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Abstract: Typically, security models & analysis includes privacy, efficient 

computational scalability, and resilience to adversarial threats. Additional 

requirements from two perspectives, rather than clear-cut governance 

mechanisms leading to consensus designs focusing primarily on data integrity or 

network-level security, seldom exist. Most conventional federated learning 

schemes detach the consensus validation from the encrypted computations and 

ignore real-world compliance and domain transferability in process. To remedy 

these shortcomings, this paper proposes a broad-based framework that comprises 

five innovative methods to enhance consensus specifically focused on ML systems 

deployed over blockchains. The CAHFGM method interconnects encrypted 

gradient validation straight into the consensus pipeline of the model-to-be Valid 

model, guaranteeing model integrity without affecting data privacy. The ABSDTE 

enhances robustness with dynamic trust scores by surfer clustering participants 

and deploying shard-level consensus to detect collusion and model poisoning. 

The Layered Privacy-Enforced Merkle Consensus combines differential privacy 

with Merkle structures to ensure privacy with audit ability for regulated real-

world deployments. To address scalability issues, the Quantum Inspired Lattice-

Backed Consensus Layer adopts post-quantum-secure energy-efficient consensus 

primitives based on lattice cryptography, achieving high throughput and 

resistance to quantum attacks. The Adaptive Multi-Domain Transfer Validator 

employs transfer learning for validating consensus outcomes among 

heterogeneous domains for improved generalizability as a whole in process. 

Collectively, these methods reduce privacy leakage by 98%, increase collusion 

detection accuracy above 92%, achieve >10,000 TPS, and demonstrate >85% 

domain transfer efficiency. This work establishes a robust, scalable, and privacy-

preserving consensus foundation for deploying ML over blockchain in regulated, 

adversarial, and cross-domain environments. 

Keywords: Privacy-Preserving Consensus, Blockchain-Based Machine Learning, 

Homomorphic Encryption, Adversarial Robustness, Scalable Protocols, 

Applications 
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Abbreviati

on 
Full Form 

AI Artificial Intelligence 

FL Federated Learning 

IIoT 
Industrial Internet of 

Things 

IoT Internet of Things 

EHR Electronic Health Records 

NTRU 
Nth-degree Truncated 

Polynomial Ring Unit 

DL Deep Learning 

ML Machine Learning 

ZKP Zero-Knowledge Proof 

DP Differential Privacy 

DPFL 
Differentially Private 

Federated Learning 

PoW Proof of Work 

PoS Proof of Stake 

MAS Multi-Agent Systems 

B5G Beyond 5G 

MANET Mobile Ad Hoc Network 

eGov Electronic Government 

E2E End-to-End 

SGX 
Software Guard 

Extensions 

Abbreviati

on 
Full Form 

TEE 
Trusted Execution 

Environment 

PKI Public Key Infrastructure 

P2P Peer-to-Peer 

RBAC Role-Based Access Control 

BYOD Bring Your Own Device 

IDS 
Intrusion Detection 

System 

ANOVA Analysis of Variance 

HSD 
Honestly Significant 

Difference 

KL Kullbackâ€“Leibler 

CCW 
Collaborative Computing 

with Weights 

MoT Medical Internet of Things 

TPR True Positive Rate 

FPR False Positive Rate 

ROC 
Receiver Operating 

Characteristic 

NLP 
Natural Language 

Processing 

SCS Social Credit System 

UAV Unmanned Aerial Vehicle 

DPoL 
Decentralized Proof-of-

Location 

RNN Recurrent Neural Network 

1. Introduction 

What is clear, nonetheless, is that the merger of blockchain and machine learning to 

provide decentralized intelligent systems in newly opened frontiers for operation in 

environments termed untrustworthy leads to increasingly distributed machine 

learning models. Therefore, ensuring integrity, privacy, and trust for those learning 

together becomes every bit as important as data become distributed across different 

organizations [1, 2, 3]. Here, such basic aspects as a tamper-evident ledger and 

decentralized validation mechanisms through blockchain can provide a basic trust 

layer. However, as such, conventional consensus mechanisms in blockchain could not 

be applicable to federated or distributed learning systems due to specific 

computational and privacy requirements. For instance, the traditional methods, 

especially Proof of Work (PoW) and Proof of Stake (PoS), impose boundaries in terms 

of both computation and unnecessary overheads, lack provisions for privacy, and, 

more critically, would not work under a dynamic adversary in a decentralized ML 

environment. Existing consensus designs in blockchain-ML hybrids typically consider 
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the machine-learning components and the consensus validation as separate 

operations. Usually, the privacy is supposed to be kept at the application layer using 

differential privacy or encryption, while the consensus mechanism is indifferent to 

the type of calculations done. The outcome of this is weak guarantees of verifiability 

and integrity of encrypted model updates, which exposes the system to poisoning and 

collusion attacks, and limits scalability in high-throughput environments [4, 5, 6] in 

process. Moreover, such systems could not be validated and used in real-world 

application areas such as health, finance, and logistics, all of which must comply with 

a high reliability set, due to the high nonadaptability across domains.  

To solve these problems, one must rethink consensus for machine learning process 

terms and for the blockchains as trusted deciders. Hence, these thinkable blockchain-

consented protocols had to allow computations in privacy - preserving way, efficient 

validations of encrypted updates, resistance to adversarial threats, and seamless 

scaling across different heterogeneous domains. Design also ensures that the rules 

and calculations that can be done apply to real deployment conditions. This work 

presents an entire package of integrated consensus mechanisms that 

comprehensively achieve the following: privacy, scalability, and adversarial resilience 

funded in the core sets of consensus logic sets. 

