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Abstract: Typically, security models & analysis includes privacy, efficient
computational scalability, and resilience to adversarial threats. Additional
requirements from two perspectives, rather than clear-cut governance
mechanisms leading to consensus designs focusing primarily on data integrity or
network-level security, seldom exist. Most conventional federated learning
schemes detach the consensus validation from the encrypted computations and
ignore real-world compliance and domain transferability in process. To remedy
these shortcomings, this paper proposes a broad-based framework that comprises
five innovative methods to enhance consensus specifically focused on ML systems
deployed over blockchains. The CAHFGM method interconnects encrypted
gradient validation straight into the consensus pipeline of the model-to-be Valid
model, guaranteeing model integrity without affecting data privacy. The ABSDTE
enhances robustness with dynamic trust scores by surfer clustering participants
and deploying shard-level consensus to detect collusion and model poisoning.
The Layered Privacy-Enforced Merkle Consensus combines differential privacy
with Merkle structures to ensure privacy with audit ability for regulated real-
world deployments. To address scalability issues, the Quantum Inspired Lattice-
Backed Consensus Layer adopts post-quantum-secure energy-efficient consensus
primitives based on lattice cryptography, achieving high throughput and
resistance to quantum attacks. The Adaptive Multi-Domain Transfer Validator
employs transfer learning for validating consensus outcomes among
heterogeneous domains for improved generalizability as a whole in process.
Collectively, these methods reduce privacy leakage by 98%, increase collusion
detection accuracy above 92%, achieve >10,000 TPS, and demonstrate >85%
domain transfer efficiency. This work establishes a robust, scalable, and privacy-
preserving consensus foundation for deploying ML over blockchain in regulated,
adversarial, and cross-domain environments.

Keywords: Privacy-Preserving Consensus, Blockchain-Based Machine Learning,
Homomorphic Encryption, Adversarial Robustness, Scalable Protocols,
Applications
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Things BYOD Bring Your Own Device
[oT Internet of Things DS Intrusion Detection
EHR Electronic Health Records System
NTRU Nth-degree Truncated ANOVA Analysis of Variance
Polynomial Ring Unit HSD Honestly Significant
DL Deep Learning Difference
ML Machine Learning KL Kullbacka€“Leibler
ZKP Zero-Knowledge Proof CCW Collaborative Computing
DP Differential Privacy with Weights
DPFL Differentially Private MoT Medical Internet of Things
Federated Learning TPR True Positive Rate
PoW Proof of Work FPR False Positive Rate
PoS Proof of Stake ROC Receiver Operating
MAS Multi-Agent Systems Characteristic
B5G Beyond 5G NLP Natural Language
MANET Mobile Ad Hoc Network Processing
eGov Electronic Government SCS Social Credit System
E2E End-to-End UAV Unmanned Aerial Vehicle
SGX Software .Guard DPoL Decentralizeq Proof-of-
Extensions Location
Abbreviati RNN Recurrent Neural Network
Full Form
on
1. Introduction

What is clear, nonetheless, is that the merger of blockchain and machine learning to
provide decentralized intelligent systems in newly opened frontiers for operation in
environments termed untrustworthy leads to increasingly distributed machine
learning models. Therefore, ensuring integrity, privacy, and trust for those learning
together becomes every bit as important as data become distributed across different
organizations [1, 2, 3]. Here, such basic aspects as a tamper-evident ledger and
decentralized validation mechanisms through blockchain can provide a basic trust
layer. However, as such, conventional consensus mechanisms in blockchain could not
be applicable to federated or distributed learning systems due to specific
computational and privacy requirements. For instance, the traditional methods,
especially Proof of Work (PoW) and Proof of Stake (PoS), impose boundaries in terms
of both computation and unnecessary overheads, lack provisions for privacy, and,
more critically, would not work under a dynamic adversary in a decentralized ML
environment. Existing consensus designs in blockchain-ML hybrids typically consider
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the machine-learning components and the consensus validation as separate
operations. Usually, the privacy is supposed to be kept at the application layer using
differential privacy or encryption, while the consensus mechanism is indifferent to
the type of calculations done. The outcome of this is weak guarantees of verifiability
and integrity of encrypted model updates, which exposes the system to poisoning and
collusion attacks, and limits scalability in high-throughput environments [4, 5, 6] in
process. Moreover, such systems could not be validated and used in real-world
application areas such as health, finance, and logistics, all of which must comply with
a high reliability set, due to the high nonadaptability across domains.

To solve these problems, one must rethink consensus for machine learning process
terms and for the blockchains as trusted deciders. Hence, these thinkable blockchain-
consented protocols had to allow computations in privacy - preserving way, efficient
validations of encrypted updates, resistance to adversarial threats, and seamless
scaling across different heterogeneous domains. Design also ensures that the rules
and calculations that can be done apply to real deployment conditions. This work
presents an entire package of integrated consensus mechanisms that
comprehensively achieve the following: privacy, scalability, and adversarial resilience
funded in the core sets of consensus logic sets.

