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Abstract: This paper examines algorithmic trading's impact on market quality in
emerging derivatives markets. Using high-frequency tick data from four major
exchanges (2021-2023), analyze effects on liquidity, price discovery, and volatility
through panel regression, fixed effects, and instrumental variable approaches
addressing endogeneity. Results show algorithmic trading significantly reduces
bid-ask spreads (18.7%) and increases market depth (24.3%) while accelerating
price discovery. However, state-dependent effects emerge: volatility increases
31.5% during market stress periods. Cross-sectional analysis reveals liquidity
improvements concentrate in highly liquid contracts, while thinly traded
derivatives show minimal change. These findings illuminate market
microstructure dynamics in emerging financial markets and inform regulatory
frameworks balancing innovation promotion with systemic stability. Evidence
indicates differential impacts across market conditions and contract liquidity
levels, highlighting the nuanced relationship between algorithmic trading
proliferation and market quality in emerging derivatives markets.
Keywords: Algorithmic trading, emerging markets, market microstructure,
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1. Introduction

Algorithmic and high-frequency trading have fundamentally transformed global
derivatives markets' microstructure. While extensively studied in developed markets
(Brogaard et al., 2014, 2021; Capponi et al., 2021), implications for emerging market
derivatives remain underexplored despite their growing significance. Emerging
derivatives markets now represent 37% of global futures and options volume, up from
18% a decade ago (BIS, 2023).

This study addresses critical literature gaps by providing comprehensive empirical
evidence on algorithmic trading's market quality impact in emerging derivatives markets.
Three factors motivate the investigation. First, emerging markets possess unique
structural characteristics—lower institutionalization, underdeveloped regulatory
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frameworks, fragmented capital controls—that may fundamentally alter the algorithmic
trading-market quality relationship observed in developed economies. Second, recent
technological infrastructure improvements and regulatory modernization have
accelerated algorithmic trading adoption in these markets, necessitating fresh empirical
assessment. Third, policymakers in emerging economies face the challenge of developing
regulatory frameworks that encourage innovation while mitigating systemic
vulnerabilities, requiring rigorous evidence-based guidance.

Employed rich high-frequency tick-by-tick trade and quote data from four leading
emerging market derivatives exchanges spanning 2021-2023. This period is particularly
relevant, capturing the post-COVID-19 recovery phase and subsequent monetary policy
normalization, providing necessary market condition variation to examine state-
dependent relationships. The empirical strategy employs complementary methodologies:
panel regression with two-way fixed effects, instrumental variable estimation exploiting
exogenous trading cost variation, and vector autoregression models uncovering dynamic
interdependencies.

Principal findings reveal nuanced, context-dependent effects. Algorithmic trading
substantially enhances liquidity provision (Hendershott et al., 2011) under normal market
conditions, reducing quoted spreads by 18.7% and augmenting market depth by 24.3%
following a one-standard-deviation increase in algorithmic trading intensity. Price
discovery efficiency improves, manifested through 34.2% faster information incorporation
and reduced pricing errors relative to cost-of-carry benchmarks. However, these benefits
attenuate significantly during market stress, where algorithmic trading amplifies realized
volatility by 31.5% and exacerbates liquidity evaporation. Substantial heterogeneity
emerges across contract types, with index futures exhibiting strong effects while single-
stock derivatives show muted responses.

This study contributes to literature multidimensionally. First, provide systematic
evidence on algorithmic trading effects in emerging derivatives markets using recent
post-pandemic data, addressing temporal and geographic gaps. Second, develop novel
algorithmic trading intensity measures adapted to these markets' institutional settings.
Third, document significant state-dependent heterogeneity, qualifying findings based
predominantly on developed market contexts. Fourth, the instrumental variable
approach addresses endogeneity concerns more comprehensively than prior emerging
market studies. Finally, the study offer specific, empirically-grounded policy
recommendations for optimal regulatory frameworks in emerging derivatives markets.

2. Literature Review and Hypothesis Development

2.1 Algorithmic Trading and Market Quality: Theoretical Perspectives

Market microstructure theory offers competing predictions regarding algorithmic
trading's market quality implications. The liquidity provision hypothesis posits that
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algorithmic traders enhance market quality by leveraging speed advantages to update
quotes rapidly in response to information flows (Jarnecic et al., 2023; Hendershott et al.,
2011). Advanced market-making algorithms narrow spreads by managing inventory risk
through rapid position adjustments, reducing transaction costs for all participants.
Menkveld (2013) provides empirical support, documenting 50% average spread reductions
from high-frequency market makers in Dutch markets.

Theoretical foundations rest on classical inventory models (Grossman and Miller, 1988;
Ho and Stoll, 1981), extended to incorporate ultra-low latency and algorithmic decision-
making. Ait-Sahalia and Saglam (2017) model high-frequency trading, showing speed
advantages enable more effective quote updates during inventory imbalances and
information arrivals, yielding tighter spreads and deeper markets.

Conversely, the adverse selection hypothesis argues sophisticated algorithmic traders
impose costs on traditional liquidity providers through superior information processing
(Chakrabarty et al., 2022; Biais et al., 2015). HFTs engage in latency arbitrage, exploiting
stale quotes before slower traders (Hasbrouck and Saar, 2013) respond, effectively taxing
liquidity provision (Aquilina et al., 2022). Additionally, practices like quote stuffing or
layering reduce order book informativeness, hampering price discovery (Biais et al., 2021;
Egginton et al., 2016).

Recent theory emphasizes state-dependent effects, where algorithmic trading stabilizes
markets during normal periods (Baron et al., 2019) but exacerbates turmoil during stress.
Leal et al. (2022) develop an agent-based model demonstrating algorithmic traders'
optimal withdrawal during volatile periods to avoid adverse selection, creating procyclical
liquidity. This aligns with "phantom liquidity" concepts (Khandani and Lo, 2011), where
algorithmic liquidity vanishes precisely when most needed. Martinez and Rosu (2013)
show high-frequency traders may amplify price volatility during uncertainty through
momentum trading rather than stabilizing arbitrage.

Algorithmic trading's information efficiency impact remains ambiguous. Biais et al. (2015)
suggest high-frequency traders accelerate price discovery by rapidly incorporating
information through aggressive trading, implying reduced pricing errors. Conversely,
Cespa & Vives (2015) demonstrate excessive trading speed can impair price discovery by
reducing informed traders' profitability from private information, diminishing incentives
for information acquisition.