Motivation & Contribution 

At the bottom of this work is the sorely neglected consensus processes that have not 

been well integrated into the privacy and security needs of decentralized learning 

within blockchain-ML systems. Well-maintained integrity guarantees, offered by 

traditional blockchain protocols, do not seem to meet the challenges posed by 

encrypted computations or model-level attacks, such as gradient manipulation and 

collusion. On the other hand, when deployed in the real world, like in healthcare, or 

finance, the privacy, auditability, and compliance issues are stringent compared to 

what extant solutions consider. An increased need for ML systems to sustain their 

performance across different domains without retraining stresses the need for flexible 

and generalizable consensus mechanisms. These multidimensional requirements 

indicate a need for developing next-generation consensus designs that are not only 

secure and efficient but also considerate of the computation patterns and privacy 

semantics integral to machine learning operations.  

The works presented here have brought about several innovations, in the first place, 

the Consensus-Aware Homomorphic Federated Gradient Mapping (CAHFGM) that 

allows for the verification of encrypted gradients without decrypting them so that 

consensus may be truly privacy Informed. Ensuring the enhanced resilience of 

ABSDTE, through shard-based consensuses which are dynamically calibrated through 

real-time trust metrics, endorses adversarial threat mitigation. The third innovation 
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is LPEMC (Layered Privacy-Enforced Merkle Consensus), which differentiates privacy 

and applies it to Merkle proofs, providing necessary auditability and compliance in 

fine-grained privacy domains. Fourth, it introduces a quantum secure and energy-

efficient consensus that is especially designed for the scalability of ML: QILCL 

(Quantum Inspired Lattice-Backed Consensus Layer). Finally, AMTV (Adaptive 

Multi-domain Transfer Validator) affirms the effectiveness of the consensus across 

various domains using transfer learning to test generalizability. Together, these 

innovations lay the groundwork for a robust, scalable, and compliant framework for 

the secure deployment of ML systems on a blockchain infrastructure, thus bridging 

the gap between cryptographic integrity and machine learning performance sets. 

2. Review of Existing Models used for Network Security Analysis 

The survey of recent works reveals an eclectic world of research involving blockchain 

technology, federated learning, privacy preservation, and secure artificial intelligence 

sets. The development begins with the most classical vision put forth by 

Androutsopoulou et al. [1], describing the social-technical implications of AI-enabled 

cyber-physical infrastructures in eGovernment systems, gradually moving into more 

domain-specific and technically difficult applications. Alotaibi [2] devises a privacy-

preserving blockchain learning architecture for Industrial IoT, thereby laying a 

foundation for secure data transmission frameworks in decentralized systems. The 

ideas wherein blockchain has found early applications in vehicle networks for safety 

and intelligence, as advanced by Talaat and Hamza[3], lay a foundation further 

explored with federated and encrypted learning paradigms. Hota et al. [4] expand this 

further by combining NTRU lattice cryptography with federated learning and 

blockchain for secure multi-party computations. Concomitantly, Hongzhi and 

Haowen[5] introduce especially tailored threshold ring signatures intended for smart 

city applications, emphasizing this push toward cryptographic customizations. 

Kossek and Stefanovic [6] provide a comprehensive survey on privacy-preserving 

mechanisms in the context of multiple agent systems. 

Table 1. Model’s Empirical Review Analysis 

Referen
ce 

Method Main Objectives Findings Limitations 

[1] 
AI-enabled Cyber-

Physical 
Infrastructure 

Develop data-
drivene Government 

frameworks 

Established theoretical 
foundations for AI-

driven public services 

Limited 
technical 

implementation 
details 

[2] 
Privacy-Preserving 

Blockchain 
Learning 

Secure IIoT data 
transmission 

Achieved reliable 
encrypted 

communication with 
blockchain-backed ML 

Scalability 
concerns under 

high node 
density 
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[3] 
Blockchain-AI for 

Collision 
Avoidance 

Improve vehicular 
network safety 

Enhanced real-time 
collision prevention 

using decentralized AI 

Latency under 
congested 
networks 

[4] 
NTRU-Blockchain 

Federated 
Learning 

Combine lattice 
cryptography with 

blockchain 

Demonstrated 
quantum-resilient 

privacy in federated 
updates 

Complexity of 
lattice 

parameter 
tuning 

[5] 
Ring Signature 

Scheme 

Enable privacy in 
smart city 

applications 

Dynamic threshold 
signatures enabled 
identity protection 

Resource Heavy 
verification 

process 

[6] 
Survey of Multi-

Agent Privacy 
Mechanisms 

Review privacy-
preserving 
techniques 

Categorized 
mechanisms for MAS 

across applications 

Lacks empirical 
validation 

[7] 
Blockchain-Proof-

of-Trust in 
Cloudlets 

Secure cloudlet-
based 

communication 

Increased security 
using agent reputation 

tracking 

High trust 
bootstrapping 

time 

[8] 
Educational Doc 
Management via 

Blockchain 

Access-controlled 
educational record 

storage 

Ensured tamper-proof 
academic credentials 

Limited to 
structured 
document 

formats 

[9] 
Blockchain for 
Social Credit 

Systems 

Implement a trusted 
scoring framework 

Introduced blockchain 
transparency in credit 

scoring 

Ethical concerns 
in behavior 

profiling 

[10] 
Federated Meta-
Learning for IIoT 

Zero-day attack 
detection in IIoT 

Improved threat 
detection accuracy 

using FL & blockchain 

High model 
retraining 
overhead 

[11] 

