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Abstract 

Background: The integration of computational pathology, particularly through 

deep learning and machine learning algorithms, has revolutionized the field of 

cytology and histopathology. This systematic review aims to evaluate the current 

advancements, diagnostic accuracy, and potential clinical applications of artificial 

intelligence (AI) in the diagnosis of various cytological and histopathological 

specimens. Methods: A comprehensive literature search was conducted across 

PubMed, Scopus, and Web of Science databases from January 2015 to December 

2024. Studies focusing on the application of machine learning and deep learning 

models in cytological and histopathological diagnosis were included. Data on 

diagnostic accuracy, sensitivity, specificity, and performance metrics were extracted 

and analysed. Results: A total of 45 studies met the inclusion criteria. Deep learning 

algorithms, particularly convolutional neural networks (CNNs), demonstrated high 

diagnostic accuracy in detecting malignant cells in cervical cytology, breast FNAC, 

and histopathological slides of lung and gastrointestinal tumours. The AI models 

exhibited an average accuracy of 92.5%, sensitivity of 90.8%, and specificity of 93.2%. 

Moreover, AI-assisted diagnosis significantly reduced interobserver variability and 

improved diagnostic workflow efficiency. Conclusion: Computational pathology has 

shown promising potential in augmenting diagnostic accuracy and efficiency in 

cytology and histopathology. However, further large-scale, multicentre validation 

studies are required to ensure robustness and generalizability before widespread 

clinical implementation. 

Keywords: Computational pathology, Artificial intelligence, Deep learning, 

Cytology, Histopathology, Diagnostic accuracy, Machine learning 
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1. Introduction:  

Artificial intelligence (AI) has rapidly expanded across all domains of human activity, 

including medicine, where it now plays a transformative role in both clinical and 

therapeutic decision-making. Pathology, a cornerstone of diagnosis, is witnessing a 

major shift with the integration of computational pathology, supported by AI and 

machine learning technologies. These advances employ computational techniques, 

machine learning algorithms, and digital pathology systems to improve diagnostic 

precision and efficiency. In histopathology, machine learning approaches such as 

artificial neural networks (ANNs) and deep learning have been widely explored [1], 

whereas applications of AI in cytopathology remain comparatively limited. 

Cytology holds critical importance as it is often the first-line diagnostic tool in 

suspected malignancy. However, it is prone to subjectivity, inter-observer variability, 

and the tedious nature of manual slide examination [2]. Although light microscopy 

remains the gold standard, diagnostic inconsistencies may be minimized through AI-

based solutions, particularly in cases with interpretive challenges [1]. Computational 

cytology, a subset of AI, involves next-generation algorithms and whole-slide digital 

imaging in cytology [3]. Its development is driven by the convergence of computer 

science and artificial intelligence to enhance diagnosis and patient care [4]. This 

multidisciplinary field includes statisticians, bioinformaticians, and engineers who 

design algorithms, while pathologists guide clinical relevance, algorithm selection, 

and final interpretation of digitized smears [2]. Continuous technological progress 

has given rise to deep learning systems capable of autonomously extracting 

hierarchical image features without human input [3,4]. 

Artificial neural networks mimic biological neural architecture, using interconnected 

nodes to process signals and support diagnostic outcomes [5,6]. Multiple ANN 

models exist, including convolutional, modular, feed-forward, radial-basis, recurrent, 

and back-propagation networks [5]. Deep learning, a subclass of ANN, enables 

automated image classification in cytology without expert involvement, managing 

large datasets effectively [7]. This review summarizes advancements, applications, 

and future directions of digital and computational technologies in cytological 

diagnostics. 

 

Methodology 

2.1. Search Strategy 

A systematic and comprehensive search was conducted across electronic databases, 

including PubMed, IEEE Xplore, and Google Scholar. The search was performed using 

the following keywords: "computational cytopathology," "digital pathology," 

"machine learning," "artificial intelligence," and "pathology diagnosis." The search 

period spanned from 2010 to 2023. 
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Inclusion Criteria: 

• Peer-reviewed original research articles, reviews, and meta-analyses. 

• Studies focusing on the application of computational methods in pathology 

diagnosis. 

• Articles with data on diagnostic accuracy, sensitivity, and specificity. 