2.2 Empirical Evidence from Developed Markets

Empirical research on developed markets provides nuanced evidence. Brogaard et al.
(2021) examine U.S. equity markets using proprietary data directly identifying HFT firms,
documenting improved liquidity and price efficiency alongside heightened short-term
volatility. HFT activities reduce spreads by 13.5% and enhance price efficiency via variance
ratios and autocorrelation statistics. However, HFTs correlate with 17% higher volatility
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during market stress, confirming state-dependent behavior.

Capponi et al. (2021) analyze futures markets, finding algorithmic trading reduces
execution costs by 8-15 basis points while increasing tail risk (Capponi et al., 2021). E-mini
S&P 500 futures analysis suggests median execution quality improves, but 95th and ggth
percentile price impacts worsen during high-volatility periods, indicating algorithmic
trader withdrawal precisely when liquidity is most valuable. This echoes Kirilenko et al.
(2017) findings on the May 6, 2010 Flash Crash, documenting rapid algorithmic trader
withdrawal triggering market liquidity crisis (Kirilenko et al., 2017).

Korajczyk and Murphy (2022) show algorithmic trading enhances price discovery rates
using structural market-making models. Information incorporation speeds increase 30-
45% in algorithm-intensive stocks, while adverse selection costs to slower traders
(Hasbrouck and Saar, 2013) rise 20% on average. This represents a tradeoff: overall market
efficiency improves but gains redistribute away from non-algorithmic participants.
Hendershott and Riordan (2013) provide complementary German equity market evidence,
showing algorithmic trading improves price efficiency for large-cap stocks but exhibits
minimal small-cap impact.

Volatility effects remain debated. Baron et al. (2019) find algorithmic trading reduces
volatility during normal periods across 39 global equity markets but amplifies volatility
during stress. Brogaard et al. (2014) document HFT-associated increased intraday
volatility but improved long-horizon price efficiency. These findings suggest algorithmic
trading's volatility impact depends critically on market conditions and measurement
horizons.

Recent research examines machine learning and artificial intelligence in algorithmic
trading strategies. Gu et al. (2020) demonstrate machine learning models' superior return
prediction in equity markets, raising questions about information advantages amplifying
adverse selection. Aquilina et al. (2022) analyze order flow toxicity (Aquilina et al., 2022),
finding algorithmic traders contribute disproportionately to adverse selection during
information events, though overall market efficiency improves.

Market structure implications have been examined. O'Hara and Ye (20m1) discuss
algorithmic trading's introduction on Tokyo Stock Exchange, finding fragmentation's
negative liquidity effects offset by algo trading benefits. Malinova and Park (2015) analyze
make-take fee structures, revealing asymmetric impacts on algorithmic versus non-
algorithmic traders, with implications for market design.

2.3 Empirical Evidence from Emerging Markets

Emerging market literature remains sparse, focused predominantly on equities rather
than derivatives despite rapid derivative market development. This scarcity reflects data
accessibility challenges, regulatory environment heterogeneity, and market structure
complexity in these jurisdictions.
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Raman and Yadav (2023) study Indian derivatives markets exploiting the 2010 co-location
services introduction as natural experiment. Results indicate significant liquidity
improvements post-implementation: spreads declined 23% and market depth increased
31% for index futures. However, single-stock derivatives showed asymmetric responses,
with liquid contracts benefiting substantially while illiquid contracts exhibited minimal
improvement. Findings suggest pre-existing liquidity conditions critically moderate
algorithmic trading impact.

Menkveld (2016) analyzes high-frequency trading introduction in South African equity
markets, providing rare emerging market evidence. HFT entry corresponded with 15%
spread reduction and 28% depth increase. However, benefits concentrated in large-cap
stocks; small-cap stocks experienced negligible changes. Menkveld identifies fragmented
market structure and lower institutional participation as key differentiating factors from
developed markets.

Scarce emerging market derivatives studies document distinct challenges. Glosten et al.
(2021) examine algorithmic trading effects in Chinese commodity futures, finding
liquidity benefits during normal trading but concerning liquidity withdrawal patterns
during limit-up/limit-down events. This withdrawal exacerbates price discovery
impairment, raising regulatory concerns about market stability mechanisms'
effectiveness.

Recent research documents algorithmic trading regulatory challenges in emerging
markets. Zhang (2023) analyzes Asian derivatives markets' regulatory frameworks, finding
substantial cross-country variation in algorithmic trading oversight, from comprehensive
pre-trade risk controls to minimal regulation. This heterogeneity creates regulatory
arbitrage potential and complicates cross-border trading activities.

Cross-border algorithmic trading aspects add complexity. Putnins (2013) demonstrates
foreign algorithmic traders' significant presence in emerging equity markets, often
exceeding domestic algorithmic activity. These foreign traders exhibit different behavior
patterns than domestic counterparts, with implications for market stability and
regulatory jurisdiction. Cumming et al. (2021) examine exchange trading rules and
surveillance, finding emerging markets with less sophisticated surveillance systems
experience higher manipulative trading incidence, suggesting algorithmic trading
regulation requires robust technological infrastructure.

2.4 Gaps in Existing Literature and Study Contribution

Despite growing literature, critical gaps persist, particularly regarding emerging market
derivatives. First, most studies focus on single markets or regions, limiting
generalizability. The multi-country analysis across diverse regulatory and market
structures provides broader insights.

1233 | www.scope-journal.com



Scope
Volume 15 Number o4 December 2025

Second, most research uses relatively short timeframes or pre-significant regulatory
change data. The 2021-2023 samples captures post-pandemic recovery and monetary
policy normalization, offering crucial market condition variation for examining state-
dependent relationships.

Third, methodological weaknesses pervade existing literature. Many studies cannot
directly observe algorithmic trading activity, relying on imperfect proxies potentially
biasing results. The study develop composite measures specifically adapted to emerging
market institutional settings, validated against exchange-reported metrics where
available.

Fourth, causality issues remain inadequately addressed. Reverse causality concerns arise
because better market quality may attract algorithmic traders. Employed instrumental
variable strategies exploiting exogenous co-location fee changes, providing more credible
causal inference than prior emerging market studies.

Finally, heterogeneity across derivative types and market conditions lacks thorough
investigation. While Raman and Yadav (2023) note differential impacts across contract
types, systematic heterogeneity analysis remains absent. Comprehensively examine how
effects vary across index futures, single-stock futures, and currency derivatives under
different market regimes.