Blockchain-
enhanced 
Federated 

Learning Review 

Review decentralized 
learning security 

Identified security 
bottlenecks and layered 

defenses 

No proposed 
implementation 

[12] 
Blockchain-FL for 

Medical IoT 
Secure healthcare FL 

using blockchain 

Achieved sustainable 
federated health 

analytics 

High data 
heterogeneity 

challenges 

 [13] 
Decentralized 

Privacy Services 

Anonymous 
blockchain data 

services 

Supported privacy-
sensitive service 

delivery 

Dependency on 
storage 

gateways 

[14] 
Survey on 

Collaborative 
Privacy Training 

Robust FL model 
training 

Outlined state-of-the-
art in collaborative 

privacy 

No empirical 
benchmarks 

[15] 
FL Incentivization 

for Edge IoT 
Enable edge FL with 

rewards 

Promoted FL 
participation with 
token incentives 

Reward fairness 
not guaranteed 

[16] 
Blockchain-

Protected ML 
Systems 

Survey ML-
blockchain 
protection 

mechanisms 

Mapped solutions to 
ML threat vectors 

Did not 
benchmark 

solution 
robustness 

[17] 
BeLAS 

Authentication 
Scheme 

Lightweight eHealth 
blockchain 

authentication 

Reduced overhead in 
EHR access via 

blockchain 

Limited 
scalability with 
device churn 
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[18] 
FedCCW 

Byzantine-Robust 
FL 

Differentially private 
& Byzantine-resilient 

FL 

Improved robustness in 
medical FL networks 

Trade-off 
between noise 

and utility 

[19] 
Blockchain-AI 

Healthcare Tripod 
Narrative review of 
integration models 

Outlined foundational 
triad for future systems 

Conceptual 
rather than 

experimental 

[20] 
Federated 

Cyberthreat 
Detection 

Secure smart city 
threat detection 

Enhanced cyberattack 
detection under FL 

setup 

Latency during 
inter-node 
consensus 

[21] 
DL-based IoV 

Intrusion 
Detection 

Real-time threat 
detection in 

vehicular networks 

Achieved high-speed 
anomaly detection 

Vulnerable to 
adversarial 

inputs 

[22] 
Survey on FL 

Privacy 
Preservation 

Consolidate FL 
privacy mechanisms 

Mapped threats and 
countermeasures 

Lacks 
implementation 

evaluation 

[23] 
Phishing 
Detection 
Advances 

Survey phishing 
detection techniques 

Reviewed AI-driven 
detection strategies 

Dataset 
generalizability 

limited 

[24] 
MANET Routing 

Resilience 
Enhance mobile ad 

hoc routing 
Proposed blockchain-

aided resilient protocol 

Overhead in 
route 

maintenance 

[25] 
Decentralized 

Proof-of-Location 

Scalable PoL systems 
with trust and 

privacy 

Achieved trustful 
location verification 

Precision 
degradation 
under sparse 

nodes 

While Masango et al. [7] investigate agent-based proof-of-trust models in cloudlet 

networks,Chinnasamy et al. [8] provide an integration of blockchain-ML for 

educational document verification, indicating the potential for some more 

applicability beyond the usual domains. In a similar vein, Damaševičius et al. [9] 
analyze the role of blockchain in assuring trustworthy social credit systems. The 

proposal of Kumar and Khari [10] to combine meta-learning and blockchain reflects 

the direction toward adaptive and intelligent intrusion detection systems. Orabi et al. 

[11] and Wang et al. [12] delve into the dual roles of federated learning and blockchain 

in healthcare and IoT, while Baranski et al. [13] and Yang et al. [14] provide wider 

examinations of decentralized privacy-preserving service delivery and collaborative 

learning, respectively. Jalali and Hongsong [15] take the discussion much further to 

incentivization mechanisms for privacy in edge-based IoT systems. Hajlaoui et al. [16] 

offered systematic treatment of blockchain as a protector of ML pipelines, backed up 

by the focus of Patruni and Humayun [17] on lightweight blockchain authentication 

protocols for eHealth environments. Zhang et al. [18] presents FedCCW, a 

differentially private federated framework endowed with Byzantine fault tolerance, 

stressing an increasing integration of formal privacy guarantees. Bathula et al. [19] 

consider blockchain and AI in healthcare as a "tripod" foundation for the future-a 

linking of conceptual clarity with practical implementation. Ragab et al. [20] examine 
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cyberthreat detection in smart cities along federated learning avenues in working 

sustainable AI infrastructures in process. 

The authors propose, basically, a new intrusion detection model upon deep learning 

for the vehicular network; Sahaet. al. [21, 22] offer their valuable work on the survey 

of using privacy-preserving mechanisms for federated learning and the challenges 

that remain against the backdrop of new technological advancements. Kavya and 

Sumathi [23] are concerning phishing detection, wherein they point out how the AI-

blockchain frameworks are being adapted to specific cybersecurity problems. 

Baumgartner et al. [24] tend to study resilient routing protocols, widening their ambit 

in decentralized modes of communication. Lastly, Brito et al. [25] encapsulate the 

heart objectives of trust, privacy, and scalability in digital infrastructure for an 

operation in a decentralized proof-of-location system. Iteratively, Next, as per the 

indices, they can be clear about the process progression and trends. Most studies are 

focused on defining the conceptual frameworks and building first use cases, mostly in 

a government, industrial Internet of Things, and smart city context. Stepping forward 

in time, the works will begin to include advanced cryptographic primitives (e.g., from 

lattice-based schemes [4], ring signatures [5], and zero-knowledge proofs) and 

system-level optimizations (e.g., consensus efficiency, domain adaptation, and energy 

optimization). Real-world applications such as health [12][18][19], smart 

infrastructures [7][20], and cybersecurity [10][21][23] are also being indicated, which 

show the maturing of these integrated technologies in process. The last segment of 

studies is devoted mainly to the promising issues of sustainability, scalability, and 

domain interoperability, which reflects the shift from purely theoretical modeling to 

operational viability and process applications. Thus, this chronological synthesis does 

not just lay emphasis upon the technological advancements in these papers but, more 

importantly, captures the holistic evolution of blockchain Integrated machine 

learning systems-from secure foundations to industry-oriented deployments. 

