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1. Introduction 

CKD has become a major global health problem that largely affects millions of people 

and severely impairs their quality of life, progressing to end-stage renal disease if left 

untreated. Early detection and accurate prediction are major elements in providing 

timely interventions, improving outcomes, and slowing the progression of the disease. 

The power tools achieved in the field of ML address challenging medical issues such as 

predicting CKD. Data-pattern identification is the forte of ML algorithms, giving a 

Abstract 

Chronic Kidney Disease (CKD) is a major health problem affecting millions of 

people all around the world. It is also a major burden on the healthcare system. 

Early detection of CKD and accurate outcome prediction are crucial. In this 

study, we are finding out if machine learning (ML) algorithms are efficient for the 

prediction of CKD using data from diagnostics and clinical. Our models, 

including k-Nearest Neighbors (KNN), Decision Tree (DT), Grid Search CV 

(DTC), Random Forest (RF), XGBoost (XGB), Logistic Regression (LR), Support 

Vector Machine (SVM), Gradient Boosting Classifier (GBC) and our own custom 

hybrid model called Ensemble Model (ENM) were used for systematic evaluation. 

The ENM, which combines RF and GBC, outperforms all other models according 

to all evaluation metrics—accuracy, precision, recall, and F1-score. A 

preprocessing pipeline was developed to clean, normalize, and select features for 

our data. The results of the research highlight how useful the ENM could be for 

the prediction of CKD. This research shows valuable comparative strengths of ML 

and presents a new one that would improve its prediction for CKD. The results 

add to the growing use of AI in healthcare, highlighting its potential for 

improving medical diagnoses. 

Keywords: Chronic Kidney Disease (CKD), Machine Learning (ML), prediction 

models, data pre-processing, Ensemble Model (ENM), early diagnosis. 
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precise and reliable diagnosis. Such data-driven methods can be utilized by healthcare 

providers for better CKD diagnosis and prediction and, subsequently, better treatment 

strategies. 

In light of this paper, ML models for CKD prediction were developed: k-Nearest 

Neighbors (KNN), Decision Tree (DT), Grid Search CV (DTC), Random Forest (RF), 

XGBoost (XGB), Logistic Regression (LR), Support Vector Machine (SVM), Gradient 

Boosting Classifier (GBC), and an Ensemble Model (ENM). Strong efforts have been 

made to explore a highly powerful model while simultaneously describing the 

strengths and weaknesses of every model. 

It analyzes the structured dataset, which includes critical health signs like glucose 

levels and blood pressure. A sound preprocessing pipeline includes data cleaning, 

feature engineering, and scaling of the data before ML application. Performance 

metrics such as accuracy, precision, recall, and F1-score give an all-around framework 

for evaluating performance. 

This research contributes to the advancement of ML in healthcare by giving relative 

insights into which model to use, thus helping researchers and practitioners design 

effective ML-based solutions to address CKD and other medical challenges. 

 

2. Motivation 

The management of Chronic Kidney Disease is among the biggest challenges in health 

around the world; it leads to expensive treatments like dialysis and transplantation. 

Slowing progression or improving outcomes, however, begins with early diagnosis, 

and it is precisely the early diagnosis stage where traditional approaches fail. Powerful 

tools in ML can be employed to analyze complicated data and thereby improve 

diagnostic accuracy. This article evaluates multiple techniques of ML using ensemble 

models and explores their applications to other chronic diseases.  

 

3. Objectives 

This research will evaluate the performance of various machine learning algorithms to 

predict CKD and identify the two best-performing models, which are the Random 

Forest Classifier (RF) and the Gradient Boosting Classifier (GBC). Based on this, it 

aims to design a new ensemble model (ENM) based on the strength of these models 

and test it against individual algorithms. The main objectives are: 

• Development of a sound preprocessing pipeline for cleaning, normalizing, and 

preparing data. 

• Predictive performance evaluation by metrics such as accuracy, precision, 

recall, and F1-score. 

• Systematic comparison of strengths and limitations of algorithms used. 

• The practical impact of ML-driven early diagnosis in CKD. 

This study drives innovation for data-driven healthcare, leading toward early CKD 

intervention.  
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4. Literature survey 

In this work, several approaches for the prediction of CKD using ML have been 

discussed. Various algorithms are practiced and their accuracy and reliability are 

evaluated. ML has been an essential tool in medicine wherein data analysis and early 

diagnosis improve patient outcomes. In CKD prediction, ML approaches have found 

utility in classifying the data and thereby aid in consequent timely interventions. 

Ref 

No. Author Name Year Method Key Findings 

[1] VarshaBansa, Dr. 

RituSindhu 

2024 Supervised ML classifiers Predictive analytics based on ML is 

efficient in the identification of 

CKD. 

[2] DibabaAdebaDebal, 

TilahunMelakSitote 

2022 Random Forest with 

Recursive Feature 

Elimination 

RF with cross-validation performs 

best in multiclass and binary CKD 

classification. 

[3] Jing Xiao et al. 2019 Logistic Regression, 

Statistical Models, Neural 

Networks 

Logistic regression performed best 

with AUC = 0.873. 

