic Regression with K Nearest Neighbors alongside Decision Trees
and Random Forest to create a better classifier. The second stacking model
integrated Adaptive Boost, Extreme Gradient Boosting, Light Gradient Boosting,
Categorical Boosting among others, as integrated algorithms. With the first stack
and the second stack, there was created the final ensemble stack. The alternative
baseline models performed no better than tree-based approaches when handling the
dataset because the data needed nonlinear methods for processing. SHAP and
LIME, along with ELi5, Anchor and Q Lattice make up the Explainable Artificial
Intelligence framework which tries to make the decision-making process
transparent.

A methodology for discovering disease biomarkers for Ovarian Cancer through
explainable methods of the PLCO Ovarian Biomarkers dataset was proposed by
Weitong Huang et al. [21]. The clinical trials recognize this dataset that contains 13
case samples alongside 894 non-case specimens after eliminating null value entries.
The dataset provides multiple domain-specific metadata together with different
protocol types and variable descriptions which enables clear and sustained
examination of the modelling process. The research paper applied random search
optimization techniques along with 10-fold cross validation for optimizing decision
trees as well as random forest models while implementing logistic regression as
another modeling approach. The classification capabilities of the model were
assessed through UC-ROC score evaluation alongside Shapley Additive explanations
which generated explanations at local and global levels. Random forest model
achieved the highest results based on the AUC-ROC Score measurements.

Zubaira Naz et al. [22] discusses about a method that can explain various lung
pulmonary disease type classification results. The datasets to which this information
applies belong to two: COVIDCT and COVID Net. The COVID-CT dataset contains
a complete collection of 349 positive COVID 19 CT scans from 216 patients and 397
negative COVID 19 CT scans from 397 patients. Transfer learning models using CNN
and the ResNet50 are last pretrained structure working on Image Net data, but their
classification process of input images take place. Among the various available
pretrained models, the ResNet 50 pretrained model achieved a better performance
rate. The interpretable model LIME provided explanations showing which image
characteristics mostly affected results. The designed models achieved 93% accuracy
in detecting COVID CT images while obtaining 97% accuracy with COVID Net
images.

The work of Mohammed Saidul Islam et al. [23] researched and developed a
methodology about the XAl Model for Stroke Prediction using EEG signal. In one
case study, the research used Biopac MP 160 Module to record EEG data from two or
four channels in stroke patients and healthy adults. The research included 75
healthy adults with a mean age of 77 years and a representation of 31% males
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whereas 48 stroke patients had a median age of 72.2+5.6 years with 62% male
participants. EEG data was obtained for the patients that had stroke and that
apparatus themselves during 3 months after their confirming that they had ischemic
stroke, in the active state. The dataset divided the components into two parts out of
which 8o were used as training model and 20 were trained as the testing model. The
ML models used with LIME (Local Interpretable Model-agnostic Explanation) are
Adaptive Gradient Boosting, XGBoost and Light GBM to explain the classification
result by feature weights distribution to show feature importance for the
classification result. The accuracy achieved by Adaptive Gradient Boosting,
XGBoost, Light GBM amounted to 0.80, 0.77, 0.78 respectively.

In fact, Gangani Dharmarathne et al. [24] developed an explainable artificial
intelligence approach to integrate machine learning for chronic kidney disease
diagnosis. For the purpose of this experiment, the researchers studied using the data
available on 400 individuals and 25 different attributes present on the UCI
repository. The limitation of the dataset is small and thus it may result to repeated
features. 70% of the data cases were partitioned into training and testing sections
for testing the model performance where 30% of the data cases were reserved for
testing the model performance and the rest of 70% was used for training the model.
The Machine Learning models included K-Nearest Neighbors, Decision Tree,
Random Forest, XGB, Artificial Neural Network together with explainable artificial
intelligence methods Shapley Additive Explanations (SHAP) and Partial
Dependency Plots (PDP) which were used in this study. The K-Nearest Neighbor
decision tree together with Support Vector Classifier yielded accuracy results of
0.975, 0.975, 0.975, 0.975, and 0.975 from Random Forest, XGB as well as Artificial
Neural Network.

At Eram Mahamud et al. [25], different explainable artificial intelligence models
using fine tuned transfer learning were developed for classifying multiple lung
diseases in chest X ray images with the choices more interpretable. For their study,
the Lungs Disease dataset became the basis with the three sections according model
evaluation (training - 80%, validation - 10%, and testing - remaining amount).
Testing was done on 2027 images, validating with 2015 images and a total of 20,012
augmented training examples were used in the examination. The proposed CNN
model reached 0.99 accuracy while the highest performance of 0.94 was obtained by
using the pre trained EfficientNetBo model. Beyond heatmaps (Grad-Cam, Grad-
CAM++), SHAP and LIME generated feature saliency maps in order to help locate
the important features responsible for model outcome analysis. During phase
models all were able to test at 0.967.