Motivation & Contribution

At the bottom of this work is the sorely neglected consensus processes that have not
been well integrated into the privacy and security needs of decentralized learning
within blockchain-ML systems. Well-maintained integrity guarantees, offered by
traditional blockchain protocols, do not seem to meet the challenges posed by
encrypted computations or model-level attacks, such as gradient manipulation and
collusion. On the other hand, when deployed in the real world, like in healthcare, or
finance, the privacy, auditability, and compliance issues are stringent compared to
what extant solutions consider. An increased need for ML systems to sustain their
performance across different domains without retraining stresses the need for flexible
and generalizable consensus mechanisms. These multidimensional requirements
indicate a need for developing next-generation consensus designs that are not only
secure and efficient but also considerate of the computation patterns and privacy
semantics integral to machine learning operations.

The works presented here have brought about several innovations, in the first place,
the Consensus-Aware Homomorphic Federated Gradient Mapping (CAHFGM) that
allows for the verification of encrypted gradients without decrypting them so that
consensus may be truly privacy Informed. Ensuring the enhanced resilience of
ABSDTE, through shard-based consensuses which are dynamically calibrated through
real-time trust metrics, endorses adversarial threat mitigation. The third innovation
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is LPEMC (Layered Privacy-Enforced Merkle Consensus), which differentiates privacy
and applies it to Merkle proofs, providing necessary auditability and compliance in
fine-grained privacy domains. Fourth, it introduces a quantum secure and energy-
efficient consensus that is especially designed for the scalability of ML: QILCL
(Quantum Inspired Lattice-Backed Consensus Layer). Finally, AMTV (Adaptive
Multi-domain Transfer Validator) affirms the effectiveness of the consensus across
various domains using transfer learning to test generalizability. Together, these
innovations lay the groundwork for a robust, scalable, and compliant framework for
the secure deployment of ML systems on a blockchain infrastructure, thus bridging
the gap between cryptographic integrity and machine learning performance sets.

2. Review of Existing Models used for Network Security Analysis

The survey of recent works reveals an eclectic world of research involving blockchain
technology, federated learning, privacy preservation, and secure artificial intelligence
sets. The development begins with the most classical vision put forth by
Androutsopoulou et al. [1], describing the social-technical implications of Al-enabled
cyber-physical infrastructures in eGovernment systems, gradually moving into more
domain-specific and technically difficult applications. Alotaibi [2] devises a privacy-
preserving blockchain learning architecture for Industrial IoT, thereby laying a
foundation for secure data transmission frameworks in decentralized systems. The
ideas wherein blockchain has found early applications in vehicle networks for safety
and intelligence, as advanced by Talaat and Hamza[3], lay a foundation further
explored with federated and encrypted learning paradigms. Hota et al. [4] expand this
further by combining NTRU lattice cryptography with federated learning and
blockchain for secure multi-party computations. Concomitantly, Hongzhi and
Haowen([5] introduce especially tailored threshold ring signatures intended for smart
city applications, emphasizing this push toward cryptographic customizations.
Kossek and Stefanovic [6] provide a comprehensive survey on privacy-preserving
mechanisms in the context of multiple agent systems.

Table 1. Model’s Empirical Review Analysis

Refceeren Method Main Objectives Findings Limitations
Al-enabled Cyber- Develop data- Established theoretical t]:crflll;tiecgl
[1] Physical drivene Government foundations for Al- implementation
Infrastructure frameworks driven public services P .
details
. . Achieved reliable Scalability
Privacy-Preserving
. Secure IIoT data encrypted concerns under
(2] Blockchain .. S . .
Learnin transmission communication with high node
& blockchain-backed ML density
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Blockchain-Al for Imorove vehicular Enhanced real-time Latency under
ollision collision prevention congeste
3] Collisi nlztwork safet llision p : gested
Avoidance Y using decentralized Al networks
NTRU-Blockchain | Combine lattice Demonstrated ) - Complexity of
(4] Federated cryptography with 4 .
Learning blockchain privacy in federated parameter
updates tuning
. . Enable privacy in Dynamic threshold Resource Heavy
smart cit signatures enable verification
(5] ngcslignmaeture ity ig bled ficati
applications identity protection process
Survey of Multi- Review privacy- Categorized Lacks empirical
[6] Agent Privacy preserving mechanisms for MAS vali datli)on
Mechanisms techniques across applications
Blockchain-Proof- Secure cloudlet- Increased security High trust
[7] of-Trust in based using agent reputation | bootstrapping
Cloudlets communication tracking time
Educational Doc Access-controlled Limited to
. . Ensured tamper-proof structured
[8] Management via educational record . .
Blockchain storage academic credentials document
formats
Blockchain for Implement a trusted Introduced blockchain | Ethical concerns
[o] Social Credit pie transparency in credit in behavior
scoring framework P <y
Systems & scoring profiling
Federated Meta- Zero-day attack Impr9ved threat High I.n(.)del
[10] Learning for IIoT detection in IloT detection accuracy retraining
& using FL & blockchain overhead
Blockchain- Identified securit
1] enhanced Review decentralized bottlenecks and la eyre d No proposed
Federated learning security defenses Y implementation
Learning Review
Blockchain-FL for | Secure healthcare FL Achieved sustainable High date?
[12] Medical IoT usine blockchain federated health heterogeneity
& analytics challenges
Decentralized Anonymous Supported privacy- Dependency on
[13] . ! blockchain data sensitive service storage
3 Privacy Services 8
Y services delivery gateways
Survey on Outlined state-of-the- .
[14] Collaborative RObiizii];andel art in collaborative Il\)l(e)neclﬁrl;l ;fsl
Privacy Training & privacy
FL Incentivization | Enable edge FL with Pr'o'mot.ed FL. Reward fairness
5] for Edge loT rewards participation with not guaranteed
token incentives
. Survey ML- Did not
Blockchain- . .
6] Protected ML blockchain Mapped solutions to benchmark
Svstems protection ML threat vectors solution
Y mechanisms robustness
BeLAS Lightweight eHealth | Reduced overhead in Limited
[17] Authentication blockchain EHR access via scalability with
Scheme authentication blockchain device churn
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FedCCW Differentially private . Trade-off
. . - Improved robustness in .
[18] Byzantine-Robust | & Byzantine-resilient . between noise
medical FL networks -
FL FL and utility
Blockchain-Al Narrative review of | Outlined foundational Conceptual
[19] i ) . i rather than
Healthcare Tripod | integration models | triad for future systems .
experimental
Federated . Enhanced cyberattack | Latency during
Secure smart city . .
[20] Cyberthreat . detection under FL inter-node
. threat detection
Detection setup consensus
DL base‘d loV Real tlm'e th'reat Achieved high-speed Vulnerabl.e to
[21] Intrusion detection in . adversarial
. . anomaly detection .
Detection vehicular networks inputs
Survey on FL Consolidate FL Mapped threats and . Lacks .
[22] Privacy . . implementation
. privacy mechanisms countermeasures .
Preservation evaluation
PhlShl.n & Survey phishing Reviewed Al-driven Dat'aset. .
(23] Detection . . . . generalizability
detection techniques detection strategies .
Advances limited
MANET Routing | Enhance mobilead | Proposed blockchain- Overhead in
[24] - . . . route
Resilience hoc routing aided resilient protocol .
maintenance
Precision
Decentralized Scalaple Pol. systems Achieved trustful degradation
[25] . with trust and . . .
Proof-of-Location i location verification under sparse
privacy nodes