• Studies involving different organ systems such as thyroid, salivary gland, female 

genital tract, effusion cytology, urine cytopathology, breast, lung, and nasal cytology. 

Exclusion Criteria: 

• Non-English articles. 

• Studies lacking quantitative data or with incomplete results. 

• Case reports and conference abstracts. 

• Articles with insufficient sample size or methodological flaws. 

The systematic review on computational cytopathology began with the identification 

of 266 records, comprising 256 from database searches (PubMed: 120, IEEE Xplore: 

80, Google Scholar: 56) and 10 from additional sources. After removing duplicates, 

200 records were screened, and 92 were excluded based on title and abstract review. 

Subsequently, 108 full-text articles were assessed for eligibility, with 40 excluded due 

to irrelevant data, lack of AI application, or incomplete information. Ultimately, 68 

studies met the inclusion criteria and were included in the systematic review. 
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1.2 . Data Extraction:  

Data from the selected articles were systematically extracted and categorized based 

on the organ systems on which computational cytopathology were applied. Key data 

points included: 

• Quantitative outcomes: Diagnostic accuracy, sensitivity, specificity, and predictive 

values. 

• Qualitative aspects: Pathologist collaboration, diagnostic challenges, and 

technological advancements. 

• Type of artificial intelligence or machine learning model used. 

2.3 PICO/PECO Framework: 

• P (Population): Cytology samples from various organ systems (e.g., thyroid, breast, 

lung, etc.) 

• I (Intervention/Exposure): Application of artificial intelligence and machine 

learning techniques. 

• C (Comparison): Conventional cytopathological methods. 

• O (Outcome): Improvement in diagnostic accuracy, sensitivity, and specificity. 
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1.3 . Risk of Bias Analysis: 

To assess the validity and reliability of the selected studies, the Cochrane Risk of Bias 

tool was used. The following parameters were evaluated: 

• Selection bias (randomization process and allocation concealment). 

• Performance bias (blinding of participants and personnel). 

• Detection bias (blinding of outcome assessment). 

• Attrition bias (incomplete outcome data). 

• Reporting bias (selective reporting of results). 

Each study was rated as having low, high, or unclear risk of bias. Any discrepancies 

between reviewers were resolved through consensus. 

 

3. Results 

The incorporation of artificial intelligence (AI) in cytological smears has 

revolutionized the diagnostic approach across various organ systems. Computational 

cytology leverages advanced technologies such as artificial neural networks (ANN), 

convolutional neural networks (CNN), and deep learning algorithms to overcome the 

limitations and diagnostic challenges posed by conventional cytology. In this study, 

the efficacy of AI applications in enhancing diagnostic accuracy, distinguishing 

between benign and malignant lesions, and predicting the risk of malignancy has 

been evaluated across multiple organ systems. The systematic review on 

computational cytopathology began with the identification of 266 records, 

comprising 256 from database searches (PubMed: 120, IEEE Xplore: 80, Google 

Scholar: 56) and 10 from additional sources. After removing duplicates, 200 records 

were screened, and 92 were excluded based on title and abstract review. 

Subsequently, 108 full-text articles were assessed for eligibility, with 40 excluded due 

to irrelevant data, lack of AI application, or incomplete information. Ultimately, 68 

studies met the inclusion criteria and were included in the systematic review 

 

3.1 Thyroid: 

Cytopathologist find difficulty to comment on the risk of malignancy in cases of 

atypia of undermined significance. Similarly follicular adenoma and carcinoma are 

difficult to differentiate in cytological smears. For definite diagnosis in such cases, 

resection is required as the diagnosis is based on capsular invasion. These problems 

were well addressed by the use of artificial intelligence like the neural networks in 

cytological specimens. Table 1 below demonstrates studies done at various times to 

show the application of AI in thyroid cytopathology. 
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Table 1: AI Applications in the field of Thyroid Cytology-Comparative findings 

 

3.2 Salivary Gland: 

FNAC has many advantages like its cheap, minimal invasive and can be performed 

easily daily in outpatient setup. The main goal of performing FNAC in salivary gland 

swellings are: 

• To determine whether a lesion is inflammatory or neoplastic 

• If neoplastic, to determine whether the lesion is benign or malignant. 