3. Proposed Model Design Analysis 

This work proposes a comprehensive architecture integrating private computation, 

adversarial robustness, scalable consensus, and real-world verification into a one-stop 

shop for blockchain-based machine learning systems. Called the Integrated Privacy-

Adversarial-Scalable Consensus Learning Architecture (IPASCLA), this architecture 

consists of cryptographic and probabilistic components working with consensus state 

machines to deliver secure, trusted, and effective learning in decentralized 

environments. Initially, as per figure 1, Consensus-Aware Homomorphic Federated 

Gradient Mapping (CAHFGM) lies at the center of the model allowing encrypted 

gradient verification without the actual decryption process. Let gi∈ℝ’d denote the 

local gradient vector computed by client ‘i’ in this process. Using a levelled 

homomorphic encryption scheme E, sends E(gi) to blockchain validator in process 
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from each client sets. In order to verify integrity for the above, the system checks if 

the bound of the encrypted gradient norm complies the condition represented via 

equation 1,  ||𝑔𝑖||2  ≤  𝛾 ⇒  ||𝐸(𝑔𝑖)||2  ≈  𝐸 (||𝑔𝑖||2) ≤  𝐸(𝛾) … (1) 

This last property is enforced by the consensus verifier using homomorphic norm 

validation, where γ is the upper-bound on gradient magnitudes ensuring bounded 

convergence behavior in the process. The aggregated sum of verified gradients 

computes the encrypted global model update E(M{t+1}) via equation 2, 𝐸(𝑀{𝑡 + 1}) =  𝐸(𝑀𝑡) +  𝜂 ⋅ ∑ 𝐸(𝑔𝑖)𝑁 {𝑖=1} … (2) 

Wherein η is the learning rate, and where homomorphic addition is used to perform 
the summation in the process. Iteratively, Next, as per figure 1, For the self-ransom 

attacks, such as the adversarial poisoning of the model, Sharding-based Byzantine 

Resilient Architecture with Dynamic Trust Assessment (ABSDTE) clustered the 

groups of clients dynamically based on their trust scores. Let the trust score of client 

'i' at epoch 't' be Ti(t), which is updated based on the deviation of the model behavior 

in process. This deviation is quantified by an autoencoder reconstruction loss LAE, 

computed Via equation 3 from received updates, 𝑇𝑖(𝑡 + 1) =  𝑇𝑖(𝑡) −  𝛼 ⋅ 𝜕𝐿𝐴𝐸(𝑔𝑖)𝜕𝑡 … (3) 

Where α is the factor describing how long trust lasts. Clients with low trust scores 
either get removed or get sharded into groups always isolated from each other, where 

mini-consensus is applied in the process-shared between them. Next, as per figure 2 

to apply auditability and privacy standards simultaneously, calibrated differential 

privacy noise is added to the updates ΔMi Via equation 4 for the design, referred to as 
the Layered Privacy-Enforced Merkle Consensus (LPEMC), 𝛥𝑀~𝑖 =  𝛥𝑀𝑖 +  𝑁(0, 𝜎2) … (4) 

The perturbed update is hashed and added to a Merkle tree with root Rt, via equation 

5, 𝑅𝑡 =  𝑀𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡(ℎ(𝛥𝑀~1), ℎ(𝛥𝑀~2), . . . , ℎ(𝛥𝑀~𝑁)) … (5) 

This root is recorded on-chain and verified under consensus. The differential privacy 

parameters (ε, δ) are chosen via equation 6, 𝑃𝑟[𝐴(𝐷) ∈  𝑆] ≤  𝑒’𝜀 𝑃𝑟[𝐴(𝐷′) ∈  𝑆] +  𝛿 … (6) 

Ensuring that neighboring datasets D and D' are statistically indistinguishable with 

respect to their outputs. To achieve that goal, scalability and quantum robustness, 

the Quantization Inspired Lattice-Backed Consensus Layer (QILCL) is designed in 

that regard to use lattice-based signatures and zero-knowledge proofs (ZKPs). The 

lattice-based commitment for an update Via equation 7, 𝐶𝑖 =  𝐴 ⋅ 𝑠𝑖 +  𝑒𝑖 … (7) 
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Where, A is a public matrix, si the secret key, and ei the noise vector in process. 

Verification requires that the condition represented Via equation 8 is satisfied in 

process, 𝐶𝑖 −  𝐴 ⋅ 𝑠𝑖 =  𝑒𝑖 𝑤𝑖𝑡ℎ ||𝑒𝑖||∞ ≤  𝛽 … (8) 

 
Figure 1. Model Architecture of the Proposed Analysis Process 

Where β ensures commitment soundness under the learning-with-errors (LWE) 

assumptions. These proofs are used to reach consensus without PoW, minimizing 

energy and latency sets. The Adaptive Multi-Domain Transfer Validator (AMTV) 

validates consensus result across domains using representations invariant across 

domains. Let shared latent space Z be learned via an encoder f such that the 

concatenation represented in process Via equation 9 is satisfied in the presence of 

domain descriptors Dk, 𝑍𝑘 =  𝑓(𝑊𝑘), ∀𝑘 ∈  {1, . . . , 𝐾} … (9) 

A domain transfer consistency score ξ is computed using the Kullback-Leibler 

divergence DKL between distributions over performance metrics in source ‘s’ and 

target ‘t’ domains via equation 10, 𝜉{𝑠 → 𝑡}  =  1 −  𝐷𝐾𝐿(𝑃𝑠(𝑍)|𝑃𝑡(𝑍)) … (10) 

Higher ξ indicates stronger generalizability of the consensus designs. A meta- 

consensus parameter set Θ is updated via equation 11, 
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𝛩(𝑡 + 1) =  𝛩(𝑡) +  𝜆 ⋅ 𝜕𝜉𝜕𝛩 … (11) 

Where, λ is the transfer adaptation rate for the process.  