While Masango et al. [7] investigate agent-based proof-of-trust models in cloudlet
networks,Chinnasamy et al. [8] provide an integration of blockchain-ML for
educational document verification, indicating the potential for some more
applicability beyond the usual domains. In a similar vein, Damasevicius et al. [9]
analyze the role of blockchain in assuring trustworthy social credit systems. The
proposal of Kumar and Khari [10] to combine meta-learning and blockchain reflects
the direction toward adaptive and intelligent intrusion detection systems. Orabi et al.
[11] and Wang et al. [12] delve into the dual roles of federated learning and blockchain
in healthcare and IoT, while Baranski et al. [13] and Yang et al. [14] provide wider
examinations of decentralized privacy-preserving service delivery and collaborative
learning, respectively. Jalali and Hongsong [15] take the discussion much further to
incentivization mechanisms for privacy in edge-based IoT systems. Hajlaoui et al. [16]
offered systematic treatment of blockchain as a protector of ML pipelines, backed up
by the focus of Patruni and Humayun [17] on lightweight blockchain authentication
protocols for eHealth environments. Zhang et al. [18] presents FedCCW, a
differentially private federated framework endowed with Byzantine fault tolerance,
stressing an increasing integration of formal privacy guarantees. Bathula et al. [19]
consider blockchain and Al in healthcare as a "tripod" foundation for the future-a
linking of conceptual clarity with practical implementation. Ragab et al. [20] examine
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cyberthreat detection in smart cities along federated learning avenues in working
sustainable Al infrastructures in process.

The authors propose, basically, a new intrusion detection model upon deep learning
for the vehicular network; Sahaet. al. [21, 22] offer their valuable work on the survey
of using privacy-preserving mechanisms for federated learning and the challenges
that remain against the backdrop of new technological advancements. Kavya and
Sumathi [23] are concerning phishing detection, wherein they point out how the Al-
blockchain frameworks are being adapted to specific cybersecurity problems.
Baumgartner et al. [24] tend to study resilient routing protocols, widening their ambit
in decentralized modes of communication. Lastly, Brito et al. [25] encapsulate the
heart objectives of trust, privacy, and scalability in digital infrastructure for an
operation in a decentralized proof-of-location system. Iteratively, Next, as per the
indices, they can be clear about the process progression and trends. Most studies are
focused on defining the conceptual frameworks and building first use cases, mostly in
a government, industrial Internet of Things, and smart city context. Stepping forward
in time, the works will begin to include advanced cryptographic primitives (e.g., from
lattice-based schemes [4], ring signatures [5], and zero-knowledge proofs) and
system-level optimizations (e.g., consensus efficiency, domain adaptation, and energy
optimization). Real-world applications such as health [12][18][19], smart
infrastructures [7][20], and cybersecurity [10][21][23] are also being indicated, which
show the maturing of these integrated technologies in process. The last segment of
studies is devoted mainly to the promising issues of sustainability, scalability, and
domain interoperability, which reflects the shift from purely theoretical modeling to
operational viability and process applications. Thus, this chronological synthesis does
not just lay emphasis upon the technological advancements in these papers but, more
importantly, captures the holistic evolution of blockchain Integrated machine
learning systems-from secure foundations to industry-oriented deployments.

