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Introduction 

     Explainable Artificial Intelligence (XAI) is being progressively more recognized as 

essential for the adoption of AI-driven medical systems, ensuring veracity, trust, and 

decision-making. Research has evaluated the role of explain ability from diverse 

perspectives—technical, legal, medical, and patient-centered, highlighting its 

importance in fostering informed and better decision-making. The ethical 

implications of XAI have been evaluated using biomedical principles, reinforcing its 

necessity for just and proportionate healthcare practices. XAI helps build confidence 

in AI tools, encourages ethical use, and supports better decision-making in clinical 

settings. Studies have also explored the cognitive gap between the developers and 

the clinicians in designing explainable AI solutions, identifying key variations in 

their mental models and goals. To account for these challenges, several 

Abstract: Explainable Artificial Intelligence (XAI) has risen as a pivotal 

advancement in dealing with the challenges of interpretability and 

transparency in AI-driven healthcare systems. AI’s rapid integration into 
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personalized medicine, and decision-making. However, the absence of 

proper explainability in traditional AI models has raised critical concerns 

regarding trust, ethical accountability, and clinical adoption. The research 

paper examines both XAI methodologies and healthcare applications in 

present scenario, emphasizing how these techniques help increase the 

interpretability in case of complex models without compromising 

predictive accuracy. It delves into the pivotal part of XAI in improving 

clinical decision support systems, risk stratification, and patient 
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trust while enabling safer, more effective healthcare delivery. 

Keywords: XAI, CNN, LORE,CDSS, DCIP 



Scope 
Volume 15 Number 04 December 2025 

 

1393 www.scope-journal.com 

 

methodologies have been proposed such as causal inference models, personalized 

explanations, and balancing exploratory and quantitative approaches. Various XAI 

techniques, including local rule-based explanations, interpretable ML models, and 

data visualization methods, have been utilized to further enhance model 

transparency in such clinical settings. In this paper multiple techniques of XAI have 

been explored so as to make the model decisions more interpretable and how its 

applied in the medical field. This paper provides a method-oriented review of XAI 

techniques in healthcare. We categorize, compare, and critically evaluate existing 

approaches based on their technical foundations, interpretability capabilities, and 

relevance in clinical applications. By doing so, we aim to support both AI 

researchers and healthcare professionals in selecting and applying the right explain 

ability tools for safe, transparent, and effective AI deployment in medicine. This 

paper tells about the research in the field of Explainable Artificial Intelligence and 

how it's helping to make the healthcare system more transparent and reliable for 

the patients. Through Explainable Artificial Intelligence we can bridge the gap 

between high level technology and the patient. 

 

Related Work 

      The research by Aman et al. [1] examined medical AI explain ability needs 

thoroughly while conducting an ethical assessment about explain ability's role in AI 

tool implementation in clinical care. The medical AI explainability assessment by 

these AI-based clinical decision support systems used multidisciplinary surveys to 

evaluate explainability importance across medical, patient and legal and 

technological domains. The authors conducted ethical investigations to determine 

medical AI require explainability after their conceptual analysis and employing the 

Beauchamp and Childress principles as an evaluation tool (autonomy, beneficence, 

nonmaleficence, and justice). The researchers emphasized explainability serves as a 

means for patients together with healthcare providers to make wise independent 

healthcare choices which maintains patients at the center of their care. The 

implementation of explainability systems helps achieve equal resource distribution 

among patients. 

The authors of Bienefeld et al. [2] published their research results from a multi-

method longitudinal study which brought together 112 developers and clinicians 

who worked together to build an XAI solution for clinical decision support systems. 

Researchers revealed three fundamental distinctions which exist between mental 

models held by developers and medical clinicians about XAI through their study. 

These differences involved conflicting objectives between model interpretability and 

clinical plausibility as well as separate truth sources between data and patients 

alongside different approaches to new versus existing knowledge exploitation. To 

tackle this, the authors proposed a more collaborative, human-centered approach to 

building XAI systems. They argue that developers should work side-by-side with 
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clinicians, involving them early in the design process. This ensures the tools that get 

built are not just explainable in theory, but actually helpful in practice. 