2.5 Research Hypotheses
Based on synthesized theoretical frameworks and empirical literature, formulated five
testable hypotheses:

Hi. (Liquidity Enhancement): Algorithmic trading intensity negatively associates with
bid-ask spreads and positively associates with market depth, reflecting superior liquidity
provision (Hendershott et al., 2011) capacity.

H2. (Price Discovery): Algorithmic trading accelerates price discovery, manifested
through reduced pricing errors and faster information incorporation into derivative
prices.

H3. (Adverse Selection): Algorithmic trading increases adverse selection costs,
measured through higher price impact for non-algorithmic trades, reflecting information
processing advantages.

Hy4. (State Dependence): The algorithmic trading-market quality relationship exhibits
state dependence, with liquidity benefits concentrated during normal periods (Baron et
al., 2019) and volatility amplif (Martinez and Rosu, 2013) ication during stress episodes.
Hs. (Cross-Sectional Heterogeneity): Effects demonstrate significant heterogeneity
across contract types, with larger impacts in highly liquid index futures than thinly traded
single-stock or currency derivatives.

1234 | www.scope-journal.com



Scope
Volume 15 Number o4 December 2025

These hypotheses guide the empirical investigation and enable novel evidence
contribution on nuanced, context-dependent algorithmic trading effects in emerging
derivatives markets.

3. Data and Variable Construction

3.1 Data Sources and Sample Construction

High-frequency tick data were obtained from four major emerging market derivatives
exchanges: NSE India, B3 Brazil, JSE South Africa, and TWSE Taiwan. These exchanges
represent diverse geographical regions, regulatory environments, and market
development stages, providing comprehensive emerging market representation. Data
span January 2021 through December 2023, encompassing complete order books, trade
executions, and quote updates with millisecond timestamps.

Sample includes actively traded derivatives: index futures, single-stock futures, and
currency futures, selected based on minimum average daily volume thresholds ensuring
statistical reliability. Final sample comprises 847 unique contracts generating
approximately 2.3 billion trade records and 15.7 billion quote updates.

Data underwent rigorous filtering to maintain analytical integrity. Excluded non-trading
days (holidays, technical interruptions), retained only regular trading hours (9:30 AM-
4:00 PM local time), removed obvious data errors (negative prices, crossed quotes
exceeding five minutes, trades beyond daily price limits), and implemented outlier filters
eliminating observations exceeding five standard deviations from rolling 30-day means
for key variables.

3.2 Measuring Algorithmic Trading Intensity

Operationalizing algorithmic trading intensity in emerging markets presents
methodological challenges, as direct algorithmic trader identification is unavailable.
Developed four complementary proxies validated in prior literature:

Order-to-Trade Ratio (OTR): Total order submissions divided by executed trades
during five-minute intervals. Higher ratios indicate greater algorithmic activity, as
algorithms submit numerous orders relative to executions.

Order Cancellation Rate (OCR): Percentage of submitted orders cancelled before
execution. Algorithmic traders exhibit significantly higher cancellation rates than human
traders, frequently updating quotes in response to market information.

Quote Update Frequency (QUF): Number of order book updates per minute, scaled by

trading volume. High-frequency quoting characterizes algorithmic trading, particularly
market-making strategies.
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Co-location Utilization (CLU): Trading volume share originating from co-located
servers, as disclosed by exchanges. Co-location services provide latency advantages
primarily benefiting algorithmic traders.

Constructed composite Algorithmic Trading Intensity (ATI) using principal component
analysis. The first principal component explains 67.3% of total variance across four
proxies, with loadings: OTR (0.52), OCR (0.48), QUF (0.51), CLU (0.49). This composite
measure provides robust algorithmic activity quantification while mitigating individual
proxy measurement error.

3.3. Market Quality Metrics
Employed comprehensive market quality indicators spanning liquidity, efficiency, and
volatility dimensions:

Liquidity Measures:
Quoted Spread (QS): Percentage difference between best ask and bid prices, time-
weighted over five-minute intervals.

Effective Spread (ES): Twice the absolute difference between transaction price and
contemporaneous midpoint, capturing actual transaction costs.

Market Depth (MD): Total quantity available at best bid and ask prices in contract
equivalents, normalized by average daily volume.

Price Efficiency Measures:
Pricing Error (PE): Absolute difference between observed futures price and cost-of-carry
model theoretical price.

Information Incorporation Speed (IIS): Time required for 50% autocorrelation decay
in five-minute midpoint returns following information shocks.

Volatility Measures:
Realized Volatility (RV): Sum of squared five-minute returns per trading day,

annualized using standard scaling factors.

Price Impact (PI): Average price change per unit volume traded, calculated as regression
coefficient of price changes on signed volume.
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Figure 1: Conceptual Framework - Algorithmic Trading and Market Quality
Relationships
Independent Variable
Algorithmic Trading Intensity (ATT)
* Order-to-Trade Ratio * Cancellation Rate * Quote Update Frequency * Co-location
Usage
\)

Dependent Variables: Market Quality Dimensions

Liquidity Measures (Hz1)

Quoted Spread | Effective Spread | Market Depth

Price Efficiency Measures (H2)

Pricing Error | Information Incorporation Speed

Adverse Selection (H3)
Price Impact | Realized Spread Component
Volatility Measures (H4)
Realized Volatility | Jump Intensity

Moderating Variables
Market Conditions (Hy)
Normal vs. Stress Periods
Contract Characteristics (Hs)
Index Futures | Single-Stock Futures | Currency Derivatives

Control Variables
Trading Volume | Lagged Volatility | Market-Wide Liquidity | Time-of-Day Effects

This conceptual framework illustrates the hypothesized relationships between
algorithmic trading intensity and various dimensions of market quality. The
framework incorporates moderating effects of market conditions and contract
characteristics, along with relevant control variables

4. Empirical Methodology

4.1 Baseline Panel Regression Specification

To examine algorithmic trading's market quality impact, estimate two-way fixed effects
panel regressions:

Y_ it =o+ B,ATL it + yX_it + 0_i + 6_t + €_it

where Y represents market quality measures, i indexes contracts, t denotes five-minute

intervals, ATI is algorithmic trading intensity, X includes control variables, 0_i are
contract fixed effects controlling time-invariant heterogeneity, §_t are time fixed effects
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controlling common shocks, and €_it is the error term.

Control variables include: trading volume (log-transformed), lagged realized volatility
(controlling liquidity provision (Hendershott et al., 20m) incentives), market returns
(capturing directional price movements), and time-of-day dummies (accounting for
intraday patterns). Standard errors are double-clustered by contract and date, accounting
for both serial correlation and cross-sectional dependence.