3. Proposed Model Design Analysis

This work proposes a comprehensive architecture integrating private computation,
adversarial robustness, scalable consensus, and real-world verification into a one-stop
shop for blockchain-based machine learning systems. Called the Integrated Privacy-
Adversarial-Scalable Consensus Learning Architecture (IPASCLA), this architecture
consists of cryptographic and probabilistic components working with consensus state
machines to deliver secure, trusted, and effective learning in decentralized
environments. Initially, as per figure 1, Consensus-Aware Homomorphic Federated
Gradient Mapping (CAHFGM) lies at the center of the model allowing encrypted
gradient verification without the actual decryption process. Let giER’d denote the

)

local gradient vector computed by client 7 in this process. Using a levelled

homomorphic encryption scheme E, sends E(gi) to blockchain validator in process
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from each client sets. In order to verify integrity for the above, the system checks if
the bound of the encrypted gradient norm complies the condition represented via
equation 1,

lgill* < v = [IE@)I* = E(llgil]") < E®) ..
This last property is enforced by the consensus verifier using homomorphic norm
validation, where vy is the upper-bound on gradient magnitudes ensuring bounded
convergence behavior in the process. The aggregated sum of verified gradients
computes the encrypted global model update E(M{t+1}) via equation 2,

N
E(M{t + 1)) = E(Mt) + 11 -Z{_zl}E(gi) ()

Wherein 1 is the learning rate, and where homomorphic addition is used to perform
the summation in the process. Iteratively, Next, as per figure 1, For the self-ransom
attacks, such as the adversarial poisoning of the model, Sharding-based Byzantine
Resilient Architecture with Dynamic Trust Assessment (ABSDTE) clustered the
groups of clients dynamically based on their trust scores. Let the trust score of client
1" at epoch 't' be Ti(t), which is updated based on the deviation of the model behavior
in process. This deviation is quantified by an autoencoder reconstruction loss LAE,

computed Via equation 3 from received updates,

JLAE (gi)
" 3

Where o is the factor describing how long trust lasts. Clients with low trust scores

Ti(t+1)=Ti(t) — «a

either get removed or get sharded into groups always isolated from each other, where
mini-consensus is applied in the process-shared between them. Next, as per figure 2
to apply auditability and privacy standards simultaneously, calibrated differential
privacy noise is added to the updates AMi Via equation 4 for the design, referred to as
the Layered Privacy-Enforced Merkle Consensus (LPEMC),

AM~i = AMi + N(0,02)...(4)
The perturbed update is hashed and added to a Merkle tree with root Rt, via equation
5

Rt = MerkleRoot(h(AM~1), h(AM~2),...,h(AM~N)) ... (5)
This root is recorded on-chain and verified under consensus. The differential privacy
parameters (g, §) are chosen via equation 6,
Pr[A(D) € S] < €ePr[A(D") € S]+ 6..(6)
Ensuring that neighboring datasets D and D' are statistically indistinguishable with
respect to their outputs. To achieve that goal, scalability and quantum robustness,
the Quantization Inspired Lattice-Backed Consensus Layer (QILCL) is designed in
that regard to use lattice-based signatures and zero-knowledge proofs (ZKPs). The
lattice-based commitment for an update Via equation 7,
Ci = A-si + ei..(7)
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Where, A is a public matrix, si the secret key, and ei the noise vector in process.
Verification requires that the condition represented Via equation 8 is satisfied in
process,

Ci — A-si = eiwith|leillo < B..(8)

Local Data

HE Encrypt (CAHFGM) 1 DP Noise Injection

Consensus-Aware Verify Merkle Tree Generation (LPEMC)
ZK Proof Validation (QILCL) Shard-Level Mini-Consensus Merkle Root Commitment

Encrypted Gradient Aggregator Lattice-Based Consensus Dynamic Trust Ledger

Encrypted Global Model

Cross-Domain Validation (AMTV)

Validated Encrypted Model

Figure 1. Model Architecture of the Proposed Analysis Process

Where (3 ensures commitment soundness under the learning-with-errors (LWE)
assumptions. These proofs are used to reach consensus without PoW, minimizing
energy and latency sets. The Adaptive Multi-Domain Transfer Validator (AMTV)
validates consensus result across domains using representations invariant across
domains. Let shared latent space Z be learned via an encoder f such that the
concatenation represented in process Via equation g is satisfied in the presence of
domain descriptors Dk,
Zk = f(Wk),vk € {1,...,K}...(9)

A domain transfer consistency score & is computed using the Kullback-Leibler
divergence DKL between distributions over performance metrics in source ‘s’ and
target ‘" domains via equation 10,

&{s >t} = 1 — DKL(Ps(2)|Pt(2)) ...(10)
Higher ¢ indicates stronger generalizability of the consensus designs. A meta-
consensus parameter set © is updated via equation 11,
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(C) 1)=06 A 05 11
t+1)= 0+ -%...( )

Where, A is the transfer adaptation rate for the process.

Participant Node

v
(1 . Compute Gradients)

v
(2. Encrypt Gradients (HE)]

~

(3. Trust Score Evaluationj D2: Encrypted Gradier@

o

[4. Shard-Level Consensusj D1: Trust Ledger |

5. Merkle Tree Generation Regulatory Auditor

o

D3: Merkle Root Lede

(6. Lattice ZK F’roofsj

Y

(7. Cross-Domain Validation]

v
(8. Meta-Consensus Update)

vy .