For AI to truly support healthcare, the explanations it provides must be designed 

with the end-user in mind. Their research findings enabled them to propose 

solutions which incorporated causal inference models together with personalized 

explanations alongside dual mindsets that support exploration and exploitation. 

Both developer and clinical perspectives need attention in XAI system design 

according to this research which also offers useful guidelines for healthcare XAI 

effectiveness improvements. They interviewed 112 healthcare professionals (nurses 

and physicians) along with three software developers (one data scientist and two 

senior software engineers and one senior visualization designer) who worked in 

Switzerland at a large university hospital during the co-creation process of the DCIP 

(an ML-based CDSS for aSAH patient Delayed Cerebral Ischemia prediction). The 

analysts used IBM SPSS version 23 for their statistical analysis by performing 

descriptive measurements and regression models on survey data. High-fidelity 

interface development incorporated an interactive UI prototype that drew its design 

from the DCIP system. 

Figure 1 visually summarizes the differences in mindset and interpretability needs 

between developers and clinicians, and provides actionable recommendations. It 

supports discussions on interdisciplinary challenges, stakeholder perspectives, and 

strategies for bridging the gap when designing XAI for clinical use. 

 

Figure 1: Mental Models about XAI – ML Developers vs Clinicians, 

Recommendations to Reduce the Differences 

Metta et al. [3] research involves Local XAI methods and specifically the LORE 

i.e. Local Rule-Based Explanations technique used in healthcare and medical fields. 

This research revealed the sensitivity to clarification of the AI system and its 

transparency in detection methods in terms of diagnosis accuracy as well as 

prediction and generating treatment. The efficient LORE framework produces 
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efficient local explanations and interpretable explanations for machine learning 

models. In LORE, we use a genetic algorithm to develop synthetic data to set up a 

training base for the development of local interpretable prediction models. Built in 

logic provides the meaning through which the model decides on its decisions and 

understanding their interpretation is the strength of the predictor. Its approach was 

to build local interpretable models to cover analytical predictions and as a result, 

LORE functioned to create customized explanations. The first instance to be 

explained is picked by the method itself. The synthetic dataset generated by the 

genetic algorithm was found to replicate the local characteristics of original 

instance. The local dataset trained a decision tree for approximate modeling of the 

complex model behavior within this area. This brought up critical understanding on 

the complex health care XAI systems and potential benefits, as well as the 

significant problems health care professionals face.  

Farahani et al. [4] developed a data extraction sheet that they applied to random 

studies to adapt it to its final form. The data were obtained in a procedure through 

which one review author (KF) checked the selected studies while a second review 

author (FF) confirmed the collected data. The analysis consisted of taxonomic topic, 

first author and year of publication, essential contributions, used XAI model along 

with sample size (if appropriate). All the conflicting views of the two review authors 

were resolved through discussion between them or BL or WK as required for final 

review. The co-occurrence relationships among the common points of the analyzed 

studies (such as XAI methods, diseases and ML/DL terminology as well as imaging 

modalities) were reviewed and analyzed by the authors. The development of the co-

occurrence network requires first finding text keyword and then calculating co-

occurrence frequency for network examinations and word clustering with central 

terms detection. 

XAI visualization was used by Papanastasopoulos et al. [5] to understand features 

trained by their DCNN classifying ER+ versus ER- breast status of DCEMRI images. 

Minimum scanning with two contrast scans and total collection of 1395 ER+ and 729 

ER- regions-of- interest (ROI) on 148 patients were obtained. Based on Alex Net 

model trained on Image Net, a dual domain transfer trained DCNN architecture was 

developed by the researchers as they used spatial and dynamic data from each DCE-

MRI ROI as the input to that architecture. The performance of AUC is measured for 

network evaluation is obtained from a leave-one case out cross validation. In this 

context, XAI methodologies and its attribution methods (Integrated Gradients and 

Smooth Grad noise algorithm) were applied on training set ROIs to visualize DCNN 

learning. However, our DCNN extracted suitable spatial and dynamic domain 

features and the contributing features differed between domains according to their 

analysis. Their observation: DCNN learnt irrelevant pre-processing artifacts and 

concluded that to extract features from these. 
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Boutorh et al. [6] developed Support Vector Machine (SVM) and Random Forest 