Alberto Ramirez-Mena et al. [26] conducted research on explainable artificial
intelligence which involved using gene expression to identify and forecast prostate
cancer tissue. The research team selected data from the TCGA-PRAD section of the
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TCGA consortium which could be accessed through the GDC Legacy Archive at the
National Cancer Institute (NIH). The dataset included information from s50
prostate patients, 9 tumoral samples and 52 controls who were at International
Society of Urological Pathology grade levels between 1 to 5. The researchers selected
KNN as well as rpart (classification and regression Trees-CART) and Random Forest
models for their case study analysis. The Random Forest model took the top
position in all G-mean, F1, AUC, Specificity measurements while exhibiting superior
Sensitivity performance according to Random Forest’s APV values. Through the
implementation of SHAP researchers could visualize the significance of the 20 most
important predictors in the algorithm. Each dot within the representation displayed
the contribution value of specific genes to the final prediction made by the classifier.

The Random Forest combined with XGBoost algorithms adopted by Rathore et
al. [27] produced interpretability and causability of decisions using SHAP values on
standard datasets. The Random Forest model achieved 98.21% accuracy in its
predictive classification tasks. The introduction of explainability made results more
transparent and helped reveal the fundamental disease cause in studied subjects.
The study recommends a quantitative analysis to help healthcare adopt artificial
intelligence while dealing with ethical issues in diagnosis through transparency and
causability and interpretability.

Reddy Soora et al. [28] made their research by putting together image quality
while identifying spatial relationship between features to create the modified
capsules networks for the segmentation tasks. To solve this task, the proposed loss
function used the active contours model as an integration of external forces with
regional information and used the functions that are used in segmentation
extraction, and let curves evolve by continuously minimizing the energy. An analysis
of Dice-score and mean-IoU metrics was conducted on evaluation of a performance
comparison on a brain tumor segmentation dataset by the authors.

In the research of Khera P et al. [29], EEG and surface EMG signals were used to
create a model hierarchy (LRG-2L-LSTM) to recognize lower limb ankle movement
using brain signal for muscular activity estimation of 4 EMG channels and 12 EEG
channels. Our proposed model trained to an R =0.742 + 0.03 and RMSE of 0.067 +
0.002 for estimating EMG so as to obtain an average accuracy of recognition of
84.86 + 0.27% of estimated EMG for ankle movements to develop a control system
for lower limb prostheses and exoskeletons for those amputees with minimal
muscular strength.

The figure 2 adds depth to your discussion about bridging the gap between
developers and clinicians, and supports your review’s recommendations and future
work.
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Figure 2: Mental Models, Recommendations, and Quality Criteria for XAI (ML
Developers vs C(linicians, Recommendations, Key Concepts Like
Transparency, Privacy, Fairness)

In this work, Pradhan et al. [30] developed their Block chain and Al enabled
COVID-19 vaccine tracking system by using the Inter Planetary File System (IPFS) as
decentralized storage and Truffle and Ganache Tool to combine with it to create its
use within the Ethereum Virtual Machine (EVM). Finally, the proposed framework
is tested using Keccack 256 transaction hash along with the number and the
constraint (contract gas consumption metric). Performance measurements
involving framework throughput in addition to the blockchain framework latency
and memory utilization and CPU use and traffic counts both in and out were
recorded by the team. The analysis task needed an artificial neural network (ANN)
within the vaccination group for classification.

Methodology
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1403 | www.scope-journal.com



Scope

Volume 15 Number o4 December 2025

This review paper follows a structured process for identifying and evaluating

research on the use of XAl in healthcare. This methodology comprises of three core

stages: (1) comprehensive literature search, (2) rigorous study selection based on

inclusion criteria, and (3) structured data extraction and qualitative analysis.

Traditional black box Al
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Figure 4: Taxonomy/Classification of XAI Methods (Scope, Method, Usage)

Figure 3 represents a flowchart that is ideal for illustrating how data points are

selected, processed, and transformed for explanation purposes. Insert it when

describing technical methodologies, XAl algorithm pipelines, or interpretability

workflows used in surveyed studies.

Figure 4 visually categorizes how XAI methods are classified, supporting your

survey’s method-oriented review and evaluation of various approaches.

A. Review of Existing Studies:

A meticulous analysis was done for this review paper across multiple academic

databases including IETE Journal, IEEE, Springer, Science Direct, Nature, and NCBI.