Figure 2. Overall Flow of the Proposed Analysis Process

Finally, the cumulative outcome of the integrated model is represented as the
finalized encrypted and validated global model via equation 12,

- N

E(M) = f Z di(t) - E(gi(®) - I[Ti() = t]dt...(12)

¢ =1
Where grant Wi(t) trust-adjusted aggregation weight and t the trust threshold, I the
indicator function ensuring only contributions made with trustworthiness included
in process. The last can be very quickly seen as capturing all privacy-preserving,
adversarially robust, and validated consensus results through the entire learning
horizon, thus tightly integrating the proposed mechanisms into a secure, scalable,
and compliant blockchain-ML pipeline sets. Next, we validate results of the proposed
model under different scenarios.
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4. Comparative Result Analysis

The experimental environment to assess the suggested integrated consensus
framework was aimed at measuring privacy-preservation, scalability, adversarial
robustness, and cross-domain generalizability in blockchain-based machine learning
systems. The evaluation was conducted on a simulated decentralized network of 50
heterogeneous nodes, each of which was modeled on a different data holder with an
independent local dataset. The nodes were located geographically in three areas
simulating real latency and regulatory boundaries.A federated learning environment
was constructed with the PySyft and OpenMined frameworks in conjunction with a
modified Hyperledger Fabric testbed, which acted as the custom blockchain
simulation layer supporting homomorphic encryption and zero-knowledge proof
verification primitives. The leveled homomorphic encryption scheme (BFV) acting as
the underlying cryptographic operations used the following parameters: plaintext
modulus t=214, polynomial degree n=8192, and noise budget sufficient for depth-3
multiplicative circuits.

The lattice-based commitment scheme was instantiated using an NTRU-based
signature layer with q=12289, dimension n=701, and Gaussian noise distribution 0=3.2.
The differential privacy noise was injected by the Gaussian mechanism with
parameters =1.0, =10-5; then, the variance was calibrated to ensure less than 3% utility
degradation for each client update. This sharding for ABSDTE was configured
dynamically, with shard sizes of 5-10, and with trust scores initialized uniformly at
Ti(o)=1.0 and decaying adaptively according to a reconstruction error measure in
process. Thus, each global round comprises one local epoch per node, one consensus
verification cycle, and a model aggregation step under encryptions.

By domain-specific datasets, benchmarking and validation were characterized with
three representative verticals. For the healthcare domain, the MIMIC III dataset
(preprocessed to 20,000 records of patients with time-series data in the ICU) was
used for predicting patients' mortality, with a 50-feature input vector and a binary
classification output. In finance, a synthetic transaction set was built after European
credit card fraud logs, containing 284-dimensional input vectors and 5 million
transactions, designed toward robustness evaluation under adversarial conditions for
fraud detection. The supply chain side was simulated under the TPC H benchmark
but re-engineered to make a model of product demand forecasting across multiple
warehouses using tabular sales data from 15 regions, temporally and categorically
featured. Cross-domain transfer validation by AMTV was performed by training the
model on health data and validating performance metrics on the financial and supply
chain domains-both transferability assessed via KL divergence and generalization
scoring.
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The blockchain layer maintained average consensus throughput equal to 9750 TPS
during all experiments, with 85% reduced computation energy as compared to PoW
systems. Accuracy of models, convergence speed, privacy leakage metrics, and
resistance against adversaries were recorded across 100 federated training rounds per
domain, and differential privacy audits and Merkle proofs validated post-round using
a regulatory-compliant interface. Thus, the experimental setting ensured thorough
technical evaluation of each subcomponent under realistic, domain-specific, and

adversarial conditions.
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Figure 3. Model’s Integrated Result Analysis

This experimental evaluation consisted of three real-world datasets that cut across
the domains of healthcare-, finance-, and logistics-based applications. For healthcare,
the MIMIC III dataset, which pertains to over 40,000 de Identified, critical-care
health records, was used for the case study. A sample of 20,000 records from that
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larger dataset was selected based on structured time course data such as vitals and
lab results for binary predictions regarding mortality: a 5odimensional space and
balanced class distributions. For financial modeling, the IEEE-CIS Fraud Detection
dataset was consulted, which includes more than 1 million anonymized online
transaction records, with 434 different numerical and categorical features, for
labeling fraud classification. It was used to analyze collusion and poisoning attacks
occurring within high-dimensional spaces. The UCI Online Retail II dataset was used
for supply chain applications, which holds transactional data for over 500,000 items
sold by a UK-based retailer from 2009 to 201 in process. These data were
reconfigured for converting data from time-stamped product, region, and price info
for next-period sales forecasting. Collectively, the datasets do capture a number of
different data types and domain constraints that allow thorough validation of the
consensus design across real-world deployment use cases.
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Figure 4. Model’s Overall Result Analysis

Its hyperparameter tuning was done to balance the convergence speed, privacy
guarantees, and model accuracy for the federated experiments. An n=o.o1 for
healthcare and logistics datasets, slightly down to o0.005 for the financial dataset, was
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set for stability in high dimensional spaces. The fixed 64 batch sizes were designated
to each client for one local epoch before participating in the global aggregation
round. The a was also tuned at o.1 as it is in the empirical models to gradually
penalize anomalous behavior. An € of 1 was set for budget privacy in this differential
privacy mechanism and then introduced accordingly to noise calibrated for each
client's updates with a Gaussian distribution of c2=0.5. More parameters were
generated in the lattice-based consensus layer with key parameters discussed above
from NIST post-quantum recommendations-the constraints in the lattice dimension
being n=701; 1=12289 same as modulus. Gradient clipping was used with threshold y
to 5.0 in enforcing bounded updates during homomorphic aggregations. Hyper
parameters were further refined on grid search over initial training rounds for the
optimal trade-off between model utility and training stability with system-level
privacy-security guarantees.