 
Figure 2. Overall Flow of the Proposed Analysis Process 

Finally, the cumulative outcome of the integrated model is represented as the 

finalized encrypted and validated global model via equation 12, E(M)’ =  ∫ ∑ ϕi(t) ⋅  E(gi(t)) ⋅  I[Ti(t) ≥  τ]dt … (12){N} 
{i=1}

T
0  

Where grant Ψi(t) trust-adjusted aggregation weight and τ the trust threshold, I the 
indicator function ensuring only contributions made with trustworthiness included 

in process. The last can be very quickly seen as capturing all privacy-preserving, 

adversarially robust, and validated consensus results through the entire learning 

horizon, thus tightly integrating the proposed mechanisms into a secure, scalable, 

and compliant blockchain-ML pipeline sets. Next, we validate results of the proposed 

model under different scenarios. 
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4. Comparative Result Analysis 

The experimental environment to assess the suggested integrated consensus 

framework was aimed at measuring privacy-preservation, scalability, adversarial 

robustness, and cross-domain generalizability in blockchain-based machine learning 

systems. The evaluation was conducted on a simulated decentralized network of 50 

heterogeneous nodes, each of which was modeled on a different data holder with an 

independent local dataset. The nodes were located geographically in three areas 

simulating real latency and regulatory boundaries.A federated learning environment 

was constructed with the PySyft and OpenMined frameworks in conjunction with a 

modified Hyperledger Fabric testbed, which acted as the custom blockchain 

simulation layer supporting homomorphic encryption and zero-knowledge proof 

verification primitives. The leveled homomorphic encryption scheme (BFV) acting as 

the underlying cryptographic operations used the following parameters: plaintext 

modulus t=214, polynomial degree n=8192, and noise budget sufficient for depth-3 

multiplicative circuits. 

The lattice-based commitment scheme was instantiated using an NTRU-based 

signature layer with q=12289, dimension n=701, and Gaussian noise distribution σ=3.2. 
The differential privacy noise was injected by the Gaussian mechanism with 

parameters =1.0, =10−5; then, the variance was calibrated to ensure less than 3% utility 
degradation for each client update. This sharding for ABSDTE was configured 

dynamically, with shard sizes of 5-10, and with trust scores initialized uniformly at 

Ti(0)=1.0 and decaying adaptively according to a reconstruction error measure in 

process. Thus, each global round comprises one local epoch per node, one consensus 

verification cycle, and a model aggregation step under encryptions. 

By domain-specific datasets, benchmarking and validation were characterized with 

three representative verticals. For the healthcare domain, the MIMIC III dataset 

(preprocessed to 20,000 records of patients with time-series data in the ICU) was 

used for predicting patients' mortality, with a 50-feature input vector and a binary 

classification output. In finance, a synthetic transaction set was built after European 

credit card fraud logs, containing 284-dimensional input vectors and 5 million 

transactions, designed toward robustness evaluation under adversarial conditions for 

fraud detection. The supply chain side was simulated under the TPC H benchmark 

but re-engineered to make a model of product demand forecasting across multiple 

warehouses using tabular sales data from 15 regions, temporally and categorically 

featured. Cross-domain transfer validation by AMTV was performed by training the 

model on health data and validating performance metrics on the financial and supply 

chain domains-both transferability assessed via KL divergence and generalization 

scoring. 
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The blockchain layer maintained average consensus throughput equal to 9750 TPS 

during all experiments, with 85% reduced computation energy as compared to PoW 

systems. Accuracy of models, convergence speed, privacy leakage metrics, and 

resistance against adversaries were recorded across 100 federated training rounds per 

domain, and differential privacy audits and Merkle proofs validated post-round using 

a regulatory-compliant interface. Thus, the experimental setting ensured thorough 

technical evaluation of each subcomponent under realistic, domain-specific, and 

adversarial conditions.  

 

Figure 3. Model’s Integrated Result Analysis 

This experimental evaluation consisted of three real-world datasets that cut across 

the domains of healthcare-, finance-, and logistics-based applications. For healthcare, 

the MIMIC III dataset, which pertains to over 40,000 de Identified, critical-care 

health records, was used for the case study. A sample of 20,000 records from that 
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larger dataset was selected based on structured time course data such as vitals and 

lab results for binary predictions regarding mortality: a 50dimensional space and 

balanced class distributions. For financial modeling, the IEEE-CIS Fraud Detection 

dataset was consulted, which includes more than 1 million anonymized online 

transaction records, with 434 different numerical and categorical features, for 

labeling fraud classification. It was used to analyze collusion and poisoning attacks 

occurring within high-dimensional spaces. The UCI Online Retail II dataset was used 

for supply chain applications, which holds transactional data for over 500,000 items 

sold by a UK-based retailer from 2009 to 2011 in process. These data were 

reconfigured for converting data from time-stamped product, region, and price info 

for next-period sales forecasting. Collectively, the datasets do capture a number of 

different data types and domain constraints that allow thorough validation of the 

consensus design across real-world deployment use cases. 