For the search of these papers the following terms were mostly used:

e (“Explainable AI” OR “XAI”) AND (“healthcare” OR “medical diagnosis” OR

“clinical decision support” OR “Medical Tests” OR “Diseases”)

e (“Interpretable Artificial Intelligence” AND “machine learning” AND “deep

learning” in Healthcare)

e (“SHAP” OR “LIME” OR “Grad-Cam” OR “Grad-Cam++” OR “PCP graphs”)
Model-specific methods are tailored for a particular class of models (e.g., Grad-
CAM works only for CNNs).Model-agnostic methods like SHAP or LIME can
explain the predictions of any machine learning model by treating it as a black

box.
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B. Study Selection:
The selection process for the research papers involved two steps:

1. Title and Abstract Screening Phase:
The retrieved articles were reviewed based on their titles and content in abstract,
and only those relevant to XAl in Healthcare were included, while the rest were

discarded.

2. The Full Text Review Phase:

In this second phase the whole article was thoroughly read and analyzed. The
articles which were relevant and provided substantial insights in Explainable
Artificial Intelligence in Healthcare were included only. The factors that were used
for the selection of articles were:
¢ Included of XAI techniques application in the field of Healthcare.

e Articles which discussed interpretability methods for machine learning models in
medicine or healthcare.

e Articles focusing on the regulatory and ethical aspect of Explainable Artificial
Intelligence in Healthcare.

Figure 5 clearly illustrates the overall workflow, from data collection and
preprocessing through traditional “black box” Al and towards explainable Al,
mapping to your discussion of methodologies, model pipelines, and stakeholders.

Machine
Data Preprocessing Trainingset Testset ~ Leamning Model

- o EEI s,
';'l Oita , '

Data Transformatlon
Raw Diabetes Data are -
colected foma soure " taDicretation -

Human makes
decision

Figure 5: End-to-End XAI Workflows in Healthcare (Raw Data to Decision,
Traditional vs Explainable Al, Healthcare Pipeline)
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C. Data/Content Extraction:

From these research articles only the necessary content and data were taken or

extracted, this extracted data included:

e The Explainable Artificial Techniques used or implemented and how it made the
machine learning model more interpretable.

e The healthcare domain in which it was implemented for eg. radiology, cardiology
etc.

e The dataset that was used for the machine learning models’ training and testing.

e The performance as well as the evaluation of the machine learning models.

Conclusion

This Explainable Artificial Intelligence (XAI) is transforming healthcare by
prioritizing interpretability, transparency, and trust in Al-driven clinical decision-
making. The integration of XAl into machine learning pipelines enhances not only
the accuracy of diagnostic models but also their transparency, making complex
algorithms more comprehensible for clinicians, patients, and stakeholders. With
methods such as LIME, SHAP, and visual tools like heatmaps and saliency maps,
XAl enables the breakdown of opaque “black-box” predictions from classifiers like
SVM, CNN, and XGBoost into actionable and understandable insights.

Figure 6 succinctly highlights the essential attributes that define high-quality,
trustworthy, and user-centered XAI systems. It emphasizes what should be
prioritized for safe and effective adoption in clinical environments and can reinforce
your closing arguments.

In clinical practice, explainable models support safer, user-centered decisions by
providing clear rationales for diagnoses, prognoses, and treatment
recommendations. This interpretability is critical for regulatory compliance and
ethical accountability, helping healthcare professionals assure that Al-guided
interventions align with medical standards and patient values. User-oriented
interfaces further facilitate smooth adoption and meaningful interactions with XAl
systems, increasing the likelihood of successful implementation in real-world
healthcare environments.

By revealing the key features driving predictions, XAl methods improve model
reliability and foster deeper collaboration between humans and Al systems.
Comprehensive XAl frameworks that combine multiple interpretability techniques
allow healthcare programs to deliver more equitable outcomes, offering transparent
justifications for resource allocation and clinical actions. Moreover, XAl-based
solutions empower medical staff to validate and verify model outputs, reducing risks
associated with erroneous or biased decisions.
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How robust s the system f‘ Do stakeholders understand the model's

performance against TS decisions in terms of formats and language?

changes in parameters

and inputs? Do the predicted changes
Reliability Causality in the output due to input

perturbations also occur
in the actual system?

How capable is the system to Explainable Al
provide a safe and effective
environment for users to
perform their tasks?

Usability Privacy Can the protection of
sensitive user information

be guaranteed?

Trust Fairness ;
How confident are the human }_/ Can It be verified that

users in working with the system? model decisions are fair
over protected groups?

Figure 6: Key Criteria for Explainable Al - Transparency, Causality, Privacy,
Reliability, Usability, Trust, Fairness

Looking ahead, the continued advancement of XAI will be essential for meeting
emerging challenges in healthcare, such as addressing disparities, managing
complex medical data, and supporting personalized medicine. Future research
should focus on broadening the scope of XAl capabilities, integrating human-centric
explanation mechanisms, and promoting cooperative systems where clinicians and
Al tools work together seamlessly. These efforts will be paramount for increasing
trust, ensuring safety, and driving effective adoption of Al across diverse medical
domains.
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