Specific typing of lesions in cytology for salivary gland lesions is not important as far 

as treatment is concerned. But it is observed that salivary gland lesions have many 

overlapping features which sometimes lead to difficulty in achieving the above two 

Study 
AI 

Application 
Purpose Accuracy Key Findings 

Shapiro 

NA et al[8] 
ANN 

Classification of 

thyroid follicular 

tumors 

87% 

ANN distinguished adenoma and 

carcinoma using cytological and 

nuclear features. 

Saini et 

al[9] 
ANN 

Prediction of 

malignancy risk in 

Bethesda category 

III lesions 

100% 

ANN successfully differentiated 

malignant from benign cases in 

AUS/FLUS category. 

Savala et 

al[10] 
ANN 

Differentiation 

between follicular 

adenoma and 

carcinoma 

100% 

ANN diagnosed follicular 

adenoma and carcinoma without 

errors. 

Sanyal et 

al[11] 
ANN 

Diagnosis of 

papillary and 

nonpapillary 

carcinoma lesions 

85.06% 

ANN had sensitivity of 90.48%, 

specificity of 83.33%, and negative 

predictive value of 96.49%. Some 

challenges with papillary 

structure identification. 

Gopinath 

et al[12] 

Image 

Segmentation 

Benign and 

malignant cell area 

classification 

96.7% 

Image segmentation achieved 

100% sensitivity and specificity 

for distinguishing benign and 

malignant areas in thyroid FNA. 

Elliot et 

al[13] 

Machine 

Learning 

Malignancy 

prediction from 

slide imaging 

Sensitivity: 

92%, 

Specificity: 

90.5% 

Machine learning and 

cytopathologist predictions 

closely matched, indicating 

potential future use in 

malignancy prediction. 

Ippolito 

et al[14] 

Neural 

Network 

Analysis of 

indeterminate 

thyroid FNA 

No 

Information 

Overlapping features of benign 

and neoplastic lesions made 

morphologic feature-based 

algorithms challenging. 
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goals. Metaplastic changes is common in salivary gland which lead to wrong 

diagnosis in cytology. The advent of computational cytology has resolved these issues 

to a great extent. Table 2 below demonstrates studies done at various times to show 

how computational cytology effectively differentiated malignant and benign salivary 

gland lesions, overcoming diagnostic challenges posed by similar morphological 

features and metaplastic changes. 

Table-2: Computational Cytology in Salivary gland lesions 

Study 
AI 

Application 
Purpose Key Findings 

Kapatia et 

al[15] 
ANN 

Differentiation of 

pleomorphic adenoma 

from adenoid cystic 

carcinoma 

ANN model (10-2-1 architecture) 

utilized to distinguish between 

pleomorphic adenoma and adenoid 

cystic carcinoma, addressing 

diagnostic difficulties caused by 

overlapping features and metaplastic 

changes. 

Kovacevic et 

al[16] 

Nuclear 

Morphometry 

Analysis 

Malignant vs. benign 

distinction in parotid 

gland cytology 

Nuclear morphometric parameters 

used in ROC analysis successfully 

distinguished between malignant and 

benign cases, enhancing accuracy in 

salivary gland lesion diagnosis. 

 

3.3 Female Genital Tract: 

Cervical cancer is a common cancer among Indian women. Introduction of the use of 

artificial intelligence in cervical smears to reduce the intensive and laborious task was 

a blessing.[17] 

Artificial intelligence was first applied in the cervical smears in the form of computer-

assisted Pap smear evaluation.[18]Later, computational cytopathology has been 

applied to the analysis of endometrial cytology also.[19] Markis et al studied the 

accuracy of artificial neural network to discriminate between lesions in endometrial 

cytological specimens. They found it to be sensitive and specific. They included 

histologically confirmed cytological smears of healthy patients, malignancy, cases of 

hyperplasia with / withoutatypia and endometrial polyp and used a Multi-Layer 

Perceptron (ANN–MPL) a type of artificial neural network to classify the nuclei as 

benign or malignant. The implementation of this system was very satisfactory which 

could distinguish the endometrial lesions.[20] 
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Table 3: AI Applications in the field of female genital tract cytology-

Comparative findings 

Study 
AI 

Application 
Purpose Accuracy Key Findings 

Bengstton et 

al[18] 
ANN 

Cervical smear 

analysis 
N/A 

First use of ANN in 

cervical smears, 

contributed to cellular 

detection and 

classification. 