(RF) through analyzing Bio-data symptoms in combination with deep Convolutional 

Neural Network (CNN) analysis of chest computed tomography (CT) images to 

detect COVID-19 positive cases. We needed to prove the possibility of explaining 

XAI systems through LIME as an interpretable framework for model explanations 

about positive virus patients. The experimental outcomes exceeded the present 

standard of practice. Evaluation of the CT-scan image revealed accuracy of 96% 

along with F1-score, and SVM outperformed RF as 90% accuracy and 91% specificity 

were recorded over the Bio-data. Finally, for the XAI-Img and XAI-bio models, we 

obtained interpretable results of trained SVM and CNN black box models after 

arriving COVID19 dataset of different kinds through LIME explanations. This 

improved examination procedure proves to enhance trust degrees, whereas experts 

find new patterns of the pandemic. 

In the context of pulmonary nodule diagnosis Wang et al. [7] set up a deep 

learning model that is explainable as a multi-task system. In addition to identifying 

diagnostic signs, the neural system makes both lesion malignancy predictions. 

Researchers can then display the location of each manifestation for the purposes of 

visual interpretability. Experimental results obtained from the LIDC public database 

demonstrated a test AUC value of 0.992 and a test AUC of 0.923 using the in-house 

dataset. Experimental outcomes demonstrate that integrating manifestation 

identification tasks into the multi task model enhances the accuracy level in cancer 

classification. Effective systems can improve radiologist–clinical activities through 

the proposed multi task explainable model. 

In healthcare, Explainable AI (XAI) is recognized as ‘necessary’ by S. S. Band et al. 

[8], in the context of challenges related to interpretability in AI driven decision 

making. Our team evaluated different XAI evaluation methods including LRP, 

LIME, SHAP, Grad-CAM and t-SNE for medical diagnosis application. The results 

were found to show widely used explainability methods of various nature along with 

visual descriptions in the medical field then rule based and numerical approach. 

Attention maps, saliency maps, heat maps and other visualizations demonstrate 

better effectiveness in helping medical professionals with the decision making 

process during diagnosis. It was discovered that explainability can help align deep 

learning models better with clinical decision making, by increasing trust, 

transparency and adoption. 

The use of XAI in smart healthcare applications allowed U. Pawar et al. [9] to 

enhance AI system transparency and responsibility according to their research. By 

using the clinical knowledge (and dedicated work) in combination with existing XAI 

models, they were able to get greater advantages in the system based on AI to 

validate prediction, improve the model and make decisions. It was stressed that 

intuitive interfaces perform well in supporting intuitive interpretation, fulfilling 
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regulatory requirements for traceable decisions of health care based AI. Finally, it 

was found that continuous advancements in XAI are needed to allow its seamless 

integration in the AI enabled healthcare systems and increase adoption and 

usefulness. 

XAI is used by T. Shahzad et al. [10] to explain a decision made by AI, when 

diagnosed using diabetic retinopathy using retinal images dataset. For the 

convergence history plots of the model, it is validated that the model can achieve 

94% accuracy using LIME technique of XAI. XAI integration in the deep learning 

algorithm for the diagnosis of diabetic retinopathy facilitates for clinicians and 

stakeholders to access to the reasoning account behind algorithmic decisions built 

their trust by the use of AI to support their patient’s care. 

The research team led by S. Shridevi [11] developed an XAI-integrated machine 

learning framework to forecast and study Neck direction in head impact events 

through muscle force evaluation with suitable explanations for proper decision-

making. The implementation of six Machine learning algorithms includes Logistic 

Regression among others while XGBoost presents the highest accuracy at 98.6% in 

the model framework. The XAI technique called LIME applied to XGBoost models 

provides explainable features to healthcare workers who require transparent AI 

predictions for optimal clinical choices. 