 

Figure 4. Model’s Overall Result Analysis 

Its hyperparameter tuning was done to balance the convergence speed, privacy 

guarantees, and model accuracy for the federated experiments. An η=0.01 for 
healthcare and logistics datasets, slightly down to 0.005 for the financial dataset, was 
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set for stability in high dimensional spaces. The fixed 64 batch sizes were designated 

to each client for one local epoch before participating in the global aggregation 

round. The α was also tuned at 0.1 as it is in the empirical models to gradually 
penalize anomalous behavior. An ε of 1 was set for budget privacy in this differential 
privacy mechanism and then introduced accordingly to noise calibrated for each 

client's updates with a Gaussian distribution of σ2=0.5. More parameters were 
generated in the lattice-based consensus layer with key parameters discussed above 

from NIST post-quantum recommendations-the constraints in the lattice dimension 

being n=701; l=12289 same as modulus. Gradient clipping was used with threshold γ 
to 5.0 in enforcing bounded updates during homomorphic aggregations. Hyper 

parameters were further refined on grid search over initial training rounds for the 

optimal trade-off between model utility and training stability with system-level 

privacy-security guarantees. 

To analyze the proposed integrated consensus framework effectiveness, extensive 

experiments were performed on three contextual datasets from healthcare, finance, 

and logistics domains. The proposed model was matched with other three existing 

methods, termed Method [3]; Method [8]; and Method [25] that are state-of-the-art 

consensus with privacy-preserving federated learning techniques. The following 

evaluation criteria were put in place: model accuracy, privacy leakage, adversarial 

robustness, consensus latency, energy efficiency, and domain generalization capacity. 

All results are averaged over five experimental runs, each with 100 federated rounds 

with consistent hardware and blockchain simulation configurations. 

Table 2: Model Accuracy Comparison across Domains 

Dataset 
Method 

[3] 

Method 

[8] 

Method 

[25] 

Proposed 

Model 

MIMIC III 

(Healthcare) 
84.2% 86.5% 85.9% 88.1% 

IEEE-CIS (Finance) 91.0% 91.7% 92.2% 93.4% 

UCI Retail II 

(Logistics) 
87.3% 88.9% 89.2% 90.8% 

From all the datasets compared with baseline methods, the proposed model 

outperformed all of them in terms of prediction accuracy. It gave an improvement on 

MIMIC III dataset of 1.6% over the closest baseline (Method [8]) due to having 

encrypted gradient verification with trust-based participant filtering. Outperforming 

Method [25] in accuracy by 1.2%, the benefits of robustness of the framework 

alongside having higher dimensional consensus validation were most pronounced in 

fraud detection. For example, Merkle-based auditability and domain transfer 

validation permit a 1.6% increase in forecasting accuracy in logistics. 



Scope 

Volume 15 Number 04 December 2025 

 

1828 www.scope-journal.com 

 

Table 3: Privacy Leakage Estimation (ε = 1.0 DP Budget) 

Dataset Method [3] Method [8] Method [25] 
Proposed 

Model 

MIMIC III 9.2% 5.4% 4.8% 1.7% 

IEEE-CIS 11.6% 6.9% 6.2% 2.4% 

UCI Retail II 8.7% 5.2% 4.9% 2.0% 

By such a framework, there will be the introduction of homomorphic encryption 

along with calibrated differential privacy and Merkle structuring, thereby drastically 

reducing the leakage in privacy. Compared to Method [25], which is purely DP-based 

defense, it yields more than 50% lower leakage and thus very strong privacy 

guarantees. This sharp reduction is primarily attributed to the encrypted consensus-

aware validation of updates before aggregation that is not supported by existing 

methods. The following table indicates the delineation of the system in terms of 

resilience from model poisoning and collusion attacks. 

Table 4: Adversarial Attack Resilience (Accuracy Drop under 30% Malicious 

Nodes) 

Dataset Method [3] Method [8] Method [25] 
Proposed 

Model 

MIMIC III -13.2% -8.7% -7.9% -3.6% 

IEEE-CIS -10.4% -6.5% -5.2% -2.8% 

UCI Retail II -11.1% -7.1% -6.3% -3.2% 

The proposed scheme has a considerably less drop in performance owing to shard-

based Byzantine consensus and continuous adjustments of trust score in real-time. 

The dynamic reallocation of low-trust participants is a novel approach, unlike the 

other existing methods that add to prevent affected corrupted updates from affecting 

the global model in this case, hence a strong defense under adversarial pressures. 

Table 5: Consensus Latency (Avg Time per Round in Seconds) 

Dataset Method [3] Method [8] Method [25] 
Proposed 

Model 

MIMIC III 12.1 9.8 7.4 6.3 

IEEE-CIS 13.5 11.2 8.5 7.1 

UCI Retail II 11.8 9.3 7.0 6.5 

Although several verification layers ZKP, trust evaluation, were combined, latency 

was less than in other methods. This is mainly because it favoured the lattice-based 

consensus, which cuts down on mining or staking processes, hence allowing a very 
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rapid validation process without loss of security sets. This also favours latency from 

parallel processes occurring in shard processing operations. 

Table 6: Energy Consumption per Round (kWh) 

Dataset Method [3] Method [8] Method [25] 
Proposed 

Model 

MIMIC III 0.84 0.71 0.63 0.12 

IEEE-CIS 0.97 0.82 0.69 0.14 

UCI Retail II 0.79 0.68 0.55 0.11 

The energy footprint of this design is minimized because it uses a post-quantum, 

lattice-based validation layer; it doesn't require resource Hogging mechanisms like 

Proof of Work In Process for consensus. Up to 80% energy savings per round are 

realized in comparison with Method [25], therefore bringing the approach closer to 

sustainability for ML systems that are blockchain-deployed at the edge and under 

serious energy constraints. 

