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7.1    Introduction: 

  We shall consider a discrete multistage allocation process in which, the transformations which occurs are 

stochastic rather than deterministic. A decision now results a distribution of transformation rather than a 

single transformation. 

          Let 𝑆 ⊆ 𝑋 be the state space and 𝐷 ⊆ 𝑌 be the decision space. X and Y are complete metric space. 

Let 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝐷 are the state vector and decision vector respectively. At each stage  𝑘, 𝑚 denote the 

return function and T, the transformation. As 𝑛 → ∞  the process becomes, 𝑙(𝑢) = Inf𝑣  [m(𝑢, 𝑣) + 𝑘(𝑢, 𝑣)𝑙 (𝑇(𝑢, 𝑣))]. 
Since the transformations are stochastic an initial vector u is transformed into a stochastic vector 𝑤 ∈𝐷 with an associated distribution 𝑑𝑀(𝑢, 𝑣, 𝑤). 
        We shall consider the case where  
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Then the above functional equation becomes  
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If we employ vector matrix notation then the equivalent form of (1) will be the systems of the form  

Abstract: In this article the existence of the bounded solutions for a system of functional equations has 

been established. In this work, existence and boundedness of the solution of the renewal equation arising 

in inventory control, multistage game etc. has been discussed. It is proved in a different method using 

contraction principle through a dynamic programming approach. In the present model, a dynamic model 

of renewal equation with the stochastic transformation has been considered 
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Where  𝑖 = 1,2, … , 𝑁 are different stages of the allocation process. 

An example of the equation (2) is the equation of optimal inventory renewal equation, 
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Next we consider the multi-stage games where we wish to transform the system into 0-state in a minimum 

expected time.  

If for each transformation 𝑇𝑖  and for all u, 
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Where  𝑗 = 1,2, … , 𝑀. 
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𝑘 = 0,1, … , 𝑛. 
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To begin our successive approximation, 

We define  
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In our next section we shall prove the existence theorems for the functional equations (2), (3),(4). 

          To prove existence theorems, it is essential to state the following two lemmas. Lemma 1 is a slight 

variation of Brauer’s fixed point Theorem and proof of lemma 2 is easy and straight forward. 

Lemma1:   Let (𝑆, 𝑑) be a complete metric space and let A be a mapping of S into itself satisfying the 

following conditions. 

(i) For any 𝑥, 𝑦 in 𝑆,   𝑑(𝐴𝑥, 𝐴𝑦) ≤ 𝜙(𝑑(𝑥, 𝑦)).                                                                                 
             Where 𝜙 ∶ [0, ∞) → [0, ∞) is non decreasing continuous on the right       and 𝜙(𝑟) < 𝑟 for 𝑟 > 0. 

(ii) For every 𝑥 in S, there is a positive number 𝜆𝑥 such that                          𝑑(𝑥, 𝐴𝑛𝑥) ≤  𝜆𝑥 , for all 𝑛. 

  Then A has a unique fixed point. 

Lemma 2:  Let (𝑆, 𝑑) be a complete metric space and let A be a mapping of S into itself satisfying   𝑑(𝐴𝑥, 𝐴𝑦) ≤ 𝜙(𝑑(𝑥, 𝑦))  ,                                                                                   
             for all 𝑥, 𝑦 in 𝑆. 

Where 𝜙 ∶ [0, ∞) → [0, ∞) is non decreasing and for every positive 𝑟, the series ∑ 𝜙𝑛(𝑟) is convergent 

.Then A  has a unique fixed point. 

Lemma 3: Let R : 𝑅𝑚 → 𝑅𝑚  be a non negative linear operator.  Suppose 

                 (1 − 𝑅)−1 exists and is non-decreasing. Then R is convergent.  

Lemma 4: Let  R : 𝑅𝑚 → 𝑅𝑚 be convergent and 
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Theorem 1 :   Suppose the following conditions hold. 
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Then  

           







0

.)(

n

n
bF  

Then the system of equation (2) possesses a unique solution which is bounded in any finite part of  D. 

Proof:   We have  
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Let )(00 uvv  be the initial approximation to 𝑣(𝑢)  and let 𝑙0(𝑢) be determined by use of this policy. 
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If  𝑤  is the state resulting from the initial transformation the return from last (𝑛 − 1)  stages will be 𝑙𝑛−1(𝑤). Then the reccurence relation for the sequence  )(uln  becomes  

        











 




Dw

nn wvudMwlvum
v

ul ),,()(),(Inf)(1  

For  𝑛 = 0,1,2, … … 

It is easy to deduce  
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Let us define a sequence )}({ nF  by  
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For any u with ‖𝑢‖ ≥ 𝜆𝑏 we have  
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For 𝑛 = 1,2, … … 
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It follows from condition (iii) that the series  
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           This implies that  )(uln  converges uniformly to a function  𝑙(𝑢) where  ‖𝑢‖ ≥ 𝜆𝑏 . 

It remains to show that 𝑙(𝑢) is a bounded solution of the functional equation (2). 

We have  
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Letting  𝑛 → ∞ this becomes  
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On the other hand we have; 
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Letting  𝑛 → ∞ this becomes, 
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It follows from (6) and (8) that  
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 This completes the proof for the existence of a bounded solution of equation (2).  

Conclusion: We get the existence of solution of a system of renewal equations by using contraction 

principle with dynamic programming approach. 
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