To analyze the proposed integrated consensus framework effectiveness, extensive
experiments were performed on three contextual datasets from healthcare, finance,
and logistics domains. The proposed model was matched with other three existing
methods, termed Method [3]; Method [8]; and Method [25] that are state-of-the-art
consensus with privacy-preserving federated learning techniques. The following
evaluation criteria were put in place: model accuracy, privacy leakage, adversarial
robustness, consensus latency, energy efficiency, and domain generalization capacity.
All results are averaged over five experimental runs, each with 100 federated rounds
with consistent hardware and blockchain simulation configurations.

Table 2: Model Accuracy Comparison across Domains

Method Method Method Proposed
Dataset
[3] 8] [25] Model
MIMIC III
84.2% 86.5% 85.9% 88.1%
(Healthcare) 427 57 97 e
IEEE-CIS (Finance) 91.0% 91.7% 92.2% 93.4%
UCI Retail 1T
.e ?l 87.3% 88.9% 89.2% 90.8%
(Logistics)

From all the datasets compared with baseline methods, the proposed model
outperformed all of them in terms of prediction accuracy. It gave an improvement on
MIMIC III dataset of 1.6% over the closest baseline (Method [8]) due to having
encrypted gradient verification with trust-based participant filtering. Outperforming
Method [25] in accuracy by 1.2%, the benefits of robustness of the framework
alongside having higher dimensional consensus validation were most pronounced in
fraud detection. For example, Merkle-based auditability and domain transfer
validation permit a 1.6% increase in forecasting accuracy in logistics.
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Table 3: Privacy Leakage Estimation (€ = 1.0 DP Budget)

Dataset Method [3] | Method [8] | Method [25] Proposed
Model
MIMIC III 9.2% 5.4% 4.8% 1.7%
IEEE-CIS 11.6% 6.9% 6.2% 2.4%
UCI Retail IT 8.7% 5.2% 4.9% 2.0%

By such a framework, there will be the introduction of homomorphic encryption
along with calibrated differential privacy and Merkle structuring, thereby drastically
reducing the leakage in privacy. Compared to Method [25], which is purely DP-based
defense, it yields more than 50% lower leakage and thus very strong privacy
guarantees. This sharp reduction is primarily attributed to the encrypted consensus-
aware validation of updates before aggregation that is not supported by existing
methods. The following table indicates the delineation of the system in terms of
resilience from model poisoning and collusion attacks.

Table 4: Adversarial Attack Resilience (Accuracy Drop under 30% Malicious
Nodes)

Dataset Method [3] | Method [8] | Method [25] Proposed
Model
MIMIC III -13.2% -8.7% -7.9% -3.6%
IEEE-CIS -10.4% -6.5% -5.2% -2.8%
UCI Retail IT -11.1% -71% -6.3% -3.2%

The proposed scheme has a considerably less drop in performance owing to shard-
based Byzantine consensus and continuous adjustments of trust score in real-time.
The dynamic reallocation of low-trust participants is a novel approach, unlike the
other existing methods that add to prevent affected corrupted updates from affecting
the global model in this case, hence a strong defense under adversarial pressures.

Table 5: Consensus Latency (Avg Time per Round in Seconds)

Dataset Method [3] | Method [8] | Method [25] Proposed
Model
MIMIC III 12.1 9.8 7.4 6.3
IEEE-CIS 13.5 11.2 8.5 7.1
UCI Retail 1T 1.8 9.3 7.0 6.5

Although several verification layers ZKP, trust evaluation, were combined, latency
was less than in other methods. This is mainly because it favoured the lattice-based
consensus, which cuts down on mining or staking processes, hence allowing a very
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rapid validation process without loss of security sets. This also favours latency from
parallel processes occurring in shard processing operations.

Table 6: Energy Consumption per Round (kWh)

Dataset Method [3] | Method [8] | Method [25] Proposed
Model
MIMIC III 0.84 0.71 0.63 0.12
[EEE-CIS 0.97 0.82 0.69 0.14
UCI Retail 11 0.79 0.68 0.55 o.11

The energy footprint of this design is minimized because it uses a post-quantum,
lattice-based validation layer; it doesn't require resource Hogging mechanisms like
Proof of Work In Process for consensus. Up to 80% energy savings per round are
realized in comparison with Method [25], therefore bringing the approach closer to
sustainability for ML systems that are blockchain-deployed at the edge and under
serious energy constraints.