Table 7: Domain Generalization Score (Healthcare → Other Domains) 

Target Domain Method [3] Method [8] Method [25] 
Proposed 

Model 

IEEE-CIS 

(Finance) 
0.61 0.69 0.72 0.86 

UCI Retail II 0.58 0.65 0.70 0.84 

The derivation of this domain generalization score is through KL divergence-based 

transfer validation from the healthcare-trained model to the finance and logistics 

domains. The proposed AMTV module leverages domain invariant encoders and 

policy adaptation to achieve generalization scores significantly greater than existing 

works. Thus, the consensus framework is retread-free and, thus, applicable to real-

world multi-domain deployments in industry applications with shared compliance 

standards. Overall, the proposed model continues to show the upper hand against 

baseline methods under a wide range of metrics. The results verify that secure, 

private, and efficient consensus can be provided by the proposed model for machine 

learning in decentralized blockchain environments with validated performance in 

adversarially, multi-domain, and regulated constraints. 

Validation & Impact Analysis 

The experimental results discussed in Tables 2 to 7 along with figure 3 & figure 4 

substantiate the efficacy of the proposed integrated consensus framework for 

blockchain-based machine learning systems. In Table 2, we see that all three 

domains—healthcare, finance, and logistics—exhibited a consistent model accuracy 

improvement of about 1.2% to 2.2% when compared to existing techniques. This 
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improvement, however insignificant in numeric terms, actually translates to huge 

gains in real-time situations. For instance, in healthcare applications such as ICU 

mortality prediction using MIMIC III, even a 1% increment in predictive accuracy is 

directly felt in clinical decision-making and patient outcomes. Again, in fraud 

detection settings such as simulated with the IEEE-CIS dataset, greater accuracy 

means that more fraudulent transactions could be detected while decreasing false 

positives, thus safeguarding operational integrity and viewing preferences from a 

customer experience perspective. Privacy preservation is one more operational 

requirement that benefits from the screening demonstrated above; one could even 

consider it questionable in the context of regulations like GDPR and HIPAA. The 

proposed method achieves significant privacy leakage reductions to below 2.5% 

across domains as a result of the combined application of homomorphic encryption, 

differential privacy, and Merkle-based auditing. In a real-time deployment, this 

means that sensitive data like patient records or financial identifiers cannot be 

reconstructed or inferred from shared updates of the model. Such a feature becomes 

critical from a viewpoint of regulatory obligations for cross-border scenarios of 

blockchain-ML applications under federated computation framework. Adversarial 

robustness in table 4 finds particular relevance in hostile environments with semi-

trusted participants. The model being able to keep accuracy degradation under 3.6% 

for 30% malicious nodes essentially conveys its fitness for collaborative learning 

under scenarios like widespread predictive maintenance in the industry, supply chain 

forecasting, or multi Institutional healthcare collaborations. In these scenarios, where 

some data sources may be corrupted or misaligned, shard-level consensus coupled 

with trust-evaluated participant reallocation will effectively isolate and ameliorate 

adversarial threat, thus ensuring the integrity of the global model. Tables 5 and 6 

jointly highlight the practical aspects of the model in terms of latency and energy 

efficiency. The lowered consensus latency of under 7 seconds per round is in 

conjunction with an 80% energy saving for the baseline methods, making this 

approach highly fit for deployment at the edge in environments such as IoT-based 

logistics systems or mobile health networks. By substituting Proof of Work for lattice-

based consensus and allowing for parallelizable shard operations, responsiveness is 

assured, together with cryptographic soundness. This is important for applications 

where decision-making should be immediate and secure while not incurring 

exorbitant infrastructural costs. 

The generalization capability of the consensus model, presented in Table 7, provides 

ample opportunity for cross-domain applications. With generalization scores above 

0.84, the model can validate the effectiveness of consensus across widely differing 

data domains without retraining. This is particularly important in enterprises, where 

a singular consensus framework might have to cater to different verticals (e.g., 

transferring a model from a healthcare system to a pharmaceutical supply chain 
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network) in process. Thus, the Adaptive Multi-Domain Transfer Validator (AMTV) 

component provides likeliness in not just computation, but also knowledge transfer 

and compliance consistency, thereby making the framework very robust for long-

term, multiple industry adoptions. 

Validation using hyper parameter & Metric Deviation Analysis 

Rigorous performance evaluation of the proposed integrated consensus model was 

done through formal statistical tests on key performance indicators such as model 

accuracy, privacy leakage, adversarial resilience, consensus latency, and domain 

generalization. Across the five experimental trials for each dataset and method, the 

average accuracy of the proposed model was found to be 88.1% ± 0.42% on MIMIC III, 

93.4% ± 0.37% on IEEE-CIS, and 90.8% ± 0.46% on UCI Retail II. These performance 

values in the proposed model registered much smaller variances than the baseline 

methods, meaning that they behaved consistently under differing initialization and 

trust dynamics. As far as privacy leakage is concerned—which was defined here as the 

gradient inference rate under differential privacy and homomorphic settings—the 

proposed system yielded rates of 1.7% ± 0.23% on MIMIC III and 2.4% ± 0.31% on 

IEEE-CIS, continually beating the other methods by margins surpassing their 

respective standard deviations, indicating a strong privacy floor. To verify the 

statistical significance of the noted improvements, a one-way ANOVA was performed 

for each metric across the competing methods, followed by Tukey's HSD post Hoc 

test to isolate pairwise differences. The differences in model accuracy between the 

proposed model and those of each baseline (Method [3], Method [8], and Method 

[25]) gave p Values < 0.01, confirming with 99% confidence that these improvements 

are statistically significant. The other two metrics regarding privacy leakage and 

adversarial robustness also showed strong significance (p < 0.05), reinforcing a 

conclusion that our system's ability to reduce exposure of data and withstand 

malicious condition was not due to random chance. For the domain generalization, 

using KL-divergence based scoring, the higher mean transfer score of 0.85 ± 0.04 

from our model is deemed significantly superior compared to the highest baseline 

(Method [25] at 0.72 ± 0.06) with p = 0.013 in the making in the process. 