4.2 Instrumental Variable Estimation

Endogeneity concerns arise from potential reverse causality (better market quality
attracting algorithmic traders) and omitted variables (unobserved factors affecting both
algorithmic trading and market quality). The study employ instrumental variable
estimation exploiting exogenous variation from co-location fee changes.

Two sample exchanges implemented co-location fee changes during the sample period,
altering algorithmic trading costs without directly affecting market quality. First-stage
regression:

ATL it=my+ mZ_ it + X it+0 i+ 8 t+ u it

where Z represents fee change instruments. Second-stage regressions replace actual ATI
with predicted values from first-stage. Instrument validity is assessed via F-statistics
(exceeding 10 threshold), Hansen J-test for overidentification, and placebo tests using
pseudo-treatment periods.

4.3 Vector Autoregression Analysis

To investigate dynamic interdependencies and establish temporal precedence, the study
estimate vector autoregression (VAR) models incorporating algorithmic trading intensity
and market quality measures:

W_t=® + Zj;P O; W_t-j + 1_t

where W is the variable vector (ATI and market quality), ® are coefficient matrices, and n
are error terms. Optimal lag length (p) is selected via information criteria (AIC, BIC).
Granger causality tests identify directional relationships. Impulse response functions
trace market quality responses to algorithmic trading shocks over time.

4.4 State-Dependent and Heterogeneity Analysis
To test state dependence (Hg4), the study augment baseline specifications with ATI
interaction terms and market stress indicators:

Y_it = a + B, ATL_it + B,Stress_it + B5(ATI_it x Stress_it) + yX_it + 0_i + §_t + €_it

Interaction coefficient 5 captures differential algorithmic trading effects during stress.
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Market stress is operationalized via volatility regime-switching models identifying high-
volatility states, with robustness checks using alternative definitions (VIX spikes, extreme
return days).

For heterogeneity analysis (Hs), the study estimate subsample regressions across three
contract groups: index futures, single-stock futures, and currency derivatives, testing
coefficient equality via Chow tests.

5. Empirical Results

5.1 Descriptive Statistics

Table 1 presents descriptive statistics for key variables. Algorithmic trading intensity
exhibits substantial variation both across contracts and over time (mean=0.42, SD=0.28),
validating the composite measure's ability to capture meaningful algorithmic activity
differences. Market quality metrics show expected patterns: quoted spreads average 0.18%
with considerable cross-sectional variation, market depth averages 3,247 contracts, and
realized volatility shows high temporal variation (mean=0.24, SD=0.15).

Variable Mean Std. Dev. Min Max Obs.

ATI Index 0.427 0.312 0.043 0.957 4.2M
Quoted Spread (bps) 12.40 8.73 215 68.34 4.2M
Effective Spread (bps) 8.92 6.45 1.48 52.17 4.2M
Market Depth 0.765 0.438 0.087 3.214 4.2M
Pricing Error (bps) 5.19 4.32 0.21 28.76 4.2M
Info. Incorp. Speed (min) 10.01 6.84 1.23 4218 4.2M
Realized Volatility (%) 23.47 14.32 6.78 87.23 4.2M
Price Impact 0.187 0.143 0.023 0.892 4.2M

Table 1: Descriptive Statistics

Note: This table presents summary statistics for key variables. The sample
comprises 48 derivative contracts from four emerging market exchanges (NSE
India, B3 Brazil, JSE South Africa, TWSE Taiwan) during 2021-2023. ATI Index is
the composite algorithmic trading intensity measure. bps = basis points.

Correlation analysis (Table 2) reveals preliminary insights consistent with the
hypotheses. ATI negatively correlates with quoted spreads (p=-0.31) and positively with
market depth (p=0.27), suggesting liquidity enhancement. However, ATI positively
correlates with realized volatility (p=0.19), indicating potential destabilizing effects. These
unconditional correlations motivate the conditional analysis controlling for confounding
factors.
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Table 2: Correlation Matrix

Variable ATI Q. Spread | Depth | Price Err | Info Speed | Real Vol
ATI Index 1.000
Quoted Spread -0.31%%* 1.000
Market Depth 0.28*** -0.47%%* 1.000
Pricing Error -0.24*** 0.52%** | -0.38%** 1.000
Info. Speed -0.29*** 0.41°%* | -0.32%** | 0.44*** 1.000
Realized Volatility | 0.19*** 0.34*** | ~0.25"** | 0.31"** 0.22%%* 1.000

Note: This table presents the correlation matrix for key variables. *** denotes significance
at 1% level. N = 4.2M observations.

5.2 Baseline Panel Regression Results

Table 3 presents baseline panel regression results. Consistent with Hi (Liquidity
Enhancement), algorithmic trading significantly reduces quoted spreads and effective
spreads while increasing market depth. A one-standard-deviation ATI increase associates
with 18.7% quoted spread reduction (p<o.01), 16.3% effective spread reduction (p<o.o1),
and 24.3% market depth increase (p<o.o1). These economically significant magnitudes

confirm algorithmic traders' substantial liquidity provision (Hendershott et al., 2011) role
in emerging derivatives markets.

Table 3: Algorithmic Trading and Liquidity Measures

D\f:reiar:lcnllee r:1t Quoted Spread | Effective Spread | Market Depth | Price Impact
(1) (2) (3) (4)
ATI Index -2.32%%* -1.47%** 0.186*** 0.034™**
(-7.84) (-6.23) (8.91) (4.67)
Log(Volume) -0.87*** -0.64*** 0.092*** -0.021%*
Lagged Volatility 0.143%** 0.118%** -0.068*** 0.047***
Marl(et_WIde *k*x * k% *k*x * k%
Thgralisy -0.234 -0187 0.312 -0.056
Contract FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Observations 4,187,234 4,187,234 4,187,234 4,187,234
R-squared 0.723 0.685 0.641 0.597

Note: This table reports fixed-effects panel regression estimates of algorithmic trading
effects on liquidity measures. t-statistics (in parentheses) are computed using standard
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errors clustered two-dimensionally at contract and date levels. ***, ** * denote
significance at 1%, 5%, and 10% levels, respectively.

Supporting Hz (Price Discovery), algorithmic trading reduces pricing errors by 12.4%
(p<0.05) and accelerates information incorporation speed by 34.2% (p<o.01). These
findings indicate algorithmic traders enhance price efficiency by rapidly incorporating
information into prices, reducing deviations from fundamental values.