The research of S. Ahmed et al. presented a Logistic Regression model for 

Diabetes predictions that utilized XAI methods [12]. Both LIME and SHAP 

techniques boost explainability through an accuracy rate of 86% in the model. The 

explainability of models increases through LIME because it delivers local 

explanations for individual instances which provides deeper understanding of model 

operations. SHAP leverages Shapley values to deliver explanations that remain 

consistent while being applicable on all datasets and produce stable interpretations 

for enhanced model interpretability. When both approaches are merged it generates 

complete understanding of model operation which leads to better healthcare 

outcomes while encouraging user trust in AI-based diabetes prediction. 

P. A. Moreno-Sánchez et al. [13] designed an explainable machine learning model 

which predicted Chronic Kidney Disease from data within the CKD UCI-ML 

repository. The research aimed to demonstrate XAI capabilities for improving 

predictive models in medicine by increasing their accuracy and interpretability 

standards. XGBoost technique proved suitable because it delivers high accuracy 

along with explainability while maintaining important features for healthcare 

models requiring interpretability. This model secures 99.2% training accuracy 

together with 97.5% accuracy on new data that outperforms alternative classifiers. 

XAI methods confirm that hemoglobin stands as the main risk factor for Chronic 

Kidney Disease based on their evaluation of key features. This approach uses XAI 
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while helping healthcare providers trust AI diagnostic systems which deliver 

comprehensive information about early detection processes. 

G. V. Aiosa et al. [14] created an XAI-based advanced clinical decision support 

system (CDSS) for forecasting obesity-related co morbidities risk factors and detect 

non-direct links between these diseases and non-communicable conditions. The 

predictive analysis employed different kinds of ML algorithms consisting of Multi-

Layer Perceptron (MLP), Extreme Gradient Boosting (XGB), Logistic regression 

(LR), Nearest Neighbors (NN), Random Forest (RF), Decision Tree (DT), and Linear 

Support Vector Machine (LSV). SHAP plots within XAI systems helped explain 

predictions from the most effective models by demonstrating how features 

contribute to individual results in specific cases along with overall SHAP bee swarm 

plot distributions. The XAI-CDSS included a graphical user interface which allowed 

medical staff to see how obesity affects patient health throughout time while linking 

it to other potential medical conditions. The CDSS obtained greater transparency 

when XAI worked together with SHAP values to demonstrate model predictions and 

service explanations for healthcare experts who relied on feature contributions for 

building trust. 

R. Kumar et al. [15] proposed a machine learning framework in integration with 

XAI techniques for predicting chronic pediatric respiratory diseases. Numerous 

machine learning algorithms processed extensive datasets of clinical variables to 

discover patterns and co-relationships within the information which human 

professionals may not foresee easily. Four XAI methods were used on Random 

Forest that performed the best to identify key features like ICU transfer, kaliemia, 

creatinine levels, cyanosis, and natremia. This approach shows potential for 

improving clinical diagnosis and decision-making across various diseases through 

ML and AI. 

M. Radhakrishnan et al. [16] developed an XAI-integrated Deep Learning model 

for Ovarian Cancer Classification using 500 histopathological images 100 for 5 

subtypes of Ovarian Cancer. Dataset augmentation was integrated and the 

examination revealed InceptionV3 as the most accurate DL model among 

MobileNetV2, VGG19, ResNet18, ResNeXt, Xception and Efficient Net by reaching 

97.96% accuracy. XAI techniques, including grad-cam, saliency map, integrated 

gradient, and Deep Lift, were integrated to enhance interpretability and 

trustworthiness. These methods provided visual explanations of the model’s 

decisions, highlighting key image regions influencing predictions, thereby 

increasing transparency, identifying biases or errors, and supporting clinician trust 

and decision-making. 

Based on dataset in UCI ML repository, M. Azad et al. [17] built an XAI-driven ML 

framework for the accurate obesity estimation and insight into the factor on most 

influencing obesity. Utilities of the stacking ensemble technique with final estimator 
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itself being SGD classifier with a 98.82% accuracy were used in the model. The XAI 

method LIME was implemented to advance model interpretability and reliability 

through its widespread usage as it imparts model interpretability by finding the 

contribution of each feature in individual predictions thus providing explanation of 

obesity classification and revealing important factors that shape the decisions and 

improve trust in the reliability of the model. 

