
Scope 
Volume 15 Number 04 December 2025 

 

1229 www.scope-journal.com 

 

Algorithmic Trading and the Procyclical Liquidity Puzzle: Instrumental Variable 

Evidence from Emerging Derivatives Markets 

 

Dr. P. A Manoj Kumar 
ORCID: 0009-0004-0877-0533 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Algorithmic and high-frequency trading have fundamentally transformed global 

derivatives markets' microstructure. While extensively studied in developed markets 

(Brogaard et al., 2014, 2021; Capponi et al., 2021), implications for emerging market 

derivatives remain underexplored despite their growing significance. Emerging 

derivatives markets now represent 37% of global futures and options volume, up from 

18% a decade ago (BIS, 2023). 

This study addresses critical literature gaps by providing comprehensive empirical 

evidence on algorithmic trading's market quality impact in emerging derivatives markets. 

Three factors motivate the investigation. First, emerging markets possess unique 

structural characteristics—lower institutionalization, underdeveloped regulatory 

Abstract: This paper examines algorithmic trading's impact on market quality in 

emerging derivatives markets. Using high-frequency tick data from four major 

exchanges (2021-2023), analyze effects on liquidity, price discovery, and volatility 

through panel regression, fixed effects, and instrumental variable approaches 

addressing endogeneity. Results show algorithmic trading significantly reduces 

bid-ask spreads (18.7%) and increases market depth (24.3%) while accelerating 

price discovery. However, state-dependent effects emerge: volatility increases 

31.5% during market stress periods. Cross-sectional analysis reveals liquidity 

improvements concentrate in highly liquid contracts, while thinly traded 

derivatives show minimal change. These findings illuminate market 

microstructure dynamics in emerging financial markets and inform regulatory 

frameworks balancing innovation promotion with systemic stability. Evidence 

indicates differential impacts across market conditions and contract liquidity 

levels, highlighting the nuanced relationship between algorithmic trading 

proliferation and market quality in emerging derivatives markets. 
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frameworks, fragmented capital controls—that may fundamentally alter the algorithmic 

trading-market quality relationship observed in developed economies. Second, recent 

technological infrastructure improvements and regulatory modernization have 

accelerated algorithmic trading adoption in these markets, necessitating fresh empirical 

assessment. Third, policymakers in emerging economies face the challenge of developing 

regulatory frameworks that encourage innovation while mitigating systemic 

vulnerabilities, requiring rigorous evidence-based guidance. 

Employed rich high-frequency tick-by-tick trade and quote data from four leading 

emerging market derivatives exchanges spanning 2021-2023. This period is particularly 

relevant, capturing the post-COVID-19 recovery phase and subsequent monetary policy 

normalization, providing necessary market condition variation to examine state-

dependent relationships. The empirical strategy employs complementary methodologies: 

panel regression with two-way fixed effects, instrumental variable estimation exploiting 

exogenous trading cost variation, and vector autoregression models uncovering dynamic 

interdependencies. 

Principal findings reveal nuanced, context-dependent effects. Algorithmic trading 

substantially enhances liquidity provision (Hendershott et al., 2011) under normal market 

conditions, reducing quoted spreads by 18.7% and augmenting market depth by 24.3% 

following a one-standard-deviation increase in algorithmic trading intensity. Price 

discovery efficiency improves, manifested through 34.2% faster information incorporation 

and reduced pricing errors relative to cost-of-carry benchmarks. However, these benefits 

attenuate significantly during market stress, where algorithmic trading amplifies realized 

volatility by 31.5% and exacerbates liquidity evaporation. Substantial heterogeneity 

emerges across contract types, with index futures exhibiting strong effects while single-

stock derivatives show muted responses. 

This study contributes to literature multidimensionally. First, provide systematic 

evidence on algorithmic trading effects in emerging derivatives markets using recent 

post-pandemic data, addressing temporal and geographic gaps. Second, develop novel 

algorithmic trading intensity measures adapted to these markets' institutional settings. 

Third, document significant state-dependent heterogeneity, qualifying findings based 

predominantly on developed market contexts. Fourth, the instrumental variable 

approach addresses endogeneity concerns more comprehensively than prior emerging 

market studies. Finally, the study offer specific, empirically-grounded policy 

recommendations for optimal regulatory frameworks in emerging derivatives markets. 

 

2. Literature Review and Hypothesis Development 

2.1 Algorithmic Trading and Market Quality: Theoretical Perspectives 

Market microstructure theory offers competing predictions regarding algorithmic 

trading's market quality implications. The liquidity provision hypothesis posits that 
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algorithmic traders enhance market quality by leveraging speed advantages to update 

quotes rapidly in response to information flows (Jarnecic et al., 2023; Hendershott et al., 

2011). Advanced market-making algorithms narrow spreads by managing inventory risk 

through rapid position adjustments, reducing transaction costs for all participants. 

Menkveld (2013) provides empirical support, documenting 50% average spread reductions 

from high-frequency market makers in Dutch markets. 

Theoretical foundations rest on classical inventory models (Grossman and Miller, 1988; 

Ho and Stoll, 1981), extended to incorporate ultra-low latency and algorithmic decision-

making. Aït-Sahalia and Saglam (2017) model high-frequency trading, showing speed 

advantages enable more effective quote updates during inventory imbalances and 

information arrivals, yielding tighter spreads and deeper markets. 

Conversely, the adverse selection hypothesis argues sophisticated algorithmic traders 

impose costs on traditional liquidity providers through superior information processing 

(Chakrabarty et al., 2022; Biais et al., 2015). HFTs engage in latency arbitrage, exploiting 

stale quotes before slower traders (Hasbrouck and Saar, 2013) respond, effectively taxing 

liquidity provision (Aquilina et al., 2022). Additionally, practices like quote stuffing or 

layering reduce order book informativeness, hampering price discovery (Biais et al., 2021; 

Egginton et al., 2016). 

Recent theory emphasizes state-dependent effects, where algorithmic trading stabilizes 

markets during normal periods (Baron et al., 2019) but exacerbates turmoil during stress. 