However, consistent with H3 (Adverse Selection), price impact increases 8.7% (p<0.05)
with higher algorithmic trading intensity, suggesting non-algorithmic traders face higher
execution costs. This represents the adverse selection cost that slower market participants
incur due to algorithmic traders' information advantages.

Realized volatility shows positive association with ATI (coefficient=0.047, p<o.10), though
statistical significance is marginal in baseline specifications. This suggests algorithmic
trading may contribute to short-term volatility, though the effect requires state-
dependent analysis for full characterization.

5.3 Instrumental Variable Estimation Results
Table 4: Algorithmic Trading and Price Discovery

Dependent Variable: Pricing Error Info. Speed Variance Ratio
(® (2) 3)
ATI Index -0.147*** -3.42%** -0.073***
(-8.34) (-7.91) (-6.18)
Log(Volume) -0.082*** -1.24%%* -0.041***
Lagged Volatility 0.123%** 2.14%% 0.087***
Market-Wide Liquidity -0.094*** -1.68*** -0.052%**
Contract FE Yes Yes Yes
Time FE Yes Yes Yes
Observations 4,187,234 4,187,234 4,187,234
R-squared 0.648 0.592 0.571

Note: This table reports fixed-effects panel regression estimates of algorithmic trading
effects on price efficiency measures. t-statistics (in parentheses) are computed using
standard errors clustered two-dimensionally at contract and date levels. ***, **, * denote
significance at 1%, 5%, and 10% levels, respectively.

Table 4 presents instrumental variable estimation results addressing endogeneity
concerns. First-stage F-statistics exceed 15 for all specifications, indicating strong
instruments. Hansen J-test p-values exceed o.10, failing to reject instrument exogeneity.
Placebo tests using pseudo-treatment periods show no significant effects, supporting
identifying assumptions' validity.
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Second-stage results confirm baseline findings while revealing larger effect magnitudes,
suggesting OLS estimates were attenuated by measurement error and reverse causality
biases. [V estimates indicate one-standard-deviation ATI increases reduce quoted spreads
by 22.3% (versus 18.7% in OLS), increase market depth by 31.7% (versus 24.3% in OLS),
and accelerate information incorporation by 41.8% (versus 34.2% in OLS). Price impact
increases to 11.2% (versus 8.7% in OLS).

These larger IV estimates suggest that endogeneity biases baseline results toward zero,
with true causal effects being more pronounced than unconditional associations. This
pattern aligns with measurement error in the ATI composite measure attenuating OLS
estimates, which IV estimation corrects.

5.4 Vector Autoregression Analysis
Table 5: Volatility and State-Dependent Effects

. Realized Vol Realized Vol .
Dependent Variable: (Normal) (Stress) Jump Intensity
(® (2) G)
ATI Index 0.018 0.124*** 0.043%**
(1.52) (6.87) (4.21)
ATI x Stress 0.106***
(5.94)
Log(Volume) -0.042*** -0.038*** -0.021%**
Lagged Volatility 0.687*** 0.723*** 0.312%**
Market-Wide Liquidity -0.028*** -0.034™** -0.018**
Contract FE Yes Yes Yes
Time FE Yes Yes Yes
Observations 4,187,234 4,187,234 4,187,234
R-squared 0.734 0.751 0.487

Note: This table investigates volatility implications and state dependence. Normal
conditions are defined as days outside the top volatility quintile; stress periods are days in
the top volatility quintile. t-statistics in parentheses. ***, **, * denote significance at 1%,
5%, and 10% levels, respectively.

Table 5 reports VAR estimation and Granger causality test results. Optimal lag length is
four five-minute intervals based on BIC. Granger causality tests reveal bidirectional
relationships between ATI and market quality measures, though temporal precedence
differs across dimensions.

For liquidity measures, algorithmic trading Granger-causes quoted spreads and market
depth (p<o.01), but reverse causality is weak (p>0.10), supporting causal interpretation
that algorithmic trading drives liquidity improvements rather than merely responding to
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existing liquidity conditions.

For price efficiency measures, bidirectional causality is stronger. Algorithmic trading
Granger-causes reduced pricing errors (p<o.01), but pricing errors also Granger-cause
algorithmic trading (p<o.05), suggesting algorithmic traders are attracted to pricing
inefficiencies, which they subsequently correct.

Impulse response functions (Figure 2) show ATI shocks' persistent positive effects on
market depth and information incorporation speed, with effects stabilizing after 15-20
intervals (75-100 minutes). Quoted spread responses are immediate and sustained. These
dynamic patterns confirm algorithmic trading's enduring market quality impacts rather
than transitory effects.

5.5 State-Dependent Effects
Table 6: Instrumental Variable Estimates

Panel A: First-Stage Results ATI Index
Co-location Fee Change -0.187***
(-12.34)
Connectivity Charge Change -0.142***
(-9.87)
F-statistic (Co-location) 04.37*%*
F-statistic (Connectivity) 78.62***
Panel B: Second-Stage Results Quoted Spread Market Depth
ATI Index (IV) -3.18%** 0.247***
(-5.87) (6.42)
Control Variables Yes Yes
Contract & Time FE Yes Yes
Hansen J-stat (p-value) 0.37 0.42
Observations 4,187,234 4,187,234

Note: This table presents instrumental variable estimates addressing endogeneity
concerns. Panel a shows first-stage regression results with fee change instruments. Panel
B presents second-stage results. t-statistics in parentheses. ***, ** * denote significance at
1%, 5%, and 10% levels, respectively.

Table 6 presents state-dependent analysis results, strongly supporting H4. Interaction
terms between ATI and market stress indicators are consistently significant and
economically meaningful.

During normal market conditions (low-volatility regime), algorithmic trading effects on
liquidity and price efficiency are substantially stronger than baseline estimates. Quoted
spreads decline 24.1%, market depth increases 37.8%, and information incorporation
accelerates 48.3%. These findings indicate algorithmic trading provides maximum
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benefits during stable market periods.

Conversely, during market stress (high-volatility regime), liquidity benefits attenuate
dramatically and volatility amplif (Martinez and Rosu, 2013)ication emerges. Quoted
spread reductions fall to 6.8% (versus 24.1% in normal periods (Baron et al., 2019)),
market depth increases only 11.2% (versus 37.8%), while realized volatility increases 31.5%
(p<o.01). This volatility amplif (Martinez and Rosu, 2013) ication represents procyclical
liquidity (Leal et al., 2022) provision (Hendershott et al., 20m): algorithmic traders
withdraw liquidity precisely when markets need it most.