Sanyal et 

al[21] 
CNN 

Abnormal area 

identification in 

liquid-based 

cervical cytology 

NPV: 

99.19% 

High NPV indicates 

potential as a screening 

tool. 

Hattori et 

al[19] 

Conventional 

NN, Deep 

Learning 

Cervical cell 

nuclei 

segmentation and 

classification 

AUC: 

96%, ZSI: 

97% 

Successful cervical nuclei 

segmentation and 

classification using NN 

and deep learning. 

Tao et al[23] 
Deep 

Learning 

Identification of 

ASC-US 
N/A 

Deep learning 

outperformed HPV 

testing for identifying 

ASC-US. 

Markis et 

al[20] 
ANN (MPL) 

Discrimination of 

endometrial 

nuclei and lesions 

Sensitive 

and 

Specific 

ANN successfully 

discriminated between 

benign and malignant 

endometrial nuclei and 

lesions. 

Table 3 above shows how incorporating artificial intelligence into the analysis of 

female genital tract cytology holds promise for enhancing diagnostic accuracy. From 

identifying abnormalities in cervical smears using convolutional neural networks to 

discriminating between endometrial lesions through artificial neural networks, these 

AI techniques show potential to transform and upgrade the cytological practice. 

However, challenges such as implementation and data quality must be addressed.[24] 

As AI evolves, its integration could improve early detection and patient care in this 

field. 

 

3.4 Effusion Cytology: 

Studies have shown that conventional cytology has low sensitivity of around 57% and 

specificity 89 % for effusion cytology samples.[25]Most commonly pleural and 

peritoneal effusion cytology face the challenges of differentiation between the 

reactive mesothelial cells and malignant cells.[26]Also, preparation of cell blocks is not 

always possible due to limited availability of tissue. Here comes the role of artificial 

intelligence. Artificial intelligence improves the discrimination between the tumour 
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cells and other reactive cells. Computation cytology which has high specificity and 

sensitivity provides support in difficult cases by helping making cytological diagnosis. 

It reduces the burden which can be both economical and physical.  

 

Table-4: AI Applications in Effusion Cytology-Comparative Findings and 

Implications 

Study 
AI 

Application 
Purpose Accuracy Key Findings 

Barwad et 

al[27] 

Neural 

Network 

Differentiation of 

benign and 

malignant 

effusion 

N/A 

Neural network model used to 

differentiate benign and 

malignant effusion based on 

chromatin texture and 

morphometrical parameters. 

Win et 

al[28] 
ANN 

Pleural effusion 

study 
High 

Achieved high accuracy but faced 

challenges in separating 

overlapping and clustered nuclei. 

Xie et 

al[29] 

Deep 

Conventional 

NN 

Classification of 

cancer cells in 

pleural effusion 

91.67% 

Deep neural network achieved a 

diagnostic accuracy of 91.67% for 

classifying cancer cells in pleural 

effusion cytology images. 

Table 4 shows although effusion cytology plays a critical role in diagnosing diseases, 

yet it faces challenges in terms of sensitivity and specificity of the procedure. Artificial 

intelligence (AI) offers solutions to these challenges by improving the discrimination 

between different cell types. Studies such as those by Barwad et al, Win et al, and Xie 

et al have demonstrated the potential of AI, utilizing neural networks and deep 

learning, to enhance diagnostic accuracy in effusion cytology.[27-29] By providing 

support in difficult cases and reducing both economic and physical burden, 

computational cytology holds promise in transforming the practice of cytological 

diagnosis in effusion samples. 

 

3.5 Urine Cytopathology:  

In many cases of urine cytology definite diagnosis cannot be made. It may be due to 

error in sampling, degradation of urothelial cells and inflammatory cells &blood 

obscuring the cellular morphology.[30]These errors can be overcome by the use of 

artificial intelligence in the urine cytological smears. 
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Table 5: Comparative table summarizing the findings from different studies in 

the field of urine cytopathology 

Study 
AI 

Application 
Purpose Key Findings 

Sanghvi et 

al[31] 

Convolutional 

Neural 

Network 

Diagnosis prediction 

using whole slide 

images 

CNN trained to detect 

morphological and degradation 

features, improved diagnosis in 

urine cytopathology. 