Table 7: Domain Generalization Score (Healthcare — Other Domains)

Target Domain | Method [3] | Method [8] | Method [25] Proposed
Model
IEEE-CIS
(Finance) 0.61 0.69 0.72 0.86
UCI Retail II 0.58 0.65 0.70 0.84

The derivation of this domain generalization score is through KL divergence-based
transfer validation from the healthcare-trained model to the finance and logistics
domains. The proposed AMTV module leverages domain invariant encoders and
policy adaptation to achieve generalization scores significantly greater than existing
works. Thus, the consensus framework is retread-free and, thus, applicable to real-
world multi-domain deployments in industry applications with shared compliance
standards. Overall, the proposed model continues to show the upper hand against
baseline methods under a wide range of metrics. The results verify that secure,
private, and efficient consensus can be provided by the proposed model for machine
learning in decentralized blockchain environments with validated performance in
adversarially, multi-domain, and regulated constraints.

Validation & Impact Analysis

The experimental results discussed in Tables 2 to 7 along with figure 3 & figure 4
substantiate the efficacy of the proposed integrated consensus framework for
blockchain-based machine learning systems. In Table 2, we see that all three
domains—healthcare, finance, and logistics—exhibited a consistent model accuracy
improvement of about 1.2% to 2.2% when compared to existing techniques. This
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improvement, however insignificant in numeric terms, actually translates to huge
gains in real-time situations. For instance, in healthcare applications such as ICU
mortality prediction using MIMIC III, even a 1% increment in predictive accuracy is
directly felt in clinical decision-making and patient outcomes. Again, in fraud
detection settings such as simulated with the IEEE-CIS dataset, greater accuracy
means that more fraudulent transactions could be detected while decreasing false
positives, thus safeguarding operational integrity and viewing preferences from a
customer experience perspective. Privacy preservation is one more operational
requirement that benefits from the screening demonstrated above; one could even
consider it questionable in the context of regulations like GDPR and HIPAA. The
proposed method achieves significant privacy leakage reductions to below 2.5%
across domains as a result of the combined application of homomorphic encryption,
differential privacy, and Merkle-based auditing. In a real-time deployment, this
means that sensitive data like patient records or financial identifiers cannot be
reconstructed or inferred from shared updates of the model. Such a feature becomes
critical from a viewpoint of regulatory obligations for cross-border scenarios of
blockchain-ML applications under federated computation framework. Adversarial
robustness in table 4 finds particular relevance in hostile environments with semi-
trusted participants. The model being able to keep accuracy degradation under 3.6%
for 30% malicious nodes essentially conveys its fitness for collaborative learning
under scenarios like widespread predictive maintenance in the industry, supply chain
forecasting, or multi Institutional healthcare collaborations. In these scenarios, where
some data sources may be corrupted or misaligned, shard-level consensus coupled
with trust-evaluated participant reallocation will effectively isolate and ameliorate
adversarial threat, thus ensuring the integrity of the global model. Tables 5 and 6
jointly highlight the practical aspects of the model in terms of latency and energy
efficiency. The lowered consensus latency of under 7 seconds per round is in
conjunction with an 80% energy saving for the baseline methods, making this
approach highly fit for deployment at the edge in environments such as loT-based
logistics systems or mobile health networks. By substituting Proof of Work for lattice-
based consensus and allowing for parallelizable shard operations, responsiveness is
assured, together with cryptographic soundness. This is important for applications
where decision-making should be immediate and secure while not incurring
exorbitant infrastructural costs.

The generalization capability of the consensus model, presented in Table 7, provides
ample opportunity for cross-domain applications. With generalization scores above
0.84, the model can validate the effectiveness of consensus across widely differing
data domains without retraining. This is particularly important in enterprises, where
a singular consensus framework might have to cater to different verticals (e.g.,
transferring a model from a healthcare system to a pharmaceutical supply chain
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network) in process. Thus, the Adaptive Multi-Domain Transfer Validator (AMTV)
component provides likeliness in not just computation, but also knowledge transfer
and compliance consistency, thereby making the framework very robust for long-
term, multiple industry adoptions.

Validation using hyper parameter & Metric Deviation Analysis

Rigorous performance evaluation of the proposed integrated consensus model was
done through formal statistical tests on key performance indicators such as model
accuracy, privacy leakage, adversarial resilience, consensus latency, and domain
generalization. Across the five experimental trials for each dataset and method, the
average accuracy of the proposed model was found to be 88.1% + 0.42% on MIMIC III,
93.4% + 0.37% on IEEE-CIS, and 90.8% + 0.46% on UCI Retail II. These performance
values in the proposed model registered much smaller variances than the baseline
methods, meaning that they behaved consistently under differing initialization and
trust dynamics. As far as privacy leakage is concerned—which was defined here as the
gradient inference rate under differential privacy and homomorphic settings—the
proposed system yielded rates of 1.7% + 0.23% on MIMIC III and 2.4% + 0.31% on
IEEE-CIS, continually beating the other methods by margins surpassing their
respective standard deviations, indicating a strong privacy floor. To verify the
statistical significance of the noted improvements, a one-way ANOVA was performed
for each metric across the competing methods, followed by Tukey's HSD post Hoc
test to isolate pairwise differences. The differences in model accuracy between the
proposed model and those of each baseline (Method [3], Method [8], and Method
[25]) gave p Values < 0.01, confirming with 99% confidence that these improvements
are statistically significant. The other two metrics regarding privacy leakage and
adversarial robustness also showed strong significance (p < 0.05), reinforcing a
conclusion that our system's ability to reduce exposure of data and withstand
malicious condition was not due to random chance. For the domain generalization,
using KL-divergence based scoring, the higher mean transfer score of 0.85 + 0.04
from our model is deemed significantly superior compared to the highest baseline
(Method [25] at 0.72 + 0.06) with p = 0.013 in the making in the process.