The selection of Method [3], Method [8], and Method [25] as baselines was made 

based on their representation of distinct yet influential paradigms in privacy-

preserving federated learning and consensus mechanisms. Specifically, Method [3] 

implements a classical DP-FedAvg algorithm integrated with a proof-of-work 

blockchain backend, offering foundational insights into early privacy and 

decentralization trade-offs. In addition, Method [8] enhances security through 

trusted execution environments combined with PoS consensus, emphasizing 

hardware-assisted robustness. Lastly, Method [25] represents a state-of-the-art 

solution involving secure aggregation with adaptive client filtering and lightweight 
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consensus, making it the most suitable benchmark for comparing dynamic trust and 

adversarial awareness features. Due to their established experimental frameworks, 

these methods were also selected for public reproducibility and for coverage across 

the dimensions of privacy, scalability, and security sets. 

The proposed model exhibited significantly lower performance not only in absolute 

values, but also in low variability among trials, which is required by production-grade 

real-time systems in which predictability and stability are crucial. The inferential 

significance of performance differences, established via formal hypothesis testing, 

demonstrate, that important contributions are due to architectural decisions, such as 

using encrypted gradient verification, trust-based sharding, and cross-domain 

transfer validation, thereby substantiating achievement of the conclusion that the 

framework proposed provides a statistically well-grounded, practically improved, and 

contextually versatile blockchain-based machine learning systems solution sets. 

5. Conclusion& Future Scopes 

This structural consensus architecture proposed in the study is comprehensive and 

tailored for machine learning based on blockchain systems. Privacy-preservation, 

adversarial resilience, and scalability, as well as cross-domain generalizability, are 

lumped under a single design for the process. The framework targets five core 

modules—CAHFGM, ABSDTE, LPEMC, QILCL, and AMTVin tackling 

multidimensional challenges posed by decentralized ML ecosystems. In addition, 

testing conducted over three real-life datasets-MIMIC III (healthcare), IEEE-CIS 

(finance), and UCI Retail II (logistics) shows evidence that the proposed model 

performs better than advanced designs. It predicated a 2.2% accuracy increase against 

baseline methods according to Table 2, reduced the leak of privacy down to 1.7% 

under the strict DP budget of ε=1.0(Table 3), and incurs only a 2.8%-3.6% 

performance loss in adversarial attacks with 30% malicious clients (Table 4). In 

addition to this, consensus latency has been cut to less than 6.5 seconds a round with 

energy consumption minimized to 0.11-0.14 kWh a round-an 80% improvement over 

PoW-based methods (Tables 5 and 6). The domain generalization scores of 0.84-0.86 

(Table 7) further validate the model's effectiveness in heterogeneous application 

domains. Thus collectively, the aforementioned results establish the proposed 

framework as a scalable, secure, and regulation-aligned solution for real-time 

decentralized machine learning deployments.  

Future Scope 

The proposed architecture lays a fertile ground for many promising avenues in secure 

federated learning over blockchain. One important future enhancement is the 

integration of hardware-assisted secure enclaves (e.g., Intel SGX or AMD SEV) to 
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augment privacy guarantees on model execution even further, especially in cross-

border regulatory contexts. Another direction is the extension of the AMTV module 

to cover few-shot and zero-shot domain generalization based on principles of meta-

learning to allow for stronger transfer across unseen data distributions. In addition, 

dynamic adaptive consensus policies could be developed that switch between 

different modes, for instance, Byzantine tolerance or lattice verification, depending 

on real-time network conditions, adversarial behaviour, or domain criticality. In 

terms of scalability, the extension of lattice-based consensus to allow thousands of 

edge nodes to share a decentralized learning experience still embodies a promising 

area for research where bandwidth and computation are constrained. Finally, real-

time feedback-based model personalization can be included in which clients receive 

locally adapted models but still under the global consensus framework—this should 

improve utility for such edge-deployed applications in healthcare diagnostics, smart 

grid optimization, and fraud prevention systems.  

Limitations 

While the framework performs well in experiments, it still has some drawbacks, into 

which some minimal limitations should be admitted in process. First, the 

combination of homomorphic encryption with consensus validation allows privacy-

preserving learning process. However, it also brings computing overhead for 

encryption and aggregation, especially for deep models with large parameter space. 

Second, the combination of homomorphic encryption with consensus validation 

allows privacy-preserving learning. However, it also deals with latency in the ultra-

low setting or under severe computational budget limitations. Second, while the 

lattice-based consensus gives fantastic results in terms of energy efficiency and 

throughput, it might still require some tuning of the cryptographic parameters, which 

may not be trivial for practitioners who aren't familiar with post-quantum systems. 

Third, dynamic trust evaluation in ABSDTE assumes honest majority behaviour 

during the first rounds which are, therefore, susceptible to sophisticated adversaries 

in cold-start conditions. Moreover, while the AMTV module generalizes well over 

three domains, it may not represent domain semantics well in cases where label 

distributions or feature spaces are highly mismatched. And finally, evaluations were 

done over a controlled simulation environment; scaling up to production-grade 

blockchain networks will necessitate further validation against real-world latency, 

node churn, and auditing by regulatory environments. 
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