[4] AfiaFarjana et al. 2024 LightGBM LightGBM attained maximum 

accuracy (99%) for prediction of 

CKD. 

[5] Baswaraj D et al. 2024 Random Forest with 

Recursive Feature 

Elimination 

Enhanced performance in the 

prediction of CKD stages. 

[6] Nitasha Khan et al. 2024 Random Forest, SVM Verified non-invasive CKD 

diagnostic models on F1-score and 

sensitivity. 

[7] Hira Khalid et al. 2023 Hybrid Model (Gaussian 

Naïve Bayes, Gradient 

Boosting, Decision Trees) 

Attained 100% accuracy on UCI 

CKD data. 

[8] Gazi Mohammed 

Ifraz et al. 

2024 Logistic Regression Logistic regression model attained 

97% accuracy in predicting CKD. 

[9] SusmithaMandava 

et al. 

2024 Artificial Neural Networks 

(ANNs) 

ANNs reached a maximum 

accuracy of 100% among the ML 

approaches. 

[10] MadhusreeSankar 

Roy et al. 

2021 Extra Trees Classifier Outperformed other models at 

99.36% accuracy. 

[11] VirenJadhav et al. 2023 K-Nearest Neighbors 

(KNN), Support Vector 

Machine (SVM) 

Projected to develop CKD at an 

early stage with KNN and SVM for 

early treatment in medicine. 
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Ref 

No. Author Name Year Method Key Findings 

[12] E. Tejasree et al. 2023 ML Framework 

(Preprocessing, 

Transformation, ML 

Classifiers) 

Early-stage CKD prediction system 

provided. 

[13] VineetaGulati et al. 2021 Real-life Dataset Analysis Real-world datasets improved the 

model's accuracy in predicting 

CKD. 

[14] Bhoomika CM et al. 2024 Bagging Ensemble (RF, 

XGBoost, AdaBoost) 

Obtained 97% accuracy with 

ensemble approaches. 

Collectively, these studies indicate that ML methods have improved to predict CKD: 

several algorithms will be successful and indicate further potential for improvement 

and optimization. 

 

5. System requirements 

Hardware 

• Processor: Intel Core i5 or better multi-core processor. 

• Memory (RAM): Min 8 GB, but 16 GB or more is recommended to speed up big 

data processing and big data model training. 

• Storage: Min 512GB in storage (SSD is recommended) for fast reads/writes on 

datasets and models. 

• Graphics Processing Unit (GPU): NVIDIA and at least with CUDA support, 

such as NVIDIA GTX 1650 or better, to speed up machine learning model 

training and evaluation. 

 

Software 

• Operating System: Windows 10 for machine learning purposes 

• Development Environment: Jupyter Notebook or Anaconda. 

• ML Libraries, Visualization, and Data Processing Tools: 

For this assignment, here is a brief overview of the machine-learning libraries and 

modules used: 

• pandas (pd): General tabular data manipulation 

• numpy (np): Numerical operations and array manipulations 

• matplotlib (plt): Static, animated, and interactive visualizations 

• seaborn (sns): High-level statistical graphics built on top of matplotlib 

• plotly: Interactive and dynamic visualizations 

• warnings: Handling or silencing warning messages 

• sklearn. ensemble: Extra Trees, Random Forest, Gradient Boosting 

classifiers 
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• sk-learn. preprocessing: Label Encoder and Standard Scaler for 

preprocessing 

• sk-learn.impute: Simple Imputer and Iterative Imputer for imputation 

• cv2 (OpenCV): everything with images 

• gdown: Downloads files from Google Drive 

• statsmodels.api: Statistical models and statistical tests are 

implemented 

• variance_inflation_factor: Feature multicollinearity measurement 

• sk-learn.model_selection: Splits dataset into training set using 

train_test_split 

• sk-learn.neighbors: k-Nearest Neighbors 

• sk-learn.metrics: evaluation metrics like accuracy and F1-score 

• sk-learn.inspection: Feature importance via permutation_importance 

• VotingClassifier: Combining multiple classifiers into a single ensemble 

model. The packages combined are those used in preparing data, 

visualization, feature engineering, building, assessment, and 

interpretation for the project. 

 

Programming Languages 

• Python: Primary implementation language 

The combined hardware, software, and programming languages would therefore be 

able to deliver a robust and effective research environment for running machine 

learning-based research in predicting Chronic Kidney Disease. 

 

6. Methodology 

CKD is systematically predicted with the help of machine learning. It involves 

preprocessing of data or basically cleaning and normalization and doing missing 

values handling. Feature engineering and selection are used in order to optimize the 

input variables for model training. Various algorithms like LR, KNN, RF, XGB, and 

GBC, which all are implemented and tried. The prime process of tuning does Grid 

Search Cross-Validation on hyperparameter tuning. The system is based on proper 

accuracy, precision, recall, and F1-score to validate the correctness of any model. In 

the end, the developed ENM gets a few best performing algorithms mixed into an 

improved Ensemble Model. 