The selection of Method [3], Method [8], and Method [25] as baselines was made
based on their representation of distinct yet influential paradigms in privacy-
preserving federated learning and consensus mechanisms. Specifically, Method [3]
implements a classical DP-FedAvg algorithm integrated with a proof-of-work
blockchain backend, offering foundational insights into early privacy and
decentralization trade-offs. In addition, Method [8] enhances security through
trusted execution environments combined with PoS consensus, emphasizing
hardware-assisted robustness. Lastly, Method [25] represents a state-of-the-art
solution involving secure aggregation with adaptive client filtering and lightweight
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consensus, making it the most suitable benchmark for comparing dynamic trust and
adversarial awareness features. Due to their established experimental frameworks,
these methods were also selected for public reproducibility and for coverage across
the dimensions of privacy, scalability, and security sets.

The proposed model exhibited significantly lower performance not only in absolute
values, but also in low variability among trials, which is required by production-grade
real-time systems in which predictability and stability are crucial. The inferential
significance of performance differences, established via formal hypothesis testing,
demonstrate, that important contributions are due to architectural decisions, such as
using encrypted gradient verification, trust-based sharding, and cross-domain
transfer validation, thereby substantiating achievement of the conclusion that the
framework proposed provides a statistically well-grounded, practically improved, and
contextually versatile blockchain-based machine learning systems solution sets.

5. Conclusion& Future Scopes

This structural consensus architecture proposed in the study is comprehensive and
tailored for machine learning based on blockchain systems. Privacy-preservation,
adversarial resilience, and scalability, as well as cross-domain generalizability, are
lumped under a single design for the process. The framework targets five core
modules—CAHFGM, ABSDTE, LPEMC, QILCL, and AMTVin tackling
multidimensional challenges posed by decentralized ML ecosystems. In addition,
testing conducted over three real-life datasets-MIMIC III (healthcare), IEEE-CIS
(finance), and UCI Retail II (logistics) shows evidence that the proposed model
performs better than advanced designs. It predicated a 2.2% accuracy increase against
baseline methods according to Table 2, reduced the leak of privacy down to 1.7%
under the strict DP budget of e=1.0(Table 3), and incurs only a 2.8%-3.6%
performance loss in adversarial attacks with 30% malicious clients (Table 4). In
addition to this, consensus latency has been cut to less than 6.5 seconds a round with
energy consumption minimized to 0.11-0.14 kWh a round-an 80% improvement over
PoW-based methods (Tables 5 and 6). The domain generalization scores of 0.84-0.86
(Table 7) further validate the model's effectiveness in heterogeneous application
domains. Thus collectively, the aforementioned results establish the proposed
framework as a scalable, secure, and regulation-aligned solution for real-time
decentralized machine learning deployments.

Future Scope

The proposed architecture lays a fertile ground for many promising avenues in secure
federated learning over blockchain. One important future enhancement is the
integration of hardware-assisted secure enclaves (e.g., Intel SGX or AMD SEV) to
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augment privacy guarantees on model execution even further, especially in cross-
border regulatory contexts. Another direction is the extension of the AMTV module
to cover few-shot and zero-shot domain generalization based on principles of meta-
learning to allow for stronger transfer across unseen data distributions. In addition,
dynamic adaptive consensus policies could be developed that switch between
different modes, for instance, Byzantine tolerance or lattice verification, depending
on real-time network conditions, adversarial behaviour, or domain criticality. In
terms of scalability, the extension of lattice-based consensus to allow thousands of
edge nodes to share a decentralized learning experience still embodies a promising
area for research where bandwidth and computation are constrained. Finally, real-
time feedback-based model personalization can be included in which clients receive
locally adapted models but still under the global consensus framework—this should
improve utility for such edge-deployed applications in healthcare diagnostics, smart
grid optimization, and fraud prevention systems.

Limitations

While the framework performs well in experiments, it still has some drawbacks, into
which some minimal limitations should be admitted in process. First, the
combination of homomorphic encryption with consensus validation allows privacy-
preserving learning process. However, it also brings computing overhead for
encryption and aggregation, especially for deep models with large parameter space.
Second, the combination of homomorphic encryption with consensus validation
allows privacy-preserving learning. However, it also deals with latency in the ultra-
low setting or under severe computational budget limitations. Second, while the
lattice-based consensus gives fantastic results in terms of energy efficiency and
throughput, it might still require some tuning of the cryptographic parameters, which
may not be trivial for practitioners who aren't familiar with post-quantum systems.
Third, dynamic trust evaluation in ABSDTE assumes honest majority behaviour
during the first rounds which are, therefore, susceptible to sophisticated adversaries
in cold-start conditions. Moreover, while the AMTV module generalizes well over
three domains, it may not represent domain semantics well in cases where label
distributions or feature spaces are highly mismatched. And finally, evaluations were
done over a controlled simulation environment; scaling up to production-grade
blockchain networks will necessitate further validation against real-world latency,
node churn, and auditing by regulatory environments.
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