Shiva Prasad Koyyada et al. [18] developed a methodology through an explainable 

artificial intelligence model that detects local indicators and lung diseases in X-ray 

images. They used the COVID-19 radiography dataset from Kaggle that contains 

2396 images belonging to COVID-19 class and 1341 images from Normal class. The 

Custom CNN model received training through 3437 images which included 2396 

COVID images along with 1041 Normal images from the available dataset. The 

remaining images were used for testing the Custom CNN model. The result of the 

CNN model utilised LIME to become more explainable. 

It would work, model would be used in helping identify what the preferred 

features are and then be masked and shown. By using these local discriminant 

features along with normal images another CNN model was trained which increases 

the accuracy and made the model more understandable. The testing Accuracy of the 

final CNN model was 99.97 and training Accuracy was 99.63. 

Sagheer Abbas et al. [19] developed an efficient method for predicting eye 

diseases through Explainable Artificial Intelligence. They selected Ocular Disease 

Recognition Dataset from Kaggle for their case study because it features left and 

right eye fundus images for 5000 patients. The information contained in this dataset 

was divided into sections amounting to three. The training stage included 60% of 

images while testing was done with 20% of images and validation utilized another 

20% of the dataset images. The model creation employed Efficient Net as a pre-

trained model together with LIME as explainable artificial intelligence to achieve 

accurate results which humans can understand and reproduce. LIME selected the 

crucial image areas to display for better human understanding. During model 

training the Machine Learning Model achieved 0.9996 accuracy while the validation 

scores reached 0.9574. 

Using machine learning and explainable artificial intelligence, to diagnose 

aplastic anemia from iron deficienct anemia, B. S. Dhruva Darshan, et. al. [20] 

suggested a method to analyze Blood. The dataset of AA and IDA dataset was used 

for the study and the researchers obtained blood test attributes from the Kasturba 

Medical College, Manipal Academy of Higher Education based in India. The 

research dataset consisted of 500 samples among which 266 were associated with 

IDA and 234 were associated with AA. Before starting machine learning 

development the research team divided their data into 80% train data and 20% test 

data distribution. The investigators applied the first stack deployment that involved 
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combining Logistic Regression with K Nearest Neighbors alongside Decision Trees 

and Random Forest to create a better classifier. The second stacking model 

integrated Adaptive Boost, Extreme Gradient Boosting, Light Gradient Boosting, 

Categorical Boosting among others, as integrated algorithms. With the first stack 

and the second stack, there was created the final ensemble stack. The alternative 

baseline models performed no better than tree-based approaches when handling the 

dataset because the data needed nonlinear methods for processing. SHAP and 

LIME, along with ELi5, Anchor and Q Lattice make up the Explainable Artificial 

Intelligence framework which tries to make the decision-making process 

transparent. 

A methodology for discovering disease biomarkers for Ovarian Cancer through 

explainable methods of the PLCO Ovarian Biomarkers dataset was proposed by 

Weitong Huang et al. [21]. The clinical trials recognize this dataset that contains 113 

case samples alongside 894 non-case specimens after eliminating null value entries. 

The dataset provides multiple domain-specific metadata together with different 

protocol types and variable descriptions which enables clear and sustained 

examination of the modelling process. The research paper applied random search 

optimization techniques along with 10-fold cross validation for optimizing decision 

trees as well as random forest models while implementing logistic regression as 

another modeling approach. The classification capabilities of the model were 

assessed through UC-ROC score evaluation alongside Shapley Additive explanations 

which generated explanations at local and global levels. Random forest model 

achieved the highest results based on the AUC-ROC Score measurements. 

Zubaira Naz et al. [22] discusses about a method that can explain various lung 

pulmonary disease type classification results. The datasets to which this information 

applies belong to two: COVIDCT and COVID Net. The COVID-CT dataset contains 

a complete collection of 349 positive COVID 19 CT scans from 216 patients and 397 

negative COVID 19 CT scans from 397 patients. Transfer learning models using CNN 

and the ResNet50 are last pretrained structure working on Image Net data, but their 

classification process of input images take place. Among the various available 

pretrained models, the ResNet 50 pretrained model achieved a better performance 

rate. The interpretable model LIME provided explanations showing which image 

characteristics mostly affected results. The designed models achieved 93% accuracy 

in detecting COVID CT images while obtaining 97% accuracy with COVID Net 

images. 