 

Comprehensive Workflow for CKD Prediction using Machine Learning  

Figure 1 Workflow for the prediction of CKD by structured machine learning 

technique. First, a CKD dataset is collected, and then it undergoes exploratory data 

analysis and cleaning to prepare the dataset for further analysis in case there are 

inconsistencies or missing values. 
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This would be the preprocessing of data involving missing values handling, selection 

of the most relevant features to predict, normalization or standardization of the data, 

and splitting prepared data into subsets for training and testing with cross-validation 

for robust model evaluation. 

The predictive models are trained using the following different machine learning 

classification techniques: KNN (k-Nearest Neighbors), DT (Decision Tree), DTC 

(Decision Tree Classifier), RF (Random Forest), XGB (Extreme Gradient Boosting), LR 

(Logistic Regression), SVM (Support Vector Machine), and GBC (Gradient Boosting 

Classifier). After comparing the performances of these models, the best two are 

selected for developing a custom Ensemble Model known as ENM based on their 

cumulative strengths. 

Finally, the models are tested for reliability through the use of key performance 

metrics: accuracy, precision, recall, F1-score, and area under the curve (AUC), to 

ensure the reliability of disease prediction. The outcome of this workflow results in a 

strong prediction of being positive or negative for CKD. 

 

 
Figure 1: Workflow Diagram for Chronic Kidney Disease Prediction using Machine 

Learning 

 

Overview of Chronic Kidney Disease Dataset  

Figure 2 is a preview of the CKD dataset loaded into a pandas DataFrame. The dataset 

has 400 rows and 25 columns, which are various features like age, blood_pressure (bp), 
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specific_gravity (sg), albumin (al), and sugar (su), along with diagnostic results like 

red_blood_cells (rbc), packed_cell_volume (pcv), and classification labels (ckd or 

notckd). 

It consists of mixed feature types including both categorical and numerical features 

along with missing values in some columns. This has to be preprocessed as well. The 

classification column indicates whether the patient has CKD or not; the table also 

portrays diversity and complexity, which thus requires preprocessing appropriately to 

be predicted accurately. 

 

 
 

Figure 2: Representation of the Chronic Kidney Disease Dataset 

 
Figure 3: Understanding about the Kidney Disease Dataset Features 
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Figure 4: Representation of the Dataset Description and Key Observations 

 

Feature Distribution Analysis and Class Comparison  

In Figure 5 comparison of the distribution of several numerical features between the 

two classes: CKD and Non-CKD. Density plots help to show what the features look like 

and whether each represents significant differences in the two groups under study. For 

example: 

• Distributions of blood urea, serum creatinine, and packed cell volume features 

are very well defined between the two classes. Then, they are good 

discriminators. 

• The two distributions share similarities in some features, for instance, sodium 

and potassium, thus contributing minimally towards differentiating the classes. 

These inform feature selection and modeling decisions. 

This graph illustrates the difference in numeric features between CKD and non-CKD 

patients in terms of density plots. The prominent features, such as serum creatinine, 

blood urea, and packed cell volume have clear-cut differences and are therefore 

imperative for predicting CKD. Features such as sodium and potassium contain 

overlapping distributions with reduced predictive power. It is helpful to find these 

differences in feature choice and improve models' accuracy and dependability. The 

graph also finds outliers and skewness and influences data preprocessing as well as the 

performance of models. 
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Figure 5: Distribution of Numeric Features by Disease Class 

 

Categorical Feature Analysis and Class Insights  

Figure 6 represents the frequency distribution of most of the categorical variables in 

CKD and Non-CKD patients. Some interesting observations are as follows: 

• RBC and pus cells: The percentage of abnormalities is higher in CKD patients 

compared to the control group. 

• Hypertension, diabetes_mellitus, and anemia: These are more common in CKD 

patients, and thus would be potentially relevant in the overall picture of disease 

prediction. 

• Appetite: Poor appetite is strongly associated with CKD patients compared to 

Non-CKD individuals. 

This visualization represents how category features help to distinguish one class from 

another. 

This bar graph contrasts categorical variables such as red blood cell count (RBC), pus 

cells, hypertension, diabetes mellitus, and anemia in CKD and non-CKD patients. It 

shows that RBC abnormality, hypertension, and loss of appetite are comparatively 

more common in CKD patients, which reinforces their relative significance as 

diagnoses. The presence of pus cells and the diabetes status between the two groups 

are also quite different and therefore effective predictors. These results are of utmost 
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importance to incorporate into feature encoding and improve classification models for 

early CKD detection. 

 

 
Figure 6: Distribution of Categorical Features by Class 

 

Outcome Variable Analysis and Distribution 

Figure 7 the class distribution is presented with both a bar chart (left) and a pie chart 

(right). 

• Left Bar Chart: It shows the number of samples in each class. The total dataset 

consists of 250 CKD cases and 150 non-CKD cases, so it is biased toward CKD 

cases. 

• Right Pie Chart: The proportion of CKD and non-CKD cases is depicted, where 

CKD accounts for 62.5% of the dataset, and non-CKD accounts for 37.5%. 

The image clearly shows a class imbalance, which may skew model training, thus 

requiring some resampling strategy, cost-sensitive learning, or AUC-ROC and F1-score 

in the performance measures. 
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Figure 7: Distribution of Outcome Variable for Chronic Kidney Disease Classification 

 

Feature Selection and Significance Analysis 

Figure 8 Relative importance’s of the features for predicting Chronic Kidney Disease 

from the model. 