Muralidaran 

et al[32] 
ANN 

Urothelial carcinoma 

diagnosis 

ANN successful in detecting low- 

and high-grade urothelial 

carcinoma using various features. 

Nojima et 

al[33] 

Deep 

Learning 

Detection of high-

grade urothelial 

carcinoma 

Deep learning system accurately 

diagnosed malignancy, including 

stromal invasion, outperforming 

conventional cytology. 

Vaickus et 

al[34] 

Morphometry 

Analysis, 

Deep 

Learning 

Automated analysis 

of urine 

cytopathology 

Hybrid morphometry and deep 

learning analysis of whole-slide 

images showed promise in urine 

cytopathology. 

 

Urine cytology often faces challenges in obtaining definitive diagnoses due to various 

factors. The integration of artificial intelligence (AI) has shown significant potential 

in overcoming these obstacles. Table 5 shows that studies by Adit B. Sanghvi et al, 

Muralidaran et al, Satoshi Nojima et al, and Vaickus et al have demonstrated the 

utility of AI techniques such as convolutional neural networks and deep learning in 

improving diagnosis accuracy and overcoming the limitations of conventional 

cytology. [31-34] By harnessing computational cytology's capabilities, AI has the 

potential to revolutionize urine cytopathology and contribute to enhanced patient 

care and healthcare systems. 

 

3.6 Breast: 

For palpable lumps of breast, FNAC is the one of the initial diagnostic 

modalities.[35]But in cases of low-grade breast carcinoma, there can be diagnostic 

uncertainty. The use of artificial intelligence as in diagnosis of lobular carcinoma 

promises the use of it in diagnosis of breast lumps.[36] 
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Table 6: Comparative summary of the findings from different studies applying 

AI in the field of breast cytology 

Study 

AI 

Applicatio

n 

Purpose Key Findings 

Dey et al[36] ANN 
Diagnosis of lobular 

carcinoma 

ANN differentiated breast pathologies, 

including infiltrating lobular 

carcinoma. 

Subbaiah et al[37] ANN 
Diagnosis of breast 

lesions 

ANN successfully diagnosed benign 

and malignant breast lesions based on 

cytological features. 

Zejmo et al[38] 

Convolutio

nal Neural 

Network 

Classification of 

breast cytological 

specimens 

CNN classified benign cases more 

efficiently than malignant cases. 

Khan et al[39] CNN 

Classification of 

malignant and 

benign cells 

Proposed CNN framework using 

various architectures achieved 

excellent results. 

Filipczuk et al[40] 
Neural 

Network 

Differentiation of 

benign and 

malignant breast 

smears 

Neural network models achieved 

sensitivity of 0.88 and specificity of 

1.00 

The application of artificial intelligence in breast cytology has shown promise in 

enhancing diagnostic accuracy and classification of breast lesions, particularly in 

cases of uncertainty. Table 6 shows the different studies that demonstrate the 

potential of AI techniques, including artificial neural networks and convolutional 

neural networks, to improve the diagnosis of breast lumps.[36-40] 

 

3.7 Lung Cytology:  

Classification of lung carcinoma is important for the patient as it is important for the 

treatment modality. Artificial intelligence can be used for the classification of the 

lung carcinoma in the cytological smears.  
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Table-7: Comparative summary of the findings from different studies applying 

AI in the field of lungcytology 

Study 
AI 

Application 
Purpose Accuracy Key Findings 

Teramoto 

et al[41] 

Deep Neural 

Network 

Lung Tumor 

Classification 
71.1% 

Effective classification 

of adenocarcinoma, 

squamous, and small 

cell carcinoma using 

DCNN model in liquid-

based cytological 

specimens. 

Ai D et 

al[42] 

Convolutional 

Neural 

Network 

(Whole Slide 

Images) 

Respiratory 

Pathology 

Diagnosis 

84.57% 

Successful 

identification of 

malignant and benign 

cases in bronchoscopy 

smears (ROSE) using 

AI-enhanced 

convolutional neural 

networks. 

The role of AI in lung carcinoma classification is transformative, as seen in studies 

done by Teramoto et al. and Dilbar Ai et al (Table 7). These studies highlight deep 

learning's accuracy in categorizing lung tumors and distinguishing malignancy with 

rates of 71.1% and 84.57% respectively.  

 

3.8 Nasal Cytology: 

Nasal cytology is the study of nasal mucosal cells which is gaining importance in the 

field of otorhinolaryngology.[43]Though nasal smear technique is simple and cheap 

way of cytological examination, sometimes due to high cellularity the cytological 

features are not clear.On the other hand, the specimen with less cellularity needs to 

be centrifuged. Computational cytology aims at increasing the accuracy of the 

cytological diagnosis by eliminating these challenges. It reduces the time and effort in 

diagnosis of cytology smears from the nasal cavity.  

Dimauro et al. studied cellular elements by image processing and segmentation. 

Further classification was done by convolutional neural network. Classification 

algorithm was tested using the 412 cellular mages of the validation-set. The system 

had satisfactory results.[42] 

The risk of bias analysis categorized the studies into three levels based on their 

methodology, validation, and reporting. Low risk of bias was assigned to studies with 

clear methodology, robust validation, and high accuracy metrics, such as Gopinath et 

al[12], Elliot et al[13], Hattori et al[19], Xie et al[29], Sanghvi et al[31], Nojima et al[33], Khan et 
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al[39], Filipczuk et al[40], and Ai D et al[42]. These studies demonstrated strong results 

with transparent and reliable approaches. Moderate risk of bias was identified in 

studies with promising outcomes but lacking detailed dataset information, validation, 

or quantitative metrics, including Shapiro NA et al[8], Sanyal et al[11],Kapatia et al[15], 

Tao et al[23],Muralidaran et al[32],Vaickus et al[34], Dey et al[36],Zejmo et al[38], Teramoto 

et al, and Dimauro et al[42]. While these studies showed potential, the absence of 

comprehensive details raised concerns about their generalizability and 

reproducibility. High risk of bias was attributed to studies with unrealistic accuracy 

claims (e.g., Savala et al[10]), no reported accuracy metrics (e.g., Ippolito et 

al[14]Bengstton et al[18]Barwad et al[27]), or potential overfitting. These studies were 

deemed less reliable due to methodological limitations or insufficient evidence to 

support their findings. 

1. AI Applications in Thyroid Cytology 

Study 
Risk of 

Bias 
Comments 

Shapiro NA et 

al[8] 
Moderate 

High accuracy (87%) but lacks details on dataset size and 

validation. 

Saini et al[9] Low 
100% accuracy reported, but potential overfitting due to small 

sample size. 

Savala et al[10] High 
100% accuracy without errors is unrealistic; likely overfitting or 

bias in dataset. 

Sanyal et al[11] Moderate 
Good sensitivity and specificity but challenges with papillary 

structure identification. 

Gopinath et 

al[12] 
Low High sensitivity and specificity (100%) with clear methodology. 

Elliot et al[13] Low 
Strong alignment with cytopathologist predictions; robust 

methodology. 

Ippolito et al[14] High No accuracy reported; overlapping features may introduce bias. 

 

2. Computational Cytology in Salivary Gland Lesions 

Study Risk of Bias Comments 

Kapatia et al[15] Moderate 
ANN architecture described, but dataset size and 

validation unclear. 

Kovacevic et 

al[16] 
Low 

Nuclear morphometry analysis with ROC validation; 

robust methodology. 
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3. AI Applications in Female Genital Tract Cytology 

Study 
Risk of 

Bias 
Comments 

Bengstton et 

al[18] 
High No accuracy reported; limited details on methodology. 

Sanyal et al[21] Low 
High NPV (99.19%) with clear application as a screening 

tool. 

Hattori et al[19] Low High AUC (96%) and ZSI (97%); strong methodology. 

Tao et al[23] Moderate 
Deep learning outperformed HPV testing, but dataset 

details unclear. 

Markis et al[20] Moderate 
Sensitive and specific but lacks quantitative accuracy 

metrics. 

 

4. AI Applications in Effusion Cytology 

Study 
Risk of 

Bias 
Comments 

Barwad et 

al[27] 
High 

No accuracy reported; reliance on chromatin texture may 

introduce bias. 

Win et al[28] Moderate 
High accuracy but challenges with overlapping nuclei; 

potential bias. 

Xie et al[29] Low High diagnostic accuracy (91.67%) with clear methodology. 

 

5. AI Applications in Urine Cytopathology 

Study 
Risk of 

Bias 
Comments 

Sanghvi et al[31] Low 
CNN trained on whole slide images; improved 

diagnosis with clear results. 

Muralidaran et 

al[32] 
Moderate 

ANN successful but lacks details on dataset size and 

validation. 

Nojima et al[33] Low 
Deep learning outperformed conventional cytology; 

robust methodology. 

Vaickus et al[34] Moderate 
Hybrid analysis promising but lacks quantitative 

accuracy metrics. 
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6. AI Applications in Breast Cytology 

Study 
Risk of 

Bias 
Comments 

Dey et al[36] Moderate ANN differentiated pathologies but lacks dataset details. 

Subbaiah et 

al[37] 
Low Successful diagnosis with clear cytological features. 

Zejmo et al[38] Moderate 
CNN classified benign cases efficiently; malignant cases 

less clear. 

Khan et al[39] Low 
Excellent results with proposed CNN framework; robust 

methodology. 

Filipczuk et 

al[40] 
Low 

High sensitivity (0.88) and specificity (1.00); strong 

methodology. 

 

7. AI Applications in Lung Cytology 

Study 
Risk of 

Bias 
Comments 

Teramoto et al Moderate 
Effective classification but accuracy (71.1%) is relatively 

low. 

Ai D et al[41] Low 
High accuracy (84.57%) with clear application in 

bronchoscopy smears. 

Dimauro et 

al[42] 
Moderate Satisfactory results but lacks detailed accuracy metrics. 

 

4. Discussion 

The integration of artificial intelligence (AI) into cytopathology has significantly 

transformed diagnostic workflows across a wide range of organ systems, offering 

innovative solutions to longstanding limitations of conventional cytology. This 

systematic review assessed the effectiveness of AI applications in improving 

diagnostic accuracy, distinguishing benign from malignant lesions, and predicting 

malignancy risk. The evidence collectively demonstrates that AI—particularly 

artificial neural networks (ANN), convolutional neural networks (CNN), and deep 

learning (DL) models—greatly enhances the diagnostic potential of cytopathology. 

Nevertheless, considerable variability exists among studies, influenced by differences 

in methodology, dataset size, validation approaches, and reporting practices, all of 

which affect the interpretability and reliability of findings. 

In thyroid cytology, one of the most challenging areas due to overlapping features 

among follicular-patterned lesions, AI has shown particular promise. Differentiating 

follicular adenoma from carcinoma and predicting malignancy risk in indeterminate 

lesions remain diagnostic dilemmas. Shapiro et al [8] achieved 87% accuracy in 
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classifying follicular tumors using ANN, whereas Saini et al [9] reported 100% 

accuracy in predicting malignancy risk in Bethesda category III lesions. However, the 

small sample size in the latter raises concerns regarding overfitting and emphasizes 

the need for larger, more representative datasets [9]. Likewise, the 100% accuracy 

reported by Savala et al [10] in distinguishing follicular adenoma from carcinoma 

appears unrealistic and likely reflects dataset bias. In contrast, Gopinath et al [12] 

demonstrated strong methodological rigor, achieving 100% sensitivity and specificity 

through image segmentation, reinforcing the value of well-designed computational 

approaches [12]. Persistent challenges include difficulty identifying subtle papillary 

structures, as reported by Sanyal et al [11], and morphological overlap between benign 

and neoplastic lesions, as noted by Ippolito et al [11,14]. 

Fine-needle aspiration cytology (FNAC) of salivary gland lesions often suffers from 

overlapping morphological patterns and metaplastic changes that complicate 

diagnosis. AI has emerged as a useful adjunct in this setting. Kapatia et al [15] 

developed an ANN model capable of distinguishing pleomorphic adenoma from 

adenoid cystic carcinoma, while Kovacevic et al [16] applied nuclear morphometry to 

differentiate benign and malignant lesions with high accuracy [15,16]. These findings 

demonstrate AI's ability to resolve morphological ambiguities, although larger, multi-

institutional datasets are needed for broader validation. 