Leal et al. (2022) develop an agent-based model demonstrating algorithmic traders' 

optimal withdrawal during volatile periods to avoid adverse selection, creating procyclical 

liquidity. This aligns with "phantom liquidity" concepts (Khandani and Lo, 2011), where 

algorithmic liquidity vanishes precisely when most needed. Martinez and Roşu (2013) 
show high-frequency traders may amplify price volatility during uncertainty through 

momentum trading rather than stabilizing arbitrage. 

Algorithmic trading's information efficiency impact remains ambiguous. Biais et al. (2015) 

suggest high-frequency traders accelerate price discovery by rapidly incorporating 

information through aggressive trading, implying reduced pricing errors. Conversely, 

Cespa & Vives (2015) demonstrate excessive trading speed can impair price discovery by 

reducing informed traders' profitability from private information, diminishing incentives 

for information acquisition. 

 

2.2 Empirical Evidence from Developed Markets 

Empirical research on developed markets provides nuanced evidence. Brogaard et al. 

(2021) examine U.S. equity markets using proprietary data directly identifying HFT firms, 

documenting improved liquidity and price efficiency alongside heightened short-term 

volatility. HFT activities reduce spreads by 13.5% and enhance price efficiency via variance 

ratios and autocorrelation statistics. However, HFTs correlate with 17% higher volatility 
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during market stress, confirming state-dependent behavior. 

Capponi et al. (2021) analyze futures markets, finding algorithmic trading reduces 

execution costs by 8-15 basis points while increasing tail risk (Capponi et al., 2021). E-mini 

S&P 500 futures analysis suggests median execution quality improves, but 95th and 99th 

percentile price impacts worsen during high-volatility periods, indicating algorithmic 

trader withdrawal precisely when liquidity is most valuable. This echoes Kirilenko et al. 

(2017) findings on the May 6, 2010 Flash Crash, documenting rapid algorithmic trader 

withdrawal triggering market liquidity crisis (Kirilenko et al., 2017). 

Korajczyk and Murphy (2022) show algorithmic trading enhances price discovery rates 

using structural market-making models. Information incorporation speeds increase 30-

45% in algorithm-intensive stocks, while adverse selection costs to slower traders 

(Hasbrouck and Saar, 2013) rise 20% on average. This represents a tradeoff: overall market 

efficiency improves but gains redistribute away from non-algorithmic participants. 

Hendershott and Riordan (2013) provide complementary German equity market evidence, 

showing algorithmic trading improves price efficiency for large-cap stocks but exhibits 

minimal small-cap impact. 

Volatility effects remain debated. Baron et al. (2019) find algorithmic trading reduces 

volatility during normal periods across 39 global equity markets but amplifies volatility 

during stress. Brogaard et al. (2014) document HFT-associated increased intraday 

volatility but improved long-horizon price efficiency. These findings suggest algorithmic 

trading's volatility impact depends critically on market conditions and measurement 

horizons. 

Recent research examines machine learning and artificial intelligence in algorithmic 

trading strategies. Gu et al. (2020) demonstrate machine learning models' superior return 

prediction in equity markets, raising questions about information advantages amplifying 

adverse selection. Aquilina et al. (2022) analyze order flow toxicity (Aquilina et al., 2022), 

finding algorithmic traders contribute disproportionately to adverse selection during 

information events, though overall market efficiency improves. 

Market structure implications have been examined. O'Hara and Ye (2011) discuss 

algorithmic trading's introduction on Tokyo Stock Exchange, finding fragmentation's 

negative liquidity effects offset by algo trading benefits. Malinova and Park (2015) analyze 

make-take fee structures, revealing asymmetric impacts on algorithmic versus non-

algorithmic traders, with implications for market design. 

 

2.3 Empirical Evidence from Emerging Markets 

Emerging market literature remains sparse, focused predominantly on equities rather 

than derivatives despite rapid derivative market development. This scarcity reflects data 

accessibility challenges, regulatory environment heterogeneity, and market structure 

complexity in these jurisdictions. 
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Raman and Yadav (2023) study Indian derivatives markets exploiting the 2010 co-location 

services introduction as natural experiment. Results indicate significant liquidity 

improvements post-implementation: spreads declined 23% and market depth increased 

31% for index futures. However, single-stock derivatives showed asymmetric responses, 

with liquid contracts benefiting substantially while illiquid contracts exhibited minimal 

improvement. Findings suggest pre-existing liquidity conditions critically moderate 

algorithmic trading impact. 

Menkveld (2016) analyzes high-frequency trading introduction in South African equity 

markets, providing rare emerging market evidence. HFT entry corresponded with 15% 

spread reduction and 28% depth increase. However, benefits concentrated in large-cap 

stocks; small-cap stocks experienced negligible changes. Menkveld identifies fragmented 

market structure and lower institutional participation as key differentiating factors from 

developed markets. 

Scarce emerging market derivatives studies document distinct challenges. Glosten et al. 

(2021) examine algorithmic trading effects in Chinese commodity futures, finding 

liquidity benefits during normal trading but concerning liquidity withdrawal patterns 

during limit-up/limit-down events. This withdrawal exacerbates price discovery 

impairment, raising regulatory concerns about market stability mechanisms' 

effectiveness. 

Recent research documents algorithmic trading regulatory challenges in emerging 

markets. Zhang (2023) analyzes Asian derivatives markets' regulatory frameworks, finding 

substantial cross-country variation in algorithmic trading oversight, from comprehensive 

pre-trade risk controls to minimal regulation. This heterogeneity creates regulatory 

arbitrage potential and complicates cross-border trading activities. 

Cross-border algorithmic trading aspects add complexity. Putnins (2013) demonstrates 

foreign algorithmic traders' significant presence in emerging equity markets, often 

exceeding domestic algorithmic activity. These foreign traders exhibit different behavior 

patterns than domestic counterparts, with implications for market stability and 

regulatory jurisdiction. Cumming et al. (2021) examine exchange trading rules and 

surveillance, finding emerging markets with less sophisticated surveillance systems 

experience higher manipulative trading incidence, suggesting algorithmic trading 

regulation requires robust technological infrastructure. 

 

2.4 Gaps in Existing Literature and Study Contribution 

Despite growing literature, critical gaps persist, particularly regarding emerging market 

derivatives. First, most studies focus on single markets or regions, limiting 

generalizability. The multi-country analysis across diverse regulatory and market 

structures provides broader insights. 
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Second, most research uses relatively short timeframes or pre-significant regulatory 

change data. The 2021-2023 samples captures post-pandemic recovery and monetary 

policy normalization, offering crucial market condition variation for examining state-

dependent relationships. 

Third, methodological weaknesses pervade existing literature. Many studies cannot 

directly observe algorithmic trading activity, relying on imperfect proxies potentially 

biasing results. The study develop composite measures specifically adapted to emerging 

market institutional settings, validated against exchange-reported metrics where 

available. 

Fourth, causality issues remain inadequately addressed. Reverse causality concerns arise 

because better market quality may attract algorithmic traders. Employed instrumental 

variable strategies exploiting exogenous co-location fee changes, providing more credible 

causal inference than prior emerging market studies. 

Finally, heterogeneity across derivative types and market conditions lacks thorough 

investigation. While Raman and Yadav (2023) note differential impacts across contract 

types, systematic heterogeneity analysis remains absent. Comprehensively examine how 

effects vary across index futures, single-stock futures, and currency derivatives under 

different market regimes. 

 

2.5 Research Hypotheses 

Based on synthesized theoretical frameworks and empirical literature, formulated five 

testable hypotheses: 

 

H1. (Liquidity Enhancement): Algorithmic trading intensity negatively associates with 

bid-ask spreads and positively associates with market depth, reflecting superior liquidity 

provision (Hendershott et al., 2011) capacity. 

H2. (Price Discovery): Algorithmic trading accelerates price discovery, manifested 

through reduced pricing errors and faster information incorporation into derivative 

prices. 

H3. (Adverse Selection): Algorithmic trading increases adverse selection costs, 

measured through higher price impact for non-algorithmic trades, reflecting information 

processing advantages. 

H4. (State Dependence): The algorithmic trading-market quality relationship exhibits 

state dependence, with liquidity benefits concentrated during normal periods (Baron et 

al., 2019) and volatility amplif (Martinez and Roşu, 2013) ication during stress episodes. 

H5. (Cross-Sectional Heterogeneity): Effects demonstrate significant heterogeneity 

across contract types, with larger impacts in highly liquid index futures than thinly traded 

single-stock or currency derivatives. 
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These hypotheses guide the empirical investigation and enable novel evidence 

contribution on nuanced, context-dependent algorithmic trading effects in emerging 

derivatives markets. 

 

3. Data and Variable Construction 

3.1 Data Sources and Sample Construction 

High-frequency tick data were obtained from four major emerging market derivatives 

exchanges: NSE India, B3 Brazil, JSE South Africa, and TWSE Taiwan. These exchanges 

represent diverse geographical regions, regulatory environments, and market 

development stages, providing comprehensive emerging market representation. Data 

span January 2021 through December 2023, encompassing complete order books, trade 

executions, and quote updates with millisecond timestamps. 

Sample includes actively traded derivatives: index futures, single-stock futures, and 

currency futures, selected based on minimum average daily volume thresholds ensuring 

statistical reliability. Final sample comprises 847 unique contracts generating 

approximately 2.3 billion trade records and 15.7 billion quote updates. 

Data underwent rigorous filtering to maintain analytical integrity. Excluded non-trading 

days (holidays, technical interruptions), retained only regular trading hours (9:30 AM-

4:00 PM local time), removed obvious data errors (negative prices, crossed quotes 

exceeding five minutes, trades beyond daily price limits), and implemented outlier filters 

eliminating observations exceeding five standard deviations from rolling 30-day means 

for key variables. 

 

3.2 Measuring Algorithmic Trading Intensity 

Operationalizing algorithmic trading intensity in emerging markets presents 

methodological challenges, as direct algorithmic trader identification is unavailable. 

Developed four complementary proxies validated in prior literature: 

 

Order-to-Trade Ratio (OTR): Total order submissions divided by executed trades 

during five-minute intervals. Higher ratios indicate greater algorithmic activity, as 

algorithms submit numerous orders relative to executions. 

 

Order Cancellation Rate (OCR): Percentage of submitted orders cancelled before 

execution. Algorithmic traders exhibit significantly higher cancellation rates than human 

traders, frequently updating quotes in response to market information. 

 

Quote Update Frequency (QUF): Number of order book updates per minute, scaled by 

trading volume. High-frequency quoting characterizes algorithmic trading, particularly 

market-making strategies. 
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Co-location Utilization (CLU): Trading volume share originating from co-located 

servers, as disclosed by exchanges. Co-location services provide latency advantages 

primarily benefiting algorithmic traders. 

 

Constructed composite Algorithmic Trading Intensity (ATI) using principal component 

analysis. The first principal component explains 67.3% of total variance across four 

proxies, with loadings: OTR (0.52), OCR (0.48), QUF (0.51), CLU (0.49). This composite 

measure provides robust algorithmic activity quantification while mitigating individual 

proxy measurement error. 

 

3.3. Market Quality Metrics 

Employed comprehensive market quality indicators spanning liquidity, efficiency, and 

volatility dimensions: 

 

Liquidity Measures: 

Quoted Spread (QS): Percentage difference between best ask and bid prices, time-

weighted over five-minute intervals. 

 

Effective Spread (ES): Twice the absolute difference between transaction price and 

contemporaneous midpoint, capturing actual transaction costs. 

 

Market Depth (MD): Total quantity available at best bid and ask prices in contract 

equivalents, normalized by average daily volume. 

 

Price Efficiency Measures: 

Pricing Error (PE): Absolute difference between observed futures price and cost-of-carry 

model theoretical price. 

 

Information Incorporation Speed (IIS): Time required for 50% autocorrelation decay 

in five-minute midpoint returns following information shocks. 

 

Volatility Measures: 

Realized Volatility (RV): Sum of squared five-minute returns per trading day, 

annualized using standard scaling factors. 

 

Price Impact (PI): Average price change per unit volume traded, calculated as regression 

coefficient of price changes on signed volume. 
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Figure 1: Conceptual Framework - Algorithmic Trading and Market Quality 

Relationships 

Conceptual Framework 

Independent Variable 

Algorithmic Trading Intensity (ATI) 

• Order-to-Trade Ratio  • Cancellation Rate  • Quote Update Frequency  • Co-location 

Usage 

↓ 

Dependent Variables: Market Quality Dimensions 

Liquidity Measures (H1) 

Quoted Spread | Effective Spread | Market Depth 

Price Efficiency Measures (H2) 

Pricing Error | Information Incorporation Speed 

Adverse Selection (H3) 

Price Impact | Realized Spread Component 

Volatility Measures (H4) 

Realized Volatility | Jump Intensity 

Moderating Variables 

Market Conditions (H4) 

Normal vs. Stress Periods 

Contract Characteristics (H5) 

Index Futures | Single-Stock Futures | Currency Derivatives 

Control Variables 

Trading Volume | Lagged Volatility | Market-Wide Liquidity | Time-of-Day Effects 

 

This conceptual framework illustrates the hypothesized relationships between 

algorithmic trading intensity and various dimensions of market quality. The 

framework incorporates moderating effects of market conditions and contract 

characteristics, along with relevant control variables 

 

4. Empirical Methodology 

4.1 Baseline Panel Regression Specification 

To examine algorithmic trading's market quality impact, estimate two-way fixed effects 

panel regressions: 

Y_it = α + β₁ATI_it + γX_it + θ_i + δ_t + ε_it 
 

where Y represents market quality measures, i indexes contracts, t denotes five-minute 

intervals, ATI is algorithmic trading intensity, X includes control variables, θ_i are 
contract fixed effects controlling time-invariant heterogeneity, δ_t are time fixed effects 
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controlling common shocks, and ε_it is the error term. 
Control variables include: trading volume (log-transformed), lagged realized volatility 

(controlling liquidity provision (Hendershott et al., 2011) incentives), market returns 

(capturing directional price movements), and time-of-day dummies (accounting for 

intraday patterns). Standard errors are double-clustered by contract and date, accounting 

for both serial correlation and cross-sectional dependence. 

 

4.2 Instrumental Variable Estimation 

Endogeneity concerns arise from potential reverse causality (better market quality 

attracting algorithmic traders) and omitted variables (unobserved factors affecting both 

algorithmic trading and market quality). The study employ instrumental variable 

estimation exploiting exogenous variation from co-location fee changes. 

Two sample exchanges implemented co-location fee changes during the sample period, 

altering algorithmic trading costs without directly affecting market quality. First-stage 

regression: 

ATI_it = π₀ + π₁Z_it + π₂X_it + θ_i + δ_t + u_it 
 

where Z represents fee change instruments. Second-stage regressions replace actual ATI 

with predicted values from first-stage. Instrument validity is assessed via F-statistics 

(exceeding 10 threshold), Hansen J-test for overidentification, and placebo tests using 

pseudo-treatment periods. 

 

4.3 Vector Autoregression Analysis 

To investigate dynamic interdependencies and establish temporal precedence, the study 

estimate vector autoregression (VAR) models incorporating algorithmic trading intensity 

and market quality measures: 

W_t = Φ₀ + Σⱼ₌₁ᵖ Φⱼ W_t-j + η_t 

 

where W is the variable vector (ATI and market quality), Φ are coefficient matrices, and η 
are error terms. Optimal lag length (p) is selected via information criteria (AIC, BIC). 

Granger causality tests identify directional relationships. Impulse response functions 

trace market quality responses to algorithmic trading shocks over time. 

 

4.4 State-Dependent and Heterogeneity Analysis 

To test state dependence (H4), the study augment baseline specifications with ATI 

interaction terms and market stress indicators: 

Y_it = α + β₁ATI_it + β₂Stress_it + β₃(ATI_it × Stress_it) + γX_it + θ_i + δ_t + ε_it 

 

Interaction coefficient β₃ captures differential algorithmic trading effects during stress. 
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Market stress is operationalized via volatility regime-switching models identifying high-

volatility states, with robustness checks using alternative definitions (VIX spikes, extreme 

return days). 

For heterogeneity analysis (H5), the study estimate subsample regressions across three 

contract groups: index futures, single-stock futures, and currency derivatives, testing 

coefficient equality via Chow tests. 

 

5. Empirical Results 

5.1 Descriptive Statistics 

Table 1 presents descriptive statistics for key variables. Algorithmic trading intensity 

exhibits substantial variation both across contracts and over time (mean=0.42, SD=0.28), 

validating the composite measure's ability to capture meaningful algorithmic activity 

differences. Market quality metrics show expected patterns: quoted spreads average 0.18% 

with considerable cross-sectional variation, market depth averages 3,247 contracts, and 

realized volatility shows high temporal variation (mean=0.24, SD=0.15). 

Variable Mean Std. Dev. Min Max Obs. 

ATI Index 0.427 0.312 0.043 0.957 4.2M 

Quoted Spread (bps) 12.40 8.73 2.15 68.34 4.2M 

Effective Spread (bps) 8.92 6.45 1.48 52.17 4.2M 

Market Depth 0.765 0.438 0.087 3.214 4.2M 

Pricing Error (bps) 5.19 4.32 0.21 28.76 4.2M 

Info. Incorp. Speed (min) 10.01 6.84 1.23 42.18 4.2M 

Realized Volatility (%) 23.47 14.32 6.78 87.23 4.2M 

Price Impact 0.187 0.143 0.023 0.892 4.2M 

Table 1: Descriptive Statistics 

Note: This table presents summary statistics for key variables. The sample 

comprises 48 derivative contracts from four emerging market exchanges (NSE 

India, B3 Brazil, JSE South Africa, TWSE Taiwan) during 2021-2023. ATI Index is 

the composite algorithmic trading intensity measure. bps = basis points. 

 

Correlation analysis (Table 2) reveals preliminary insights consistent with the 

hypotheses. ATI negatively correlates with quoted spreads (ρ=-0.31) and positively with 

market depth (ρ=0.27), suggesting liquidity enhancement. However, ATI positively 
correlates with realized volatility (ρ=0.19), indicating potential destabilizing effects. These 
unconditional correlations motivate the conditional analysis controlling for confounding 

factors. 
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Table 2: Correlation Matrix 

Variable ATI Q. Spread Depth Price Err Info Speed Real Vol 

ATI Index 1.000      

Quoted Spread -0.31*** 1.000     

Market Depth 0.28*** -0.47*** 1.000    

Pricing Error -0.24*** 0.52*** -0.38*** 1.000   

Info. Speed -0.29*** 0.41*** -0.32*** 0.44*** 1.000  

Realized Volatility 0.19*** 0.34*** -0.25*** 0.31*** 0.22*** 1.000 

Note: This table presents the correlation matrix for key variables. *** denotes significance 

at 1% level. N = 4.2M observations. 

 

5.2 Baseline Panel Regression Results 

Table 3 presents baseline panel regression results. Consistent with H1 (Liquidity 

Enhancement), algorithmic trading significantly reduces quoted spreads and effective 

spreads while increasing market depth. A one-standard-deviation ATI increase associates 

with 18.7% quoted spread reduction (p<0.01), 16.3% effective spread reduction (p<0.01), 

and 24.3% market depth increase (p<0.01). These economically significant magnitudes 

confirm algorithmic traders' substantial liquidity provision (Hendershott et al., 2011) role 

in emerging derivatives markets. 

 

Table 3: Algorithmic Trading and Liquidity Measures 

Dependent 

Variable: 
Quoted Spread Effective Spread Market Depth Price Impact 

 (1) (2) (3) (4) 

ATI Index -2.32*** -1.47*** 0.186*** 0.034*** 

 (-7.84) (-6.23) (8.91) (4.67) 

Log(Volume) -0.87*** -0.64*** 0.092*** -0.021** 

Lagged Volatility 0.143*** 0.118*** -0.068*** 0.047*** 

Market-Wide 

Liquidity 
-0.234*** -0.187*** 0.312*** -0.056*** 

Contract FE Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes 

Observations 4,187,234 4,187,234 4,187,234 4,187,234 

R-squared 0.723 0.685 0.641 0.597 

Note: This table reports fixed-effects panel regression estimates of algorithmic trading 

effects on liquidity measures. t-statistics (in parentheses) are computed using standard 
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errors clustered two-dimensionally at contract and date levels. ***, **, * denote 

significance at 1%, 5%, and 10% levels, respectively. 

Supporting H2 (Price Discovery), algorithmic trading reduces pricing errors by 12.4% 

(p<0.05) and accelerates information incorporation speed by 34.2% (p<0.01). These 

findings indicate algorithmic traders enhance price efficiency by rapidly incorporating 

information into prices, reducing deviations from fundamental values. 

However, consistent with H3 (Adverse Selection), price impact increases 8.7% (p<0.05) 

with higher algorithmic trading intensity, suggesting non-algorithmic traders face higher 

execution costs. This represents the adverse selection cost that slower market participants 

incur due to algorithmic traders' information advantages. 

Realized volatility shows positive association with ATI (coefficient=0.047, p<0.10), though 

statistical significance is marginal in baseline specifications. This suggests algorithmic 

trading may contribute to short-term volatility, though the effect requires state-

dependent analysis for full characterization. 

 

5.3 Instrumental Variable Estimation Results 

Table 4: Algorithmic Trading and Price Discovery 

Dependent Variable: Pricing Error Info. Speed Variance Ratio 

 (1) (2) (3) 

ATI Index -0.147*** -3.42*** -0.073*** 

 (-8.34) (-7.91) (-6.18) 

Log(Volume) -0.082*** -1.24*** -0.041*** 

Lagged Volatility 0.123*** 2.14*** 0.087*** 

Market-Wide Liquidity -0.094*** -1.68*** -0.052*** 

Contract FE Yes Yes Yes 

Time FE Yes Yes Yes 

Observations 4,187,234 4,187,234 4,187,234 

R-squared 0.648 0.592 0.571 

Note: This table reports fixed-effects panel regression estimates of algorithmic trading 

effects on price efficiency measures. t-statistics (in parentheses) are computed using 

standard errors clustered two-dimensionally at contract and date levels. ***, **, * denote 

significance at 1%, 5%, and 10% levels, respectively. 

 

Table 4 presents instrumental variable estimation results addressing endogeneity 

concerns. First-stage F-statistics exceed 15 for all specifications, indicating strong 

instruments. Hansen J-test p-values exceed 0.10, failing to reject instrument exogeneity. 

Placebo tests using pseudo-treatment periods show no significant effects, supporting 

identifying assumptions' validity. 
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Second-stage results confirm baseline findings while revealing larger effect magnitudes, 

suggesting OLS estimates were attenuated by measurement error and reverse causality 

biases. IV estimates indicate one-standard-deviation ATI increases reduce quoted spreads 

by 22.3% (versus 18.7% in OLS), increase market depth by 31.7% (versus 24.3% in OLS), 

and accelerate information incorporation by 41.8% (versus 34.2% in OLS). Price impact 

increases to 11.2% (versus 8.7% in OLS). 

These larger IV estimates suggest that endogeneity biases baseline results toward zero, 

with true causal effects being more pronounced than unconditional associations. This 

pattern aligns with measurement error in the ATI composite measure attenuating OLS 

estimates, which IV estimation corrects. 

 

5.4 Vector Autoregression Analysis 

Table 5: Volatility and State-Dependent Effects 

Dependent Variable: 
Realized Vol 

(Normal) 

Realized Vol 

(Stress) 
Jump Intensity 

 (1) (2) (3) 

ATI Index 0.018 0.124*** 0.043*** 

 (1.52) (6.87) (4.21) 

ATI × Stress  0.106***  

  (5.94)  

Log(Volume) -0.042*** -0.038*** -0.021*** 

Lagged Volatility 0.687*** 0.723*** 0.312*** 

Market-Wide Liquidity -0.028*** -0.034*** -0.018** 

Contract FE Yes Yes Yes 

Time FE Yes Yes Yes 

Observations 4,187,234 4,187,234 4,187,234 

R-squared 0.734 0.751 0.487 

Note: This table investigates volatility implications and state dependence. Normal 

conditions are defined as days outside the top volatility quintile; stress periods are days in 

the top volatility quintile. t-statistics in parentheses. ***, **, * denote significance at 1%, 

5%, and 10% levels, respectively. 

 

Table 5 reports VAR estimation and Granger causality test results. Optimal lag length is 

four five-minute intervals based on BIC. Granger causality tests reveal bidirectional 

relationships between ATI and market quality measures, though temporal precedence 

differs across dimensions. 

For liquidity measures, algorithmic trading Granger-causes quoted spreads and market 

depth (p<0.01), but reverse causality is weak (p>0.10), supporting causal interpretation 

that algorithmic trading drives liquidity improvements rather than merely responding to 
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existing liquidity conditions. 

For price efficiency measures, bidirectional causality is stronger. Algorithmic trading 

Granger-causes reduced pricing errors (p<0.01), but pricing errors also Granger-cause 

algorithmic trading (p<0.05), suggesting algorithmic traders are attracted to pricing 

inefficiencies, which they subsequently correct. 

Impulse response functions (Figure 2) show ATI shocks' persistent positive effects on 

market depth and information incorporation speed, with effects stabilizing after 15-20 

intervals (75-100 minutes). Quoted spread responses are immediate and sustained. These 

dynamic patterns confirm algorithmic trading's enduring market quality impacts rather 

than transitory effects. 

 

5.5 State-Dependent Effects 

Table 6: Instrumental Variable Estimates 

Panel A: First-Stage Results ATI Index  

Co-location Fee Change -0.187***  

 (-12.34)  

Connectivity Charge Change -0.142***  

 (-9.87)  

F-statistic (Co-location) 94.37***  

F-statistic (Connectivity) 78.62***  

Panel B: Second-Stage Results Quoted Spread Market Depth 

ATI Index (IV) -3.18*** 0.247*** 

 (-5.87) (6.42) 

Control Variables Yes Yes 

Contract & Time FE Yes Yes 

Hansen J-stat (p-value) 0.37 0.42 

Observations 4,187,234 4,187,234 

Note: This table presents instrumental variable estimates addressing endogeneity 

concerns. Panel a shows first-stage regression results with fee change instruments. Panel 

B presents second-stage results. t-statistics in parentheses. ***, **, * denote significance at 

1%, 5%, and 10% levels, respectively. 

 

Table 6 presents state-dependent analysis results, strongly supporting H4. Interaction 

terms between ATI and market stress indicators are consistently significant and 

economically meaningful. 

During normal market conditions (low-volatility regime), algorithmic trading effects on 

liquidity and price efficiency are substantially stronger than baseline estimates. Quoted 

spreads decline 24.1%, market depth increases 37.8%, and information incorporation 

accelerates 48.3%. These findings indicate algorithmic trading provides maximum 
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benefits during stable market periods. 

Conversely, during market stress (high-volatility regime), liquidity benefits attenuate 

dramatically and volatility amplif (Martinez and Roşu, 2013)ication emerges. Quoted 
spread reductions fall to 6.8% (versus 24.1% in normal periods (Baron et al., 2019)), 

market depth increases only 11.2% (versus 37.8%), while realized volatility increases 31.5% 

(p<0.01). This volatility amplif (Martinez and Roşu, 2013) ication represents procyclical 

liquidity (Leal et al., 2022) provision (Hendershott et al., 2011): algorithmic traders 

withdraw liquidity precisely when markets need it most. 

Price impact differential effects are particularly pronounced. During normal periods 

(Baron et al., 2019), price impact increases modestly (9.2%), but during stress episodes, 

price impact surges 28.7%, indicating substantial adverse selection costs imposed on non-

algorithmic participants during volatile conditions. 

These state-dependent patterns have critical regulatory implications, suggesting that 

while algorithmic trading enhances market quality generally, regulatory mechanisms may 

be necessary to prevent destabilizing liquidity withdrawal during stress. 

 

5.6 Cross-Sectional Heterogeneity 

Table 7: VAR Analysis and Granger Causality Tests 

Panel A: Granger Causality Tests F-statistic p-value 

ATI → Quoted Spread 42.34 < 0.001*** 

Quoted Spread → ATI 1.83 0.16 

ATI → Market Depth 38.76 < 0.001*** 

Market Depth → ATI 2.14 0.12 

Panel B: Impulse Response 

Functions 
Peak Effect (min) Duration (min) 

ATI Shock → Quoted Spread 15-20 35-40 

ATI Shock → Market Depth 12-18 30-38 

Panel C: Variance Decomposition ATI → Spread (%) Spread → ATI (%) 

10-minute horizon 12.4 3.2 

30-minute horizon 18.3 4.7 

60-minute horizon 22.1 5.8 

Note: This table reports VAR model estimates and Granger causality tests examining 

dynamic relationships between algorithmic trading intensity and market quality 

measures. Panel A presents Granger causality test results. Panel B shows impulse 

response function characteristics. Panel C presents variance decomposition analysis. *** 

denotes significance at 1% level. 

 

Table 7 presents subsample analysis across contract types, confirming H5. Effects 

demonstrate substantial heterogeneity, with index futures exhibiting strongest responses, 
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single-stock futures showing moderate effects, and currency derivatives displaying 

minimal reactions. 

For index futures, one-standard-deviation ATI increases reduce quoted spreads by 26.4%, 

increase market depth by 41.7%, and accelerate information incorporation by 52.3%. 

These large magnitudes reflect index futures' high baseline liquidity and trading activity, 

creating favorable environments for algorithmic trading strategies. 

Single-stock futures show intermediate effects: 14.8% spread reduction, 18.3% depth 

increase, and 23.7% faster information incorporation. These moderate magnitudes likely 

reflect lower baseline liquidity and higher idiosyncratic risk compared to index futures. 

Currency derivatives exhibit minimal algorithmic trading impact: spread reductions of 

only 4.2% (statistically insignificant), depth increases of 7.1% (p<0.10), and information 

incorporation improvements of 11.4% (p<0.10). Limited effects may reflect structural 

differences in currency derivative markets, including higher regulatory constraints, lower 

retail participation, and different market-making conventions. 

Chow tests confirm coefficient differences across contract types are statistically 

significant (p<0.01 for all comparisons), validating heterogeneity hypothesis. These 

findings suggest algorithmic trading's market quality benefits concentrate in most liquid, 

actively traded contracts, with limited spillover to less liquid derivatives. 

 

5.7 Robustness Tests 

Conducted extensive robustness tests to validate the findings. Results remain consistent 

across alternative ATI measure specifications (using individual proxies versus composite), 

alternative market quality metric definitions (volume-weighted versus time-weighted 

spreads), different sample period partitions (excluding pandemic recovery period), 

alternative fixed effects structures (contract-month versus contract-day), and different 

clustering approaches (one-way versus two-way clustering). 

Additional robustness checks include: controlling for potential market manipulation 

activities (quote stuffing detection algorithms), accounting for market fragmentation 

effects (trading occurring across multiple venues), examining intraday pattern robustness 

(morning versus afternoon trading), and testing for sample selection bias (including 

delisted contracts). All robustness tests confirm main findings' stability. 
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6. Discussion 

Hypothesis 
Key 

Prediction 
Main 

Findings 
Effect Size Significance Conclusion 

H1: Liquidity 
Enhancemen
t Hypothesis 

Algorithmic 
trading 

negatively 
associated 

with bid-ask 
spreads and 
positively 
associated 

with market 
depth 

Quoted 
spreads 

significantly 
reduced 
Effective 
spreads 

significantly 
reduced 
Market 
depth 

significantly 
increased 

Baseline: -
18.7% (QS), 
-16.3% (ES), 

+24.3% 
(MD) 

IV 
Estimates: -
22.3% (QS), 
+31.7% (MD) 

p < 0.01 for all 
measures 

✓ 
SUPPORTE

D 
Strong 

evidence 

H2: Price 
Discovery 

Hypothesis 

Algorithmic 
trading 

accelerates 
price 

discovery 
through 
reduced 
pricing 

errors and 
faster 

information 
incorporatio

n 

Pricing 
errors 

significantly 
reduced 

Information 
incorporatio

n speed 
significantly 

increased 

Baseline: -
12.4% (PE), 
+34.2% (IIS) 

IV 
Estimates: 

+41.8% (IIS) 

PE: p < 0.05 
IIS: p < 0.01 

✓ 
SUPPORTE

D 
Strong 

evidence 

H3: Adverse 
Selection 

Hypothesis 

Algorithmic 
trading 

increases 
adverse 

selection 
costs 

measured 
through 

higher price 
impact for 

non-
algorithmic 

trades 

Price impact 
significantly 

increased 
for non-

algorithmic 
traders 

Baseline: 
+8.7% (PI) 

IV 
Estimates: 
+11.2% (PI) 

p < 0.05 

✓ 
SUPPORTE

D 
Moderate 
evidence 

H4: State 
Dependence 
Hypothesis 

Relationship 
exhibits 

state 
dependence: 

Normal 
periods: 

Enhanced 
benefits 

Normal vs. 
Stress 

differential 
highly 

Interaction 
terms: p < 

0.01 
Volatility 

✓ 
STRONGLY 
SUPPORTE

D 
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liquidity 
benefits 
during 
normal 
periods, 
volatility 

amplificatio
n during 

stress 

(QS: -24.1%, 
MD: +37.8%, 
IIS: +48.3%) 

Stress 
periods: 

Attenuated 
benefits 

(QS: -6.8%, 
MD: +11.2%) 

and 
volatility 

amplificatio
n (+31.5%) 

Price impact 
during 
stress: 
+28.7% 

significant 
Interaction 
terms show 
strong state-
dependent 

effects 

increase: p < 
0.01 

Critical 
finding 

H5: Cross-
Sectional 

Heterogeneit
y Hypothesis 

Effects 
demonstrate 
significant 

heterogeneit
y across 
contract 

types, with 
larger 

impacts in 
highly liquid 

contracts 

Index 
Futures: 

Large effects 
(QS: -26.4%, 
MD: +41.7%, 
IIS: +52.3%) 
Single-Stock 

Futures: 
Moderate 

effects (QS: 
-14.8%, MD: 
+18.3%, IIS: 

+23.7%) 
Currency 

Derivatives: 
Minimal 

effects (QS: 
-4.2% n.s., 

MD: +7.1%†, 
IIS: +11.4%†) 

Substantial 
heterogeneit

y across 
contract 

types 
Chow tests 

confirm 
significant 
differences 

Index futures: 
p < 0.01 

Single-stock: 
p < 0.01 to p < 

0.05 
Currency: 

mostly n.s. or 
p < 0.10 

Chow tests: p 
< 0.01 

✓ 
STRONGLY 
SUPPORTE

D 
Concentrate

d benefits 

 

Table 8: Summary 

The findings provide nuanced insights into algorithmic trading's market quality impact in 

emerging derivatives markets, with important theoretical and practical implications. 

First, strong evidence supporting liquidity enhancement and price discovery hypotheses 

confirms that algorithmic trading provides substantial benefits under normal market 

conditions. The 18.7% quoted spread reduction and 24.3% market depth increase 

represent economically meaningful improvements in liquidity provision. These 

magnitudes align with upper ranges of effects documented in developed markets 
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(Brogaard et al., 2014, 2021; Hendershott et al., 2011), suggesting emerging market 

microstructure characteristics do not fundamentally impede algorithmic trading's 

positive liquidity effects. Price discovery improvements—34.2% faster information 

incorporation and 12.4% reduced pricing errors—demonstrate algorithmic traders' role in 

enhancing market efficiency through rapid information processing. 

Second, state-dependent effects reveal algorithmic trading's double-edged nature. While 

benefits are substantial during normal periods (Baron et al., 2019), 31.5% volatility 

increase during market stress indicates destabilizing potential. This finding aligns with 

theoretical predictions of procyclical liquidity provision (Leal et al., 2022) and empirical 

evidence from Flash Crash studies (Kirilenko et al., 2017). The stark contrast between 

normal-period benefits and stress-period costs suggests regulatory frameworks must 

address this asymmetry. 

Third, substantial cross-sectional heterogeneity indicates algorithmic trading's benefits 

concentrate in liquid contracts. This pattern has equity implications: if benefits accrue 

primarily to already-liquid instruments while illiquid instruments see minimal 

improvement, algorithmic trading may exacerbate existing market segmentation. 

Policymakers should consider mechanisms encouraging algorithmic trading in less liquid 

contracts or compensating for concentrated benefits. 

Fourth, adverse selection cost evidence (8.7% price impact increase) confirms that while 

algorithmic trading improves overall market efficiency, gains redistribute toward 

sophisticated participants. This raises fairness concerns, particularly in emerging markets 

with lower institutional participation and higher retail trader presence. Regulatory 

attention to investor protection and market access equity is warranted. 

Fifth, the instrumental variable approach provides more credible causal inference than 

prior emerging market studies. Larger IV estimates versus OLS (22.3% versus 18.7% 

spread reduction) suggest reverse causality and measurement error biases attenuate 

unconditional associations. This methodological contribution demonstrates the 

importance of addressing endogeneity in algorithmic trading research. 

Finally, cross-country evidence spanning diverse regulatory regimes and market 

structures suggests the findings generalize across emerging markets despite institutional 

heterogeneity. However, specific effect magnitudes may vary with local market 

characteristics, suggesting context-specific regulatory calibration. 

 

7. Policy Implications and Recommendations 

The findings suggest several evidence-based policy recommendations for emerging 

market regulators and exchange operators: 

First, regulators should adopt nuanced approaches recognizing algorithmic trading's 

context-dependent effects. Blanket restrictions or prohibitions would sacrifice substantial 

normal-period benefits. Instead, targeted interventions addressing stress-period 
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destabilization are preferable. Circuit breakers, trading halts during extreme volatility, 

and dynamic tick size adjustments could mitigate liquidity withdrawal without 

eliminating normal-period benefits. 

Second, exchanges should consider market-maker incentive programs specifically 

targeting less liquid contracts. Given concentrated benefits in liquid instruments, 

subsidies or preferential fee structures could encourage algorithmic market-making in 

thinly traded derivatives, reducing market segmentation. 

Third, real-time surveillance capabilities for detecting manipulative algorithmic trading 

practices require strengthening. While the evidence suggests algorithmic trading 

generally improves market quality, potential for quote stuffing, layering, and spoofing 

necessitates robust monitoring. Investments in surveillance technology should match 

technological sophistication of market participants. 

Fourth, regulatory frameworks should address cross-border algorithmic trading 

challenges. Given foreign algorithmic traders' significant presence in emerging markets 

(Putnins, 2013), international regulatory coordination becomes essential. Harmonized 

standards for risk controls, reporting requirements, and market access could reduce 

regulatory arbitrage while maintaining market integrity. 

Fifth, investor protection mechanisms warrant enhancement given adverse selection cost 

evidence. Mandatory disclosure of algorithmic trading presence, execution quality 

metrics reporting, and best execution requirements could help retail investors make 

informed trading decisions. 

Finally, regulatory capacity building is critical. Emerging market regulators must develop 

technical expertise to understand algorithmic trading strategies, assess systemic risks, 

and design effective interventions. International knowledge sharing and technical 

assistance programs can accelerate this capacity development. 

 

8. Limitations and Future Research 

Several limitations suggest fruitful research directions. First, the algorithmic trading 

intensity measures, while validated, remain indirect. Future research with direct 

algorithmic trader identification could refine effect estimates and explore strategy 

heterogeneity (market-making versus directional trading). 

Second, the sample focuses on equity-index, single-stock, and currency derivatives. 

Commodity and interest rate derivatives may exhibit different patterns given underlying 

asset characteristics. Extending analysis to these markets would enhance generalizability. 

Third, while the 2021-2023 sample captures important market condition variation, longer 

time frames would enable more robust state-dependent analysis and examination of how 

effects evolve as markets mature. 

Fourth, while examining market quality impacts but not welfare implications. Future 

research could model welfare effects, quantifying benefits to different market participant 
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types and informing optimal policy design. 

Fifth, the cross-country analysis pools exchanges. Country-specific analyses could identify 

institutional features moderating algorithmic trading effects, providing targeted policy 

guidance. 

Finally, emerging technologies—machine learning (Gu et al., 2020), artificial 

intelligence—are transforming algorithmic trading. Research examining these advanced 

strategies' market quality implications would address evolving market dynamics. 

 

9. Conclusion 

This study provides comprehensive empirical evidence on algorithmic trading's market 

quality impact in emerging derivatives markets. Using high-frequency data from four 

major exchanges spanning 2021-2023, the study document nuanced, context-dependent 

effects with important theoretical and policy implications. 

Main findings demonstrate that algorithmic trading substantially enhances liquidity and 

price efficiency under normal market conditions: quoted spreads decline 18.7%, market 

depth increases 24.3%, and information incorporation accelerates 34.2%. These benefits 

confirm algorithmic trading's positive role in emerging derivatives market development. 

However, significant state dependence emerges. During market stress, liquidity benefits 

attenuate while volatility amplif (Martinez and Roşu, 2013)ies 31.5%, revealing 
destabilizing potential. Additionally, substantial cross-sectional heterogeneity 

concentrates benefits in highly liquid contracts, with minimal impacts on thinly traded 

derivatives. 

These findings suggest regulators should adopt nuanced approaches balancing innovation 

encouragement with systemic stability maintenance. Targeted interventions addressing 

stress-period destabilization, incentive programs for less liquid contracts, enhanced 

surveillance capabilities, and strengthened investor protection mechanisms emerge as 

key policy priorities. 

The study contributes to literature by: providing systematic emerging market derivatives 

evidence with recent data, developing novel algorithmic trading intensity measures, 

documenting significant state-dependent heterogeneity, employing rigorous instrumental 

variable approaches, and offering specific evidence-based policy recommendations. 

As algorithmic trading continues expanding in emerging markets, understanding its 

multifaceted impacts becomes increasingly critical for regulators, market operators, and 

participants. The findings provide empirical foundation for informed policy decisions 

promoting market development while safeguarding market integrity and investor 

protection. 
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