Price impact differential effects are particularly pronounced. During normal periods
(Baron et al., 2019), price impact increases modestly (9.2%), but during stress episodes,
price impact surges 28.7%, indicating substantial adverse selection costs imposed on non-
algorithmic participants during volatile conditions.

These state-dependent patterns have critical regulatory implications, suggesting that
while algorithmic trading enhances market quality generally, regulatory mechanisms may
be necessary to prevent destabilizing liquidity withdrawal during stress.

5.6 Cross-Sectional Heterogeneity
Table 7: VAR Analysis and Granger Causality Tests

Panel A: Granger Causality Tests F-statistic p-value
ATI — Quoted Spread 42.34 < 0.001%**
Quoted Spread — ATI 1.83 0.16
ATI — Market Depth 38.76 < 0.001%**
Market Depth — ATI 2.14 0.12
Panel B: Impul.se Response Peak Effect (min) Duration (min)
Functions
ATI Shock — Quoted Spread 15-20 35-40
ATI Shock — Market Depth 12-18 30-38
Panel C: Variance Decomposition ATI — Spread (%) Spread — ATI (%)
10-minute horizon 12.4 3.2
30-minute horizon 18.3 4.7
60-minute horizon 22.1 5.8

Note: This table reports VAR model estimates and Granger causality tests examining
dynamic relationships between algorithmic trading intensity and market quality
measures. Panel A presents Granger causality test results. Panel B shows impulse
response function characteristics. Panel C presents variance decomposition analysis. ***
denotes significance at 1% level.

Table 7 presents subsample analysis across contract types, confirming Hs. Effects
demonstrate substantial heterogeneity, with index futures exhibiting strongest responses,
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single-stock futures showing moderate effects, and currency derivatives displaying
minimal reactions.

For index futures, one-standard-deviation ATI increases reduce quoted spreads by 26.4%,
increase market depth by 41.7%, and accelerate information incorporation by 52.3%.
These large magnitudes reflect index futures' high baseline liquidity and trading activity,
creating favorable environments for algorithmic trading strategies.

Single-stock futures show intermediate effects: 14.8% spread reduction, 18.3% depth
increase, and 23.7% faster information incorporation. These moderate magnitudes likely
reflect lower baseline liquidity and higher idiosyncratic risk compared to index futures.
Currency derivatives exhibit minimal algorithmic trading impact: spread reductions of
only 4.2% (statistically insignificant), depth increases of 7.1% (p<o0.10), and information
incorporation improvements of 11.4% (p<o.10). Limited effects may reflect structural
differences in currency derivative markets, including higher regulatory constraints, lower
retail participation, and different market-making conventions.

Chow tests confirm coefficient differences across contract types are statistically
significant (p<o.o1 for all comparisons), validating heterogeneity hypothesis. These
findings suggest algorithmic trading's market quality benefits concentrate in most liquid,
actively traded contracts, with limited spillover to less liquid derivatives.

5.7 Robustness Tests

Conducted extensive robustness tests to validate the findings. Results remain consistent
across alternative ATI measure specifications (using individual proxies versus composite),
alternative market quality metric definitions (volume-weighted versus time-weighted
spreads), different sample period partitions (excluding pandemic recovery period),
alternative fixed effects structures (contract-month versus contract-day), and different
clustering approaches (one-way versus two-way clustering).

Additional robustness checks include: controlling for potential market manipulation
activities (quote stuffing detection algorithms), accounting for market fragmentation
effects (trading occurring across multiple venues), examining intraday pattern robustness
(morning versus afternoon trading), and testing for sample selection bias (including
delisted contracts). All robustness tests confirm main findings' stability.
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. Key Main . .. .
Hypothesis Priafon | Hmites Effect Size | Significance | Conclusion
Quoted
Algorithmic spreads Baseline: -
trading significantly 18.7% ( QS)
negatively reduced L 6'7302 (ES)’ v
Hi: Liquidity | 2ssociated | Effective +24.3% SUPPORTE
with bid-ask spreads p < o.o1 for all
Enhancemen Lk (MD) D
. | spreadsand | significantly measures
t Hypothesis . I\% Strong
positively reduced Estimates: - evidence
associated Market o .
. 22.3% (QS),
with market depth +31.7% (MD)
depth significantly L7
increased
Algorithmic
trading
accelerates Pricing
price erTors S
discovery | significantly Eas‘;i 1?Pe].3) v
H2: Price through reduced 4 o y SUPPORTE
. . +34.2% (IIS) | PE:p<o.05
Discovery reduced Information v 11S: © < 0.01 D
Hypothesis pricing incorporatio Estimates: ‘PO Strong
errors and n speed o . evidence
N +41.8% (IIS)
faster significantly
information | increased
incorporatio
n
Algorithmic
trading
increases
adverse Price impact
selection sioni ﬁcalsltl Baseline: v
H3: Adverse costs 5 Y +8.7% (PI) SUPPORTE
. increased
Selection measured for non- v p <0.05 D
Hypothesis through aloorithmic Estimates: Moderate
higher price & +11.2% (PI) evidence
. traders
impact for
non-
algorithmic
trades
Hua: State Relationship Normal Normal vs. Interaction v
De 4e'n dence exhibits periods: Stress terms: p < STRONGLY
o P othesis state Enhanced differential 0.01 SUPPORTE
P dependence: benefits highly Volatility D
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liquidity (QS: -241%, | significant | increase:p < Critical
benefits MD: +37.8%, | Interaction 0.01 finding
during IIS: +48.3%) | terms show
normal Stress strong state-
periods, periods: dependent
volatility Attenuated effects
amplificatio benefits
n during (QS: -6.8%,
stress MD: +11.2%)
and
volatility
amplificatio
n (+31.5%)
Price impact
during
stress:
+28.7%
Index
Futures:
Large effects
(QS: -26.4%,
. 0,
Effects MD: +41.7%,
[IS: +52.3%) . Index futures:
demonstrate | . Substantial
. Single-Stock . p <o0.01
significant i heterogeneit | . )
heterogeneit Futures: ¥ across Single-stock: v
Hs: Cross- ACTOSS Moderate contract p<o.o1top < | STRONGLY
Sectional Y effects (QS: 0.05 SUPPORTE
. contract o i types ]
Heterogeneit . -14.8%, MD: Currency: D
. types, with o Chow tests
y Hypothesis +18.3%, IIS: mostly n.s. or | Concentrate
larger 5 confirm .
. . +23.7%) .. p <o0.0 d benefits
impacts in significant
. .. Currency . Chow tests: p
highly liquid .. differences
Derivatives: < 0.01
contracts .
Minimal
effects (QS:
-4.2% n.s.,
MD: +7.1%,
IIS: +11.4%7)

Table 8: Summary

The findings provide nuanced insights into algorithmic trading's market quality impact in
emerging derivatives markets, with important theoretical and practical implications.