The work of Mohammed Saidul Islam et al. [23] researched and developed a 

methodology about the XAI Model for Stroke Prediction using EEG signal. In one 

case study, the research used Biopac MP 160 Module to record EEG data from two or 

four channels in stroke patients and healthy adults. The research included 75 

healthy adults with a mean age of 77 years and a representation of 31% males 
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whereas 48 stroke patients had a median age of 72.2±5.6 years with 62% male 

participants. EEG data was obtained for the patients that had stroke and that 

apparatus themselves during 3 months after their confirming that they had ischemic 

stroke, in the active state. The dataset divided the components into two parts out of 

which 80 were used as training model and 20 were trained as the testing model. The 

ML models used with LIME (Local Interpretable Model-agnostic Explanation) are 

Adaptive Gradient Boosting, XGBoost and Light GBM to explain the classification 

result by feature weights distribution to show feature importance for the 

classification result. The accuracy achieved by Adaptive Gradient Boosting, 

XGBoost, Light GBM amounted to 0.80, 0.77, 0.78 respectively. 

In fact, Gangani Dharmarathne et al. [24] developed an explainable artificial 

intelligence approach to integrate machine learning for chronic kidney disease 

diagnosis. For the purpose of this experiment, the researchers studied using the data 

available on 400 individuals and 25 different attributes present on the UCI 

repository. The limitation of the dataset is small and thus it may result to repeated 

features. 70% of the data cases were partitioned into training and testing sections 

for testing the model performance where 30% of the data cases were reserved for 

testing the model performance and the rest of 70% was used for training the model. 

The Machine Learning models included K-Nearest Neighbors, Decision Tree, 

Random Forest, XGB, Artificial Neural Network together with explainable artificial 

intelligence methods Shapley Additive Explanations (SHAP) and Partial 

Dependency Plots (PDP) which were used in this study. The K-Nearest Neighbor 

decision tree together with Support Vector Classifier yielded accuracy results of 

0.975, 0.975, 0.975, 0.975, and 0.975 from Random Forest, XGB as well as Artificial 

Neural Network. 

At Eram Mahamud et al. [25], different explainable artificial intelligence models 

using fine tuned transfer learning were developed for classifying multiple lung 

diseases in chest X ray images with the choices more interpretable. For their study, 

the Lungs Disease dataset became the basis with the three sections according model 

evaluation (training - 80%, validation - 10%, and testing - remaining amount). 

Testing was done on 2027 images, validating with 2015 images and a total of 20,012 

augmented training examples were used in the examination. The proposed CNN 

model reached 0.99 accuracy while the highest performance of 0.94 was obtained by 

using the pre trained EfficientNetB0 model. Beyond heatmaps (Grad-Cam, Grad-

CAM++), SHAP and LIME generated feature saliency maps in order to help locate 

the important features responsible for model outcome analysis. During phase 

models all were able to test at 0.967. 

Alberto Ramírez-Mena et al. [26] conducted research on explainable artificial 

intelligence which involved using gene expression to identify and forecast prostate 

cancer tissue. The research team selected data from the TCGA-PRAD section of the 
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TCGA consortium which could be accessed through the GDC Legacy Archive at the 

National Cancer Institute (NIH). The dataset included information from 550 

prostate patients, 9 tumoral samples and 52 controls who were at International 

Society of Urological Pathology grade levels between 1 to 5. The researchers selected 

KNN as well as rpart (classification and regression Trees-CART) and Random Forest 

models for their case study analysis. The Random Forest model took the top 

position in all G-mean, F1, AUC, Specificity measurements while exhibiting superior 

Sensitivity performance according to Random Forest’s APV values. Through the 

implementation of SHAP researchers could visualize the significance of the 20 most 

important predictors in the algorithm. Each dot within the representation displayed 

the contribution value of specific genes to the final prediction made by the classifier. 