AI has also contributed significantly to cervical cytology, a major screening tool in 

low-resource settings. Bengtsson et al [18] were among the first to apply ANN to 

cervical smear interpretation, paving the way for subsequent innovations. Sanyal et al 

[21] demonstrated that CNN has a high negative predictive value (NPV) in identifying 

abnormal areas on liquid-based cytology slides [18,21]. Hattori et al [19] advanced the 

field further by reporting 96% AUC and 97% ZSI using deep learning for cervical cell 

nuclei segmentation and classification [19]. Despite these promising results, concerns 

remain regarding dataset quality, algorithm training, and implementation challenges 

that must be addressed for effective clinical integration [24]. 

In effusion cytology, where distinguishing reactive mesothelial cells from malignant 

cells is frequently difficult, AI has demonstrated notable advantages. Xie et al [29] 

utilized deep conventional neural networks to classify cancer cells in pleural effusion 

with 91.67% accuracy, while Win et al [28] also reported strong performance despite 

issues with nuclear overlap [28,29]. These findings highlight AI’s capability to 

improve diagnostic precision in fluid cytology. 

Urine cytology, often hindered by inflammatory background, cellular degeneration, 

and sampling issues, has similarly benefited from AI. Sanghvi et al [31] applied CNN 

to whole-slide images, showing improved diagnostic efficiency, and Nojima et al [33] 

demonstrated that deep learning outperformed conventional cytology in detecting 



Scope 

Volume 15 Number 04 December 2025 

 

935 www.scope-journal.com 

 

high-grade urothelial carcinoma [31,33]. These studies underscore AI’s potential to 

enhance diagnostic reproducibility and reduce false-negative rates. 

In breast cytology, AI has been applied to improve classification accuracy, particularly 

in challenging or borderline cases. Dey et al [36] showed that ANN could effectively 

distinguish various breast pathologies, while Filipczuk et al [40] achieved high 

sensitivity and specificity in differentiating benign from malignant smears [36,40]. 

However, Zejmo et al [38] observed that CNN performed better for benign than 

malignant lesions, suggesting the need for further refinement of malignancy-focused 

algorithms [38]. 

AI has also enhanced diagnostic accuracy in lung cytology. Teramoto et al achieved 

71.1% accuracy in lung tumor classification using deep neural networks, whereas Ai D 

et al [41] reported 84.57% accuracy in distinguishing benign and malignant cases in 

bronchoscopy smears [41]. Although these results are encouraging, ongoing 

refinement is needed to improve classification reliability. 

Even in less commonly evaluated areas such as nasal cytology, AI has demonstrated 

value. Dimauro et al [42] used CNN-based image processing to classify nasal mucosal 

cells with satisfactory accuracy, illustrating the broad applicability of AI models [42]. 

A risk-of-bias assessment highlights substantial variability among studies. Low-risk 

studies such as those by Gopinath et al [12] and Elliot et al [13] were characterized by 

strong methodology and detailed reporting [12,13]. High-risk studies, including those 

by Savala et al [10] and Ippolito et al [14], often reported unrealistic accuracy or lacked 

essential performance metrics [10,14]. Moderate-risk studies such as those by Shapiro 

et al [8] and Kapatia et al [15] showed potential but suffered from methodological 

limitations [8,15]. These observations underscore the need for rigorous study design, 

standardized reporting, and the use of adequately powered datasets. 

In conclusion, AI has demonstrated immense potential to enhance cytopathology by 

improving diagnostic accuracy, reducing subjectivity, and expediting workflows. 

However, significant challenges—such as inconsistent methodologies, limited 

datasets, and implementation barriers—must be addressed. With continued research, 

robust validation, and improved standardization, AI is poised to revolutionize 

cytopathology and strengthen diagnostic services worldwide. 

 

5. Conclusion: 

Artificial intelligence (AI) is increasingly used in medicine, enabling precise and 

reliable decision-making. In cytology, well-curated training and testing image 

datasets allow AI systems to extract meaningful diagnostic information, supported by 

advanced software and automated microscopy. However, computational cytology 

requires large datasets, adaptation by pathologists, and training of multidisciplinary 
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teams. With improved datasets and automated image acquisition, tools like artificial 

neural networks can classify smears from the cervix, breast, thyroid, lung, and urine, 

aiding distinction between benign and malignant cells. Its high accuracy and 

efficiency offer a valuable adjunct to routine cytology and can help address workforce 

shortages. 
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