First, strong evidence supporting liquidity enhancement and price discovery hypotheses
confirms that algorithmic trading provides substantial benefits under normal market
conditions. The 18.7% quoted spread reduction and 24.3% market depth increase
represent economically meaningful improvements in liquidity provision. These

magnitudes align with upper ranges of effects documented in developed markets
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(Brogaard et al., 2014, 2021; Hendershott et al., 20m), suggesting emerging market
microstructure characteristics do not fundamentally impede algorithmic trading's
positive liquidity effects. Price discovery improvements—34.2% faster information
incorporation and 12.4% reduced pricing errors—demonstrate algorithmic traders' role in
enhancing market efficiency through rapid information processing.

Second, state-dependent effects reveal algorithmic trading's double-edged nature. While
benefits are substantial during normal periods (Baron et al., 2019), 31.5% volatility
increase during market stress indicates destabilizing potential. This finding aligns with
theoretical predictions of procyclical liquidity provision (Leal et al., 2022) and empirical
evidence from Flash Crash studies (Kirilenko et al., 2017). The stark contrast between
normal-period benefits and stress-period costs suggests regulatory frameworks must
address this asymmetry.

Third, substantial cross-sectional heterogeneity indicates algorithmic trading's benefits
concentrate in liquid contracts. This pattern has equity implications: if benefits accrue
primarily to already-liquid instruments while illiquid instruments see minimal
improvement, algorithmic trading may exacerbate existing market segmentation.
Policymakers should consider mechanisms encouraging algorithmic trading in less liquid
contracts or compensating for concentrated benefits.

Fourth, adverse selection cost evidence (8.7% price impact increase) confirms that while
algorithmic trading improves overall market efficiency, gains redistribute toward
sophisticated participants. This raises fairness concerns, particularly in emerging markets
with lower institutional participation and higher retail trader presence. Regulatory
attention to investor protection and market access equity is warranted.

Fifth, the instrumental variable approach provides more credible causal inference than
prior emerging market studies. Larger IV estimates versus OLS (22.3% versus 18.7%
spread reduction) suggest reverse causality and measurement error biases attenuate
unconditional associations. This methodological contribution demonstrates the
importance of addressing endogeneity in algorithmic trading research.

Finally, cross-country evidence spanning diverse regulatory regimes and market
structures suggests the findings generalize across emerging markets despite institutional
heterogeneity. However, specific effect magnitudes may vary with local market
characteristics, suggesting context-specific regulatory calibration.

7. Policy Implications and Recommendations

The findings suggest several evidence-based policy recommendations for emerging
market regulators and exchange operators:

First, regulators should adopt nuanced approaches recognizing algorithmic trading's
context-dependent effects. Blanket restrictions or prohibitions would sacrifice substantial
normal-period benefits. Instead, targeted interventions addressing stress-period
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destabilization are preferable. Circuit breakers, trading halts during extreme volatility,
and dynamic tick size adjustments could mitigate liquidity withdrawal without
eliminating normal-period benefits.

Second, exchanges should consider market-maker incentive programs specifically
targeting less liquid contracts. Given concentrated benefits in liquid instruments,
subsidies or preferential fee structures could encourage algorithmic market-making in
thinly traded derivatives, reducing market segmentation.

Third, real-time surveillance capabilities for detecting manipulative algorithmic trading
practices require strengthening. While the evidence suggests algorithmic trading
generally improves market quality, potential for quote stuffing, layering, and spoofing
necessitates robust monitoring. Investments in surveillance technology should match
technological sophistication of market participants.

Fourth, regulatory frameworks should address cross-border algorithmic trading
challenges. Given foreign algorithmic traders' significant presence in emerging markets
(Putnins, 2013), international regulatory coordination becomes essential. Harmonized
standards for risk controls, reporting requirements, and market access could reduce
regulatory arbitrage while maintaining market integrity.

Fifth, investor protection mechanisms warrant enhancement given adverse selection cost
evidence. Mandatory disclosure of algorithmic trading presence, execution quality
metrics reporting, and best execution requirements could help retail investors make
informed trading decisions.

Finally, regulatory capacity building is critical. Emerging market regulators must develop
technical expertise to understand algorithmic trading strategies, assess systemic risks,
and design effective interventions. International knowledge sharing and technical
assistance programs can accelerate this capacity development.

8. Limitations and Future Research

Several limitations suggest fruitful research directions. First, the algorithmic trading
intensity measures, while validated, remain indirect. Future research with direct
algorithmic trader identification could refine effect estimates and explore strategy
heterogeneity (market-making versus directional trading).

Second, the sample focuses on equity-index, single-stock, and currency derivatives.
Commodity and interest rate derivatives may exhibit different patterns given underlying
asset characteristics. Extending analysis to these markets would enhance generalizability.
Third, while the 2021-2023 sample captures important market condition variation, longer
time frames would enable more robust state-dependent analysis and examination of how
effects evolve as markets mature.

Fourth, while examining market quality impacts but not welfare implications. Future
research could model welfare effects, quantifying benefits to different market participant
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types and informing optimal policy design.

Fifth, the cross-country analysis pools exchanges. Country-specific analyses could identify
institutional features moderating algorithmic trading effects, providing targeted policy
guidance.

Finally, emerging technologies—machine learning (Gu et al, 2020), artificial
intelligence—are transforming algorithmic trading. Research examining these advanced
strategies' market quality implications would address evolving market dynamics.

9. Conclusion

This study provides comprehensive empirical evidence on algorithmic trading's market
quality impact in emerging derivatives markets. Using high-frequency data from four
major exchanges spanning 2021-2023, the study document nuanced, context-dependent
effects with important theoretical and policy implications.

Main findings demonstrate that algorithmic trading substantially enhances liquidity and
price efficiency under normal market conditions: quoted spreads decline 18.7%, market
depth increases 24.3%, and information incorporation accelerates 34.2%. These benefits
confirm algorithmic trading's positive role in emerging derivatives market development.
However, significant state dependence emerges. During market stress, liquidity benefits
attenuate while volatility amplif (Martinez and Rosu, 2013)ies 31.5%, revealing
destabilizing potential. Additionally, substantial cross-sectional heterogeneity
concentrates benefits in highly liquid contracts, with minimal impacts on thinly traded
derivatives.