The Random Forest combined with XGBoost algorithms adopted by Rathore et 

al. [27] produced interpretability and causability of decisions using SHAP values on 

standard datasets. The Random Forest model achieved 98.21% accuracy in its 

predictive classification tasks. The introduction of explainability made results more 

transparent and helped reveal the fundamental disease cause in studied subjects. 

The study recommends a quantitative analysis to help healthcare adopt artificial 

intelligence while dealing with ethical issues in diagnosis through transparency and 

causability and interpretability. 

Reddy Soora et al. [28] made their research by putting together image quality 

while identifying spatial relationship between features to create the modified 

capsules networks for the segmentation tasks. To solve this task, the proposed loss 

function used the active contours model as an integration of external forces with 

regional information and used the functions that are used in segmentation 

extraction, and let curves evolve by continuously minimizing the energy. An analysis 

of Dice-score and mean-IoU metrics was conducted on evaluation of a performance 

comparison on a brain tumor segmentation dataset by the authors. 

In the research of Khera P et al. [29], EEG and surface EMG signals were used to 

create a model hierarchy (LRG-2L-LSTM) to recognize lower limb ankle movement 

using brain signal for muscular activity estimation of 4 EMG channels and 12 EEG 

channels. Our proposed model trained to an R = 0.742 ± 0.03 and RMSE of 0.067 ± 

0.002 for estimating EMG so as to obtain an average accuracy of recognition of 

84.86 ± 0.27% of estimated EMG for ankle movements to develop a control system 

for lower limb prostheses and exoskeletons for those amputees with minimal 

muscular strength. 

The figure 2 adds depth to your discussion about bridging the gap between 

developers and clinicians, and supports your review’s recommendations and future 

work. 
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Figure 2: Mental Models, Recommendations, and Quality Criteria for XAI (ML 

Developers vs Clinicians, Recommendations, Key Concepts Like 

Transparency, Privacy, Fairness) 

In this work, Pradhan et al. [30] developed their Block chain and AI enabled 

COVID-19 vaccine tracking system by using the Inter Planetary File System (IPFS) as 

decentralized storage and Truffle and Ganache Tool to combine with it to create its 

use within the Ethereum Virtual Machine (EVM). Finally, the proposed framework 

is tested using Keccack 256 transaction hash along with the number and the 

constraint (contract gas consumption metric). Performance measurements 

involving framework throughput in addition to the blockchain framework latency 

and memory utilization and CPU use and traffic counts both in and out were 

recorded by the team. The analysis task needed an artificial neural network (ANN) 

within the vaccination group for classification. 

 

Methodology 

 

Figure 3: Data Point Explanation Framework – Real & Synthetic Neighbors, 

Interpretability Pipeline 
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This review paper follows a structured process for identifying and evaluating 

research on the use of XAI in healthcare. This methodology comprises of three core 

stages: (1) comprehensive literature search, (2) rigorous study selection based on 

inclusion criteria, and (3) structured data extraction and qualitative analysis. 

 

Figure 4: Taxonomy/Classification of XAI Methods (Scope, Method, Usage) 

Figure 3 represents a flowchart that is ideal for illustrating how data points are 

selected, processed, and transformed for explanation purposes. Insert it when 

describing technical methodologies, XAI algorithm pipelines, or interpretability 

workflows used in surveyed studies. 

Figure 4 visually categorizes how XAI methods are classified, supporting your 

survey’s method-oriented review and evaluation of various approaches. 

 

A. Review of Existing Studies: 

A meticulous analysis was done for this review paper across multiple academic 

databases including IETE Journal, IEEE, Springer, Science Direct, Nature, and NCBI. 

For the search of these papers the following terms were mostly used: 

• (“Explainable AI” OR “XAI”) AND (“healthcare” OR “medical diagnosis” OR 

“clinical decision support” OR “Medical Tests” OR “Diseases”) 
• (“Interpretable Artificial Intelligence” AND “machine learning” AND “deep 

learning” in Healthcare) 

• (“SHAP” OR “LIME” OR “Grad-Cam” OR “Grad-Cam++” OR “PCP graphs”) 
Model-specific methods are tailored for a particular class of models (e.g., Grad-

CAM works only for CNNs).Model-agnostic methods like SHAP or LIME can 

explain the predictions of any machine learning model by treating it as a black 

box. 
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 B.  Study Selection: 

The selection process for the research papers involved two steps: 

1. Title and Abstract Screening Phase:  

The retrieved articles were reviewed based on their titles and content in abstract, 

and only those relevant to XAI in Healthcare were included, while the rest were 

discarded. 

2. The Full Text Review Phase:  

In this second phase the whole article was thoroughly read and analyzed. The 

articles which were relevant and provided substantial insights in Explainable 

Artificial Intelligence in Healthcare were included only. The factors that were used 

for the selection of articles were: 

• Included of XAI techniques application in the field of Healthcare. 

• Articles which discussed interpretability methods for machine learning models in 

medicine or healthcare. 

• Articles focusing on the regulatory and ethical aspect of Explainable Artificial 

Intelligence in Healthcare. 

Figure 5 clearly illustrates the overall workflow, from data collection and 

preprocessing through traditional “black box” AI and towards explainable AI, 

mapping to your discussion of methodologies, model pipelines, and stakeholders. 

 

Figure 5: End-to-End XAI Workflows in Healthcare (Raw Data to Decision, 

Traditional vs Explainable AI, Healthcare Pipeline) 
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C. Data/Content Extraction:  

From these research articles only the necessary content and data were taken or 

extracted, this extracted data included: 

• The Explainable Artificial Techniques used or implemented and how it made the 

machine learning model more interpretable. 

• The healthcare domain in which it was implemented for eg. radiology, cardiology 

etc. 

• The dataset that was used for the machine learning models’ training and testing. 

• The performance as well as the evaluation of the machine learning models. 

 

Conclusion 

This Explainable Artificial Intelligence (XAI) is transforming healthcare by 

prioritizing interpretability, transparency, and trust in AI-driven clinical decision-

making. The integration of XAI into machine learning pipelines enhances not only 

the accuracy of diagnostic models but also their transparency, making complex 

algorithms more comprehensible for clinicians, patients, and stakeholders. With 

methods such as LIME, SHAP, and visual tools like heatmaps and saliency maps, 

XAI enables the breakdown of opaque “black-box” predictions from classifiers like 

SVM, CNN, and XGBoost into actionable and understandable insights. 

Figure 6 succinctly highlights the essential attributes that define high-quality, 

trustworthy, and user-centered XAI systems. It emphasizes what should be 

prioritized for safe and effective adoption in clinical environments and can reinforce 

your closing arguments. 

In clinical practice, explainable models support safer, user-centered decisions by 

providing clear rationales for diagnoses, prognoses, and treatment 

recommendations. This interpretability is critical for regulatory compliance and 

ethical accountability, helping healthcare professionals assure that AI-guided 

interventions align with medical standards and patient values. User-oriented 

interfaces further facilitate smooth adoption and meaningful interactions with XAI 

systems, increasing the likelihood of successful implementation in real-world 

healthcare environments. 

By revealing the key features driving predictions, XAI methods improve model 

reliability and foster deeper collaboration between humans and AI systems. 

Comprehensive XAI frameworks that combine multiple interpretability techniques 

allow healthcare programs to deliver more equitable outcomes, offering transparent 

justifications for resource allocation and clinical actions. Moreover, XAI-based 

solutions empower medical staff to validate and verify model outputs, reducing risks 

associated with erroneous or biased decisions. 
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Figure 6: Key Criteria for Explainable AI – Transparency, Causality, Privacy, 

Reliability, Usability, Trust, Fairness 

Looking ahead, the continued advancement of XAI will be essential for meeting 

emerging challenges in healthcare, such as addressing disparities, managing 

complex medical data, and supporting personalized medicine. Future research 

should focus on broadening the scope of XAI capabilities, integrating human-centric 

explanation mechanisms, and promoting cooperative systems where clinicians and 

AI tools work together seamlessly. These efforts will be paramount for increasing 

trust, ensuring safety, and driving effective adoption of AI across diverse medical 

domains. 
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