• Major Features 

• Red Blood Cells: Score is 0.161. 

• Specific Gravity: The score is also 0.139. 

• Albumin, Packed Cell Volume and Hypertension all rank in a row as major 

predictors. 

• Minor Features 

• Contributions of Variables such as Bacteria, Pus Cell Clumps, and Coronary 

Artery Disease towards the predictability of the model are negligible. 

This makes the feature selection process efficient in terms of focusing on high-impact 

variables that may improve the model's performance at the cost of computational 

overhead. Visualization underlines the role of clinical biomarkers in the classification 

of CKD. 
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Figure 8: Feature Importance in Predicting Chronic Kidney Disease 

 

Correlation Analysis for Feature Interdependencies 

Figure 9 Correlation Matrix - Heatmap for Numeric Features This is the heat map for 

the correlation matrix for the numeric features of the dataset. Color intensity reflects 

the strength of the relationship between feature pairs: 

• High Positive Correlations 

• Packed Cell Volume and Haemoglobin, 0.9 very highly correlated. 

• Specific Gravity and Albumin, 0.73 very highly correlated. 

• Negative Correlations 

• Specific Gravity and Blood Urea, -0.47 inversely related. 

• Haemoglobin and Serum Creatinine, -0.63 very negative. 

• Outcome Variable (Class) 

• Specific Gravity shows a very high positive correlation with the target 

variable with a coefficient of correlation of 0.73 and Albumin 0.77. 

• Haemoglobin and Packed Cell Volume are also highly correlated with 

outcome. 
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The interdependencies among the features highlighted through such an analysis will 

guide feature engineering and selection strategies for predictive modeling. 

This plots a correlation heatmap of the numerical feature correlations of the dataset 

features. Albumin and specific gravity, and hemoglobin and packed cell volume, both 

exhibit strongly positive correlations which indicate their relation to each other in 

diagnosing CKD. Hemoglobin has a negative correlation with serum creatinine, 

validating their use as markers of the clinical assessment of kidney function. 

The heatmap helps in the identification of redundant or highly correlated features, 

which can be removed or redefined to improve model efficiency. The low correlation 

between some features also points towards their poor predictive ability, so feature 

selection and dimensionality reduction towards improved model performance is 

simpler. 

 

 
Figure 9: Heatmap of Correlations among Numeric Features 

 

Categorical Features and Their Impact on Outcome 

Figure 10 plots dot plots of the association between other categorical features and the 

outcome classes, Class 0 and Class 1. Each subplot corresponds to a specific categorical 

feature, plotted against the age of the individuals for both class groups. The red and 

blue dots represent Class 1 (disease present) and Class 0 (disease absent), respectively. 

Important observations: 

• Hypertension: Most of the patients with hypertension fall in Class 1. 

• Diabetes Mellitus: Diabetes mellitus is strongly related to Class 1. 
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• Peda Edema and Anemia: The class is more likely to be of Class 1 in the 

case of conditions. 

• Coronary Artery Disease: This is slightly higher in Class 1 as compared to 

Class 0. 

• Presence of Bacteria: No class-dependent trend is noted for this 

characteristic. 

This visualization efficiently helps in describing the contribution of categorical 

variables made toward distinguishing one class from the other, giving very good 

insights into distribution. 

 
Figure 10: Dot Plot Representation of Class Distribution by Categorical Features 
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Comprehensive Distribution Analysis of Numerical Variables 

Figure 11 Employ violin plots combined with box plots as a double-layer plot to 

visualize numerical feature distributions on both classes of images, specifically, Class 0 

and Class 1. In the violin plot, there's information regarding the shape and density. 

Added above would be a plot overlay including that particular statistical summary on 

medians, quartiles, and the like of outliers taken from the box plot. 

This figure provides a comprehensive view of the behavior of numerical features 

showing the important differences between classes and the detailed statistical context.  
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Figure 11: Violin and Box Plot Comparison of Numerical Features across Classes 

 

Violin and Scatter Plot Analysis Highlighting Distribution and Correlations 

Across Different Classes 

Figure 12 is a complete depiction of hematological and biochemical parameters by 

various classes. The graphs are violin and scatter graphs for the various features, i.e., 

red blood cell count, white blood cell count, packed_cell_volume, hemoglobin, 

albumin, blood_glucose_random, blood_pressure, specific gravity, serum_creatinine, 

sodium, potassium, sugar level, and age. 

Violin plots illustrate the distribution, density, and spread of each parameter across 

each class, with relationships between other parameters highlighted by the scatter 

plots. The colors differentiate between classes (0 and 1) and allow for easy comparison. 

The plots illustrate distinctive patterns and correlations that could be helpful in class-

specific feature detection, facilitating data-driven analysis and interpretation.  
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Figure 12: Comprehensive Visualization of Hematological and Biochemical 

Parameters by Class 

 

Missing Value Imputation 

Figure 13 displays a thorough categorization of missing data over both numerical and 

categorical columns in the data set, which displays the meticulous precautions 

exercised in preprocessing to handle missing values efficiently. The chart consists of 

two overarching categories: 

The left side of the figure shows the original number of missing values for all columns, 

highlighting key numeric columns such as "red blood cell count" (131 missing) and 

"potassium" (88 missing), and categorical columns such as "red blood cells" (152 

missing), with a keen emphasis on data gaps before imputation. 

The right side of the figure displays results after applying imputation techniques, 

where the absence of missing values in all columns shows successful data processing. 

Numerical and categorical columns are now complete, as is evident from columns 

with "0" missing entries. 

This picture depicts the importance of imputation of missing values in machine 

learning processes. Proper imputation of missing values during preprocessing ensures 

data quality and is the foundation of reliable model building and analysis. 
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Figure 13: Overview of Missing Data and Completion Status 

 

Feature Selection Using VIF 

In this figure 14, VIF values are shown to establish multicollinearity between features. 

It can be seen that most variables have low VIF values, which signifies minimum 

correlation and, hence, removes redundancy from the dataset to be modeled. 

 
Figure 14: Variance Inflation Factor (VIF) Analysis 

 

Data Cleaning and Pre-Processing 

The following figure 15 compares the dataset before and after pre-processing. In the 

"Before Pre-Processing" stage, there were many missing values in columns and non-

uniform data types. All missing values were handled and data types were standardized 

after carrying out the above-mentioned pre-processing steps, which eventually gave a 

clean and complete dataset for further analysis. 
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Figure 15: Impact of Pre-Processing on Dataset Quality 

 

7. Model building and analysis 

This paper reviews the application and performance of several machine learning 

algorithms in the classification of patients into the presence of Chronic Kidney Disease 

(CKD). Comparisons of several algorithms including LR, KNN, DT, RF, GBC, and XGB 

are considered. A novel ensemble model known as ENM is also developed that 

combines models to improve its performance. 

Accuracy, precision, recall, F1-score, and AUC are metrics used in measuring 

performance. Using the cross-validation technique and the hyper parameter tuning 

will ensure proper model optimization. Visualization is done using ROC curves, 

confusion matrices, and feature importance charts that are useful for improving the 

prediction of CKD. 

 

k-Nearest Neighbors (KNN):A non-parametric instance-based learning algorithm 

that assigns a label to an instance according to the majority class of the K nearest 

neighbors in feature space. 

 

𝑑(𝑥𝑖, 𝑥𝑗) = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑛
𝑘=1  
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Decision Tree (DT): A decision tree is a non-parametric model which partitions the 

data into subsets depending upon the values of input features. It builds a tree-like 

model where every node is a feature, every edge is a decision rule, and every leaf is a 

class label. 

• Gini Index: 𝐺𝑖𝑛𝑖 = 1 −∑𝑝𝑖2𝐶
𝑖=1  

 

• Entropy: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑝𝑖𝐶
𝑖=1 log(𝑝𝑖) 

 
Figure 16: Decision making in binary class of CKD 

 

Grid Search Cross-Validation (DTC):Grid Search CV is another technique utilized to 

hyper parameter tune a machine learning model systematically by attempting them all 

at once in a given parameter grid. It utilizes cross-validation to estimate the 

performance using each set of hyper parameters and selects the best. 𝐸𝑟𝑟𝑜𝑟 = 1𝑁∑𝐿𝑁
𝑖=1 (𝑦𝑖, �̂�𝑖) 

Where: 

• 𝑁is the number of cross-validation folds. 

• 𝐿(𝑦𝑖, �̂�𝑖)is the loss function for true𝑦𝑖and predicted�̂�𝑖. 
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Random Forest (RF): RF is an ensemble learning algorithm with a mixture of several 

decision trees. Each is trained on a random subset of data and features; the prediction, 

by averaging (regression), or majority voting (classification), is made. 𝑓(𝑥) = 1𝑇∑ℎ𝑖𝑇
𝑖=1 (𝑥) 

Where: 

• 𝑇 is the number of trees. 

• ℎ𝑖(𝑥) is the prediction of the 𝑖-th tree for the input 𝑥. 

 

XGBoost (XGB): XGBoost is a highly optimized version of gradient boosting for 

decision trees. It is a method that trains models sequentially where each model tries to 

correct the errors of the model before it. 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥) 
Where: 

• 𝐹𝑚−1(𝑥) is the prediction at iteration 𝑚 − 1. 

• ℎ𝑚(𝑥) is the new weak learner (decision tree). 

• 𝛾𝑚 is the learning rate. 

 

Logistic Regression (LR): Logistic regression is a linear model used for binary 

classification. It finds the probability of an input presented to it being a particular 

class by using the logistic function. 𝑃(𝑦 = 1 ∣ 𝑥) = 11 + 𝑒−(𝑤𝑇𝑥+𝑏) 
 

Support Vector Machine (SVM): SVM is the supervised learning model that finds 

out the optimal hyperplane which distinguishes different classes in a higher 

dimensional space to the maximum level. 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 

Where: 

• 𝑤 is the weight vector. 

• 𝑥 is the input vector. 

• 𝑏 is the bias term. 

The optimization maximizes the margin 𝑀 by minimizing:   ∥ 𝑤 ∥2 
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Gradient Boosting Classifier (GBC): Gradient boosting is an ensemble learning 

approach where a series of models are built sequentially to improve the prediction of 

earlier models' errors using the gradient of the loss function. 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥) 
 

Ensemble Model (ENM): The Ensemble Model (ENM) is a hybrid machine-learning 

algorithm designed to enhance predictive accuracy and robustness by leveraging the 

strengths of multiple classifiers. The ENM used in this study combines the Random 

Forest Classifier (RF) and the Gradient Boosting Classifier (GBC) to benefit from 

both ensemble approaches. 

Random Forest Classifier (RF) predicts using an ensemble of decision trees that 

reduce variance and increase generalization and handles high-dimensional data 

efficiently with minimal overfitting. The Gradient Boosting Classifier (GBC) builds 

decision trees in sequence, with each new tree trying to correct the errors made by the 

previous tree to detect complex patterns and improve accuracy. 

The Ensemble Model (ENM) combines the outcomes of RF and GBC using the 

majority voting scheme. The models are trained using the same data while being 

trained and make the most occurring prediction at the time of prediction. The model 

gives greater priority to the RF prediction when predictions are different from each 

other. 

When both models provide probability estimates, the ENM calculates the mean 

average probability of the positive class to obtain Area under the Curve (AUC). 

The approach ensures accurate and sound classification, particularly in binary cases, 

resulting in a robust predictive model. 

 

1. Ensemble Prediction (Majority Voting) 

The final prediction of the ENM (𝑃𝐸𝑁𝑀) is determined as follows: 𝑃𝐸𝑁𝑀(𝑥) = {𝑃𝑅𝐹(𝑥) if 𝑃𝑅𝐹(𝑥) = 𝑃𝐺𝐵𝐶(𝑥)𝑃𝑅𝐹(𝑥) if 𝑃𝑅𝐹(𝑥) ≠ 𝑃𝐺𝐵𝐶(𝑥) 
Where: 

• 𝑃𝑅𝐹(𝑥): Prediction from the Random Forest Classifier (RF) for input 𝑥. 

• 𝑃𝐺𝐵𝐶(𝑥): Prediction from the Gradient Boosting Classifier (GBC) for input 𝑥. 

• The model prioritizes RF in case of disagreement due to its robustness. 

 

2. Average Probability (If Available) 

If both classifiers provide probability estimates, the average probability is calculated 

as: 

Avg_Proba(𝑥) = 𝑃𝑅𝐹_𝑝𝑟𝑜𝑏𝑎(𝑥) + 𝑃𝐺𝐵𝐶_𝑝𝑟𝑜𝑏𝑎(𝑥)2  
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Where: 

• 𝑃𝑅𝐹_𝑝𝑟𝑜𝑏𝑎(𝑥): Probability of the positive class from RF. 

• 𝑃𝐺𝐵𝐶_𝑝𝑟𝑜𝑏𝑎(𝑥): Probability of the positive class from GBC. 

 

Training: The training of a learning machine model to pattern recognition ability 

from labeled data input, and it adjusts parameters so as to minimize its errors. 

Testing: It is called the phase of evaluation in which the applied trained model 

undergoes testing over unseen data that tests how well a model has generalized. 

True positive (TP): TP is the state where actual as well as forecasted values both are 

positive. 

True negative (TN): TN is the situation where both the true value of the data point 

and the prediction are negative. 

False positive (FP): FP stands for the cases in which the actual value of the data point 

is negative while the predicted is positive. 

False negative (FN): FN is experienced when the actual value of the data point is 

positive whereas the predicted one is negative. 

 

Recall / Sensitivity / True Positive Rate (TPR): Recall, also known as Sensitivity or 

True Positive Rate, is used to measure the percentage of true positive instances that 

are correctly predicted as positive by the model. 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 

 

False Positive Rate (FPR): False Positive Rate is the rate of true negatives that are 

predicted wrong by the model as positive. 𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃 + 𝑇𝑁 

 

Specificity: Specificity measures the proportion of actual negatives that the model 

correctly identifies as negative. It is the complement of False Positive Rate: 

Specificity=1−FPR. 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 

 

Accuracy: Accuracy quantifies the general precision of the model by determining the 

percentage of correct predictions (both true positives and true negatives) to total 

predictions. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
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Precision: Precision, also known as Positive Predictive Value, measures the 

proportion of predicted positive cases that are positive. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 

 

F1 Score: Precision and Recall's harmonic mean is the F1 Score. It offers one metric 

that strikes a balance between the two metrics, especially useful when they are in 

tension. 𝐹1 = 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 

 

Area under the Curve (AUC): AUC represents the area under the ROC curve, 

summarizing the model's performance across all classification thresholds. 

• Continuous:   𝐴𝑈𝐶 = ∫ 𝑇10 𝑃𝑅 𝑑(𝐹𝑃𝑅) 
• Discrete form:   𝐴𝑈𝐶 = ∑ (𝐹𝑃𝑅𝑖+1−𝐹𝑃𝑅𝑖)(𝑇𝑃𝑅𝑖+𝑇𝑃𝑅𝑖+1)2𝑛−1𝑖=1  

 

Learning curves: Learning curves are graphical representations that show how a 

machine learning model's performance improves over time or with an increasing 

amount of training data. They plot the training error and validation error (or accuracy) 

against the size of the training dataset or the number of training iterations. 
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Figure 17: Advanced Model Analysis of KNN, DT, DTC, RF, XGB, LR, SVM, GBC, and 

ENM 

 
Figure 18: Confusion Matrix of k-Nearest Neighbors (KNN), Decision Tree (DT), Grid 

Search CV (DTC), Random Forest (RF), XGBoost (XGB), Logistic Regression (LR), 

Support Vector Machine (SVM), Gradient Boosting Classifier (GBC), Ensemble Model 

(ENM) 

 

Feature Importance Analysis Across Machine Learning Models 

Figure 19 presents the comparative feature importance rankings obtained using 

various machine learning models used in this study to predict kidney disease. The 

models are k-Nearest Neighbors (KNN), Decision Tree Classifier (DT), Grid Search CV 

(DTC), Random Forest (RF), Support Vector Machine (SVM), Gradient Boosting 

Machine (GBC), XGBoost (XGB), Logistic Regression (LR), and an Ensemble Model 

(ENM). 

Every subplot highlights which features are most important individually for the 

particular model to use in making those predictions. One sees that frequently 

hemoglobin and packed cell volume, serum creatinine, emerge as being among the 

most important individuals in multiple models for predicting kidney disease. 
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The analysis points out the diverse rankings produced by different algorithms for 

features, indicating the variations in feature interaction in different paradigms of 

modeling. Some models such as Permutation Importance use the relative contribution 

of features, and intrinsic measures are used especially for tree-based models such as 

Random Forest and XGBoost. The above comparison allows for insights into the 

ranking of important biomarkers and further prioritizes the factors to be used within 

clinical interpretation. 

 

 

 
Figure 19: Feature Importance of k-Nearest Neighbors, Decision Tree, Grid Search CV, 

Random Forest, XGBoost, Logistic Regression, Support Vector Machine, Gradient 

Boosting Classifier, Ensemble Model 

 

Comprehensive Evaluation of Predictive Models for Kidney Disease 

Figure 20 provides an extensive review of predictive models used in kidney disease 

prediction. It contains four broad components, each dealing with a central aspect of 

model assessment and performance comparison. 

 

• ROC and Precision-Recall Analysis: The initial two plots illustrate the ROC 

(Receiver Operating Characteristic) and Precision-Recall curves, which play a 

critical role in performance measurement for classification. The ROC curve 

illustrates the trade-off between specificity (false positive rate) and sensitivity 
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(true positive rate), and the Precision-Recall curve illustrates the trade-off 

between precision and recall. The curves allow models with higher 

discriminatory power to be distinguished. AUC (Area Under the Curve) and 

AUPRC (Area Under the Precision-Recall Curve) are performance measures 

used to quantify model performance, and RF (Random Forest), XGB (XGBoost), 

GBC (Gradient Boosting Classifier), and ENM (Ensemble Model) all recorded 

near-perfect AUC values of 1.00, indicating great prediction performance. 

 

• AU-ROC-Based Model Comparison: The bottom-left figure employs a box 

plot to display AU-ROC score distributions between models and their stability 

and variability. RF, ENM, XGB, and GBC all have reliably high AU-ROC scores 

and are thus stable in kidney disease prediction. SVM and KNN are less stable 

have lower scores and necessitate strict model selection. 

 

• Learning Curve Analysis for Generalization: The bottom-right plot shows 

the learning curves for each model's generalization to new data. Models with 

training and validation curves that diverge less, such as RF, ENM, and GBC, 

show good generalization. KNN and SVM show larger gaps, which indicate 

overfitting or underfitting. 

This bar chart is a key figure in the comparison of the best-performing 

prediction model, with insights into every algorithm's learning style, pitfalls, 

and capabilities regarding kidney disease prognosis and diagnosis. 
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Figure 20: Comprehensive Model Evaluation of Model Performance and 

Generalization Analysis for Kidney Disease Prediction 

 

8. Results and discussion 

This section conducts tests of in-depth machine learning algorithms involving 

outcome predictions from patients with Chronic Kidney Disease. All the models that 

will be discussed comprise KNN, DT, DTC, RF, XGB, LR, SVM, GBC, and Ensemble 

Model (ENM). All the chosen models are measured on parameters that comprise 

accuracy, precision, recall, F1-score, and AUC. 

All the evaluation metrics showed that the proposed ensemble model (ENM), by 

combining the strengths of both RF and GBC, outperformed each of the individual 

models. It showed higher accuracy, better precision, and recall, which made it more 

reliable and robust in CKD prediction. Additionally, the ROC and Precision-Recall 

curves illustrated the balance the models offer between sensitivity and specificity, 

making the ENM highly suitable for early diagnosis. 

Most importantly, there were the confusion matrices that reflected the errors of 

classification, false positives, and negatives, significant parameters for the 

improvement of diagnostic tools. Ensemble methods were successful in dealing with 

imbalanced datasets and capturing complex patterns, although computational 

complexity and interpretability were the challenges identified. 

Thus, results reflect the good potential of ENM in the early detection of CKD and 

represent a valid tool for diagnosis. Such findings would open avenues to future 

research by validation of large datasets and expansion of the approach towards other 

medical conditions. 
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K-Nearest 

Neighbors(KN

N) 

Training:0.

78 

Testing:0.6

8 

0.77 0.74for 0, 

0.62for1 

0.71for 0, 

0.64for1 

0.02 0.72for 0, 

0.63for1 

0.77 70for0, 

50for1 

0.105089

9 

Decision Tree(DT) Training:1.0 

Testing:0.9

3 

0.95 0.96  for 

0, 

0.90 for1 

0.93 for0, 

0.94 for1 

0.03 0.94for 

0, 

0.92for1 

0.93 70for0, 

50for1 

0.204915

7 

Grid Search 

CV(DTC) 

Training:0.

97 

Testing:0.9

5 

0.58 0.98for 0, 

0.91for1 

0.93for 0, 

0.98for1 

0.03 0.96for 

0, 

0.94for1 

0.96 70for0, 

50for1 

0.1218740 
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Random Forest 

(RF) 

Training:0.

99 

Testing: 

0.99 

0.99 0.99for 0, 

1.00for1 

1.00for 0, 

0.98for1 

0.04 0.99for 

0, 

0.99for1 

0.99 70for0, 

50for1 

0. 

3205230 

XGBoost (XGB) Training:0.

64 

Testing:0.5

8 

0.58 0.58for 0, 

0.00for1 

1.00for 0, 

0.00for1 

0.41 0.74for 

0, 

0.00for1 

0.97 70for0, 

50for1 

0.540699

9 

Logistic 

Regression (LR) 

Training:0.

90 

Testing:0.8

5 

0.85 0.92  for 

0, 

0.78 for1 

0.81 for0, 

0.90 for1 

0.15 0.86for 

0, 

0.83for1 

0.92 70for0, 

50for1 

0.2817201 

Support Vector 

Machine(SVM) 

Training:0.

64 

Testing:0.5

8 

0.58 0.58for 0, 

0.00for1 

1.00for 0, 

0.00for1 

0.22 0.74for 

0, 

0.00for1 

0.84 70for0, 

50for1 

0.253368

3 

Gradient 

Boosting 

Classifier(GB

C) 

Training:1.0 

Testing:0.9

5 

0.95 0.98for 0, 

0.91for1 

0.93for 0, 

0.98for1 

0.03 0.96for 

0, 

0.94for1 

0.99 70for0, 

50for1 

0.267469

8 

Ensemble 

Model 

(ENM) 

Training:1.0 

Testing:0.9

9 

0.99 0.99for 0, 

1.00for1 

1.00for 0, 

0.98for1 

0.04 0.99for 

0, 

0.99for1 

0.99 70for0, 

50for1 

0.590822

4 

Table 1:  Comparison of Training and Testing Accuracy, Precision, Recall, Specificity, 

F1-Score, AUC and Support for various models in table format 

 

 
Figure 21: Comparison of Metrics for Different Models After Feature Engineering with 

Training and Testing Accuracy 
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9. Conclusion 

This work describes the prediction of the existence of CKD based on clinical and 

diagnostic data through machine learning algorithms. Models are compared with 

KNN, DT, DTC, RF, GBC, LR, KNN, and SVM. The result of the comparison shows that 

the best two algorithms to predict the presence of CKD from the above models are RF 

and GBC. 

Besides, as a result, analysis was proposed to develop the new Ensemble Model named 

ENM with strength from both RF and GBC. The comparison results were there 

regarding superior performance in accuracy, precision, recall, and F1-score in 

comparison with individual algorithms. ENM proved even more robust and reliable 

regarding the pattern complexity dealing with imbalanced data sets and was thus 

robust. 

This also explains preprocessing steps such as data cleaning and feature selection, 

which have greatly improved the model performance. Furthermore, analysis of ROC 

curves, confusion matrices, and feature importance shows that the proposed methods 

are capable of reliable discrimination between cases of CKD. 

This may generally indicate potential ML-based solutions for improving earlier 

diagnosis and early intervention in patients with CKD. Future studies on the ENM 

should be applied to larger diverse datasets and establish its adaptability to other 

disease conditions. A new door toward innovative and effectual AI-based healthcare 

tools will, therefore, emerge. 

 

10. Future scope 

This study lays the foundation for future machine learning developments within 

healthcare applications and therefore CKD prediction, the important future directions 

are: 

• Validation on Larger Datasets: Testing the Ensemble Model on larger multi-

center datasets with more diversified demographics would enhance its 

generalizability. 

• Real-time implementation: Developing user-friendly applications will ease 

their seamless integration into clinical workflow to enable early diagnosis of 

CKD. 

• Feature Optimization: Selecting the more advanced features may enhance 

model performance but minimize computation complexity. 

• Broader Applicability: The application of ENM to other chronic diseases will 

create wider relevance to medical diagnostics. 

• Explainable AI: Coupling the use of explainable AI techniques will boost 

clinician trust and acceptance of AI tools. 

• Wearable Integration: It will ensure continuous monitoring and the early 

detection of CKD by incorporating data from wearable devices. 
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These innovations can propel novel, AI-based solutions toward improved healthcare 

outcomes. 
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