These findings suggest regulators should adopt nuanced approaches balancing innovation
encouragement with systemic stability maintenance. Targeted interventions addressing
stress-period destabilization, incentive programs for less liquid contracts, enhanced
surveillance capabilities, and strengthened investor protection mechanisms emerge as
key policy priorities.

The study contributes to literature by: providing systematic emerging market derivatives
evidence with recent data, developing novel algorithmic trading intensity measures,
documenting significant state-dependent heterogeneity, employing rigorous instrumental
variable approaches, and offering specific evidence-based policy recommendations.

As algorithmic trading continues expanding in emerging markets, understanding its
multifaceted impacts becomes increasingly critical for regulators, market operators, and
participants. The findings provide empirical foundation for informed policy decisions
promoting market development while safeguarding market integrity and investor
protection.

1250 | www.scope-journal.com



Scope
Volume 15 Number o4 December 2025

References

10.

11.

12.

13.

14.

15.

Ait-Sahalia, Y., & Saglam, M. (2017). High frequency market making. Working Paper,
Princeton University.

Aquilina, M., Budish, E., & O'Neill, P. (2022). Quantifying the high-frequency trading
"arms race.” Quarterly Journal of Economics, 137(1), 493-564.

Baron, M., Brogaard, J., Hagstromer, B., & Kirilenko, A. (2019). Risk and return in
high-frequency trading. Journal of Financial and Quantitative Analysis, 54(3), 993-
1024.

Biais, B., & Foucault, T. (2021). HFT and market quality. Review of Finance, 25(4), 919-
948.

Biais, B., Foucault, T., & Moinas, S. (2015). Equilibrium fast trading. Journal of
Financial Economics, 116(2), 292-313.

BIS (2023). Quarterly Review: Derivatives Statistics. Bank for International
Settlements, December 2023.

Brogaard, J., Carrion, A., Moyaert, T., Riordan, R., Shkilko, A., & Sokolov, K. (2021).
High frequency trading and extreme price movements. Journal of Financial
Economics, 142(1), 102-120.

Brogaard, J., Hendershott, T., & Riordan, R. (2014). High-frequency trading and price
discovery. Review of Financial Studies, 27(8), 2267-2306.

Capponi, A., Cvitani¢, J., & Yao, T. (2021). Robust portfolio selection and algorithmic
trading in futures markets. Operations Research, 69(3), 863-882.

Cespa, G., & Vives, X. (2015). The beauty contest and short-term trading. Journal of
Finance, 70(5), 2099-2154.

Chakrabarty, B., Jain, P. K., Shkilko, A., & Sokolov, K. (2022). Speed, algorithmic
trading, and market quality around macroeconomic news announcements. Journal of
Financial and Quantitative Analysis, 57(7), 2564-2591.

Cumming, D., Johan, S., & Li, D. (2021). Exchange trading rules, surveillance and
suspected insider trading. Journal of Corporate Finance, 66, 101785.

Egginton, J. F., Van Ness, B. F., & Van Ness, R. A. (2016). Quote stuffing. Financial
Management, 45(3), 583-608.

Glosten, L. R., Nallareddy, S., & Zou, Y. (2021). ETF activity and informational
efficiency (Glosten et al., 2021) of underlying securities. Management Science, 67(1),
22-47.

Grossman, S. J., & Miller, M. H. (1988). Liquidity and market structure. Journal of
Finance, 43(3), 617-633.

Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning.
Review of Financial Studies, 33(5), 2223-2273.

1251 | www.scope-journal.com



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Scope
Volume 15 Number o4 December 2025

Hasbrouck, J., & Saar, G. (2013). Low-latency trading. Journal of Financial Markets,
16(4), 646-679.

Hendershott, T., Jones, C. M., & Menkveld, A. J. (2011). Does algorithmic trading
improve liquidity? Journal of Finance, 66(1), 1-33.

Hendershott, T., & Riordan, R. (2013). Algorithmic trading and the market for
liquidity. Journal of Financial and Quantitative Analysis, 48(4), 1001-1024.

Ho, T., & Stoll, H. R. (1981). Optimal dealer pricing under transactions and return
uncertainty. Journal of Financial Economics, 9(1), 47-73.

Jarnecic, E., & Snape, M. (2023). The provision of liquidity by high-frequency
participants in the Australian Treasury Bond Futures Market. Pacific-Basin Finance
Journal, 77, 101908.

Khandani, A. E., & Lo, A. W. (2011). What happened to the quants in August 2007?
Evidence from factors and transactions data. Journal of Financial Markets, 14(1), 1-46.
Kirilenko, A., Kyle, A. S., Samadi, M., & Tuzun, T. (2017). The Flash Crash: High-
frequency trading in an electronic market. Journal of Finance, 72(3), 967-998.
Korajezyk, R. A., & Murphy, D. (2022). High-frequency market making: Optimal
quoting. Review of Financial Studies, 35(10), 4473-4525.

Leal, S. J., Napoletano, M., Roventini, A., & Fagiolo, G. (2022). Rock around the clock:
An agent-based model of low- and high-frequency trading. Journal of Evolutionary
Economics, 32(5), 1457-1485.

Malinova, K., & Park, A. (2015). Subsidizing liquidity: The impact of make/take fees
on market quality. Journal of Finance, 70(2), 509-536.

Martinez, V. H., & Rosu, I. (2013). High frequency traders, news and volatility. AFA
2013 San Diego Meetings Paper.

Menkveld, A. J. (2013). High frequency trading and the new market makers. Journal of
Financial Markets, 16(4), 712-740.

Menkveld, A. J. (2016). The economics of high-frequency trading: Taking stock.
Annual Review of Financial Economics, 8, 1-24.

O'Hara, M., & Ye, M. (20m1). Is market fragmentation harming market quality? Journal
of Financial Economics, 100(3), 459-474.

Putnins, T. J. (2013). What do price discovery metrics really measure? Journal of
Empirical Finance, 23, 68-83.

Raman, V., & Yadav, P. K. (2023). The impact of algorithmic trading in a simulated
asset market. Journal of Financial Markets, 64, 100814.

Zhang, F. (2023). Regulatory approaches to algorithmic trading in Asia. Journal of
Financial Regulation, 9(2), 145-172.

1252 | www.scope-journal.com



	This conceptual framework illustrates the hypothesized relationships between algorithmic trading intensity and various dimensions of market quality. The framework incorporates moderating effects of market conditions and contract characteristics, along...

