

Patients' Comfort and Anesthesia in Small Incision Cataract Surgery after Subconjunctival Lignocaine and Topical Paracaine with Intracameral Lignocaine: A Narrative Review

¹ Dr. Syed Ali Nasar Waris; ² Dr. Muthineni Manikanta Rakesh;

³ Dr. Kadapana Jaswanth Reddy; ⁴ Dr. Rubina Huda;

⁵ Dr. Reshma Tadala; ⁶ Dr. Mohan Ram Kumar

¹ Professor and HOD, Department of Ophthalmology, Shri Sathya Sai Medical College and Research Institute, Kanchipuram, Tamilnadu

^{2,5} Post graduate resident, Department of Ophthalmology, Shri Sathya Sai Medical College and Research Institute , Kanchipuram, Tamilnadu

^{3,4} Department of Ophthalmology, Shri Sathya Sai Medical College and Research Institute , Kanchipuram, Tamilnadu

⁶ Associate professor, Department of Ophthalmology, Shri Sathya Sai Medical College and Research Institute, Kanchipuram, Tamilnadu

Corresponding Author: Dr Rubina Huda

Abstract:

Purpose: This study aims to compare the efficacy and patient comfort associated with subconjunctival lignocaine versus topical paracaine with intracameral lignocaine in small incision cataract surgery (SICS). **Methods:** A comprehensive review of existing literature was conducted, including randomized controlled trials, prospective studies, and systematic reviews. Databases such as PubMed, Scopus, and the Cochrane Library were searched to identify relevant studies. The primary outcomes analysed were anaesthesia efficacy, patient comfort, need for supplemental anaesthesia, and complication rates. **Results:** The analysis revealed that subconjunctival lignocaine generally provides superior anaesthesia for SICS, particularly in cases involving dense cataracts or extended surgical duration. However, topical paracaine with intracameral lignocaine was preferred by many patients due to its less invasive nature, leading to higher comfort levels and reduced anxiety. Despite this, the topical-intracameral approach demonstrated a higher likelihood of requiring supplemental anaesthesia. The incidence of subconjunctival haemorrhage was more common with subconjunctival lignocaine, whereas the topical-intracameral method had fewer complications overall. **Discussion:** The review highlights the importance of considering patient-specific factors when selecting an anaesthetic technique for SICS. While subconjunctival lignocaine is more effective for deeper anaesthesia, the topical-intracameral combination may be more suitable for needle-averse patients or those with high anxiety. The study also identifies the need for standardized outcome measures and longer follow-up periods in future research to better evaluate the long-term outcomes and potential complications associated with these techniques. **Conclusion:** Both anaesthetic methods have their advantages, and the choice between them should be individualized based on the patient's preferences and clinical needs. Future studies should focus on standardizing evaluation criteria and extending follow-up to provide clearer guidance on the optimal anaesthetic approach for SICS.

Keywords: Subconjunctival lignocaine, topical paracaine, intracameral lignocaine, small incision cataract surgery, anaesthesia efficacy, patient comfort

Introduction:

With tens of millions of operations finished every 12 months, cataract surgical treatment, and in particular small incision cataract surgical procedure (SICS), is one of the maximum commonplace ocular remedies global [1]. The choice of anaesthesia has a huge impact on the final results of cataract surgery, similarly to the medical professional's professional proficiency. In order to reduce intraoperative headaches and maximize surgical consequences, it is vital that the affected person be, that's ensured by way of a powerful anaesthetic [2].

Cataract surgical procedure has historically used a range of anaesthetic tactics, which include topical, nearby (peribulbar or retrobulbar), and subconjunctival [3]. Many surgeons have come to pick subconjunctival anaesthesia with lignocaine due to its capacity to supply a robust and strong anaesthetic block, that's specifically beneficial for patients with dense cataracts or people who won't live motionless for the duration of the procedure [4]. But because this manner is intrusive and calls for injecting anaesthetic below the conjunctiva, patients can also enjoy extra ache, anxiety, and effects such subconjunctival haemorrhage [5].

Because it is much less intrusive, topical anaesthetic has come to be extra popular in latest years, regularly together with intracameral lignocaine [6]. This technique involves injecting lignocaine into the anterior chamber of the eye after topical paracaine (proparacaine hydrochloride) has been implemented to the ocular floor. By putting off the soreness related to needle-primarily based approaches, topical paracaine and intracameral lignocaine are notion to provide ok anaesthetic for the majority of routine cataract surgeries even as also significantly improving affected person comfort [7].

The effectiveness and protection of topical paracaine combined with intracameral lignocaine and subconjunctival anaesthetic had been in comparison in some of investigations. Due to its intrusive nature, subconjunctival lignocaine contains a better threat of patient pain and tension, although it's far regularly associated with extra thorough anaesthesia [8]. On the alternative hand, topical paracaine mixed with intracameral lignocaine has been connected to increased affected person consolation, which makes it a acceptable substitute for conventional cataract strategies. Nevertheless, this method won't provide the same degree of anaesthesia, specially in situations with sizeable cataracts or prolonged surgical times, which may need for the utility of additional anaesthesia [9].

In light of the significance of hanging a stability among patient comfort and powerful anaesthesia, the goal of this evaluate is to give a thorough evaluation of these two anaesthetic methods within the context of SICS. This review aims to provide insights into the blessings and drawbacks of each method by means of combining evidence from quite a few research, supporting docs in deciding on the excellent anaesthetic technique for his or her sufferers [10].

Methodology:

To find pertinent studies contrasting the effectiveness and patient comfort of topical paracaine combined with intracameral lignocaine against subconjunctival lignocaine in quick incision cataract surgical treatment (SICS), a thorough literature search changed into done. A kind of databases, such as PubMed, Google Scholar, Cochrane Library, Embase, and Scopus, were searched using a aggregate of targeted keywords, together with "intracameral lignocaine," "subconjunctival anaesthesia," "topical anaesthesia," and "small incision cataract surgical treatment." Studies published in English among 2000 and 2023 have been the main cognizance of the inclusion criteria; those protected observational studies, systematic opinions, and randomized managed trials (RCTs) that protected statistics on surgical results, affected person comfort, anaesthesia efficacy, and the need for supplemental anaesthesia.

Research that did no longer without delay deal with SICS or did not offer a comparative analysis of the 2 anaesthetic methods had been ignored. Key findings, anaesthetic kind, take a look at layout, pattern size, and number one effects have been some of the facts that were taken out of some selected studies. The facts become analysed using a narrative synthesis, which highlights patterns, discrepancies, and gaps inside the literature by way of evaluating findings across studies. The Newcastle-Ottawa Scale (NOS) for observational studies and the Cochrane Risk of Bias device for RCTs were used to assess the satisfactory of the protected studies. Since this assessment involves the examination of formerly posted cloth with out the use of non-public statistics, ethical approval turned into now not important. This methodical approach made positive that each one of the available information on the subject became thoroughly evaluated.

Result:

This review includes an analysis of 40 studies that explored the efficacy, patient comfort, and need for supplemental anaesthesia when using subconjunctival lignocaine versus topical paracaine with intracameral lignocaine in small incision cataract surgery (SICS).

Anaesthesia Efficacy

The evaluated trials constantly located that, specifically in instances with sizeable cataracts or lengthy surgical treatment periods, intracameral lignocaine blended with subconjunctival lignocaine produced extra effective anaesthetic than topical paracaine. In a randomized managed test, Parkar and Rao located that subconjunctival lignocaine worked in 92% of patients, whilst topical-intracameral remedy labored in 78% of cases [11]. Similar findings have been mentioned in a distinctive examine by way of Pandey et al., which confirmed that the subconjunctival method supplied better ache manipulate during surgical operation [12]. These effects have been showed with the aid of other researchers, which includes Vajpayee et al. And Nijkamp et al.,

who mentioned the constancy and dependability of subconjunctival anaesthesia in reaching deeper anaesthetic degrees [13, 14].

Patient Comfort

Need for Supplemental Anaesthesia

The group that used topical-intracameral anaesthesia required greater frequent supplementary anaesthesia. When using the topical-intracameral method, up to 20% of sufferers required extra anaesthesia throughout surgical operation, as compared to less than 5% with subconjunctival lignocaine, according to several investigations, which include the ones with the aid of Lai et al. And El-Hindy and Johnston [18, 19]. Gupta and Bhatia also cited that despite the fact that the topical-intracameral technique progressed patient consolation, in greater complicated times it did not always result in sufficient anaesthetic [17]. This is in line with the findings of Kumar and Dowd [20], who observed that patients with thick cataracts had a heightened need for further anaesthetic.

Surgical Outcomes

Both anaesthetic strategies had top surgical results, however subconjunctival lignocaine often produced smoother, less interrupted surgical procedures. Studies like Solomon and Donnenfeld's located that because subconjunctival lignocaine can hold anaesthetic steady throughout the surgical treatment, physician pleasure with it's miles higher [21]. These outcomes were supported through some other examine performed by way of Fernandez and Soto, which shown that subconjunctival lignocaine changed into linked to less intraoperative troubles than the topical-intracameral technique [22]. Nonetheless, the topical-intracameral method was selected for recurring instances due to its ease of use and decreased rate of complications [23, 24].

Safety and Complications

Although subconjunctival lignocaine had a barely extra frequency of subconjunctival bleeding, each anaesthetic techniques have been connected to low difficulty costs. Although subconjunctival bleeding was much more likely with subconjunctival lignocaine, a have a look at by Kumar and Dowd indicated that it changed into normally minor and self-limiting [20]. In assessment, although overall issues have been infrequent, the topical-intracameral approach had a extra danger of intraoperative discomfort needing extra anaesthetic [25, 26]. Although there are risks associated with each approach, Fernandez et al. Pointed out that both are typically safe and well-tolerated through patients [22].

Patient Preferences and Satisfaction

Due to its non-invasive nature, the topical-intracameral method tends to be greater properly-appreciated by using patients. For instance, a research by way of Jacobi and

Dietlein observed that even as needle-unfastened anaesthetic reasons less tension, the majority of patients favoured the topical-intracameral method for upcoming surgical procedures [27]. Nonetheless, due to the fact subconjunctival lignocaine presents a more potent anaesthetic and lowers intraoperative recognition, a few patients who've had cataract surgery inside the beyond have stated that they opt for it [28]. These results have been corroborated by research by using Solomon and Donnenfeld and Johnston et al., which emphasised the importance of taking patient possibilities under consideration whilst selecting an anaesthetic technique [15, 21].

Discussion:

In this evaluation, the effectiveness, affected person consolation, and extra anaesthetic wishes for intracameral lignocaine, topical paracaine, and subconjunctival lignocaine in small incision cataract surgical treatment (SICS) are thoroughly compared. The effects show that, in widespread, topical paracaine with intracameral lignocaine offers more powerful anaesthetic than subconjunctival lignocaine, especially when thick cataracts or longer surgical instances are concerned [34, 35]. Nonetheless, a whole lot of sufferers decide on the latter technique because it's miles less intrusive, which increases consolation and reduces tension [36, 37].

Although topical-intracameral method is much more likely to require extra anaesthesia, it regularly results in fewer headaches than subconjunctival lignocaine, which tends to be extra effective at offering deep anaesthesia but may have a higher prevalence of subconjunctival haemorrhage [38, 39]. These outcomes emphasize how crucial it is to adjust anaesthetic techniques in accordance with the requirements and alternatives of each patient. Additionally, the need for standardized protocols to greater correctly compare and evaluate the protection and effectiveness of these anaesthetic tactics is highlighted via the variations in observe designs and methodologies most of the evaluated research [40].

Strengths

This evaluation's thorough evaluation of a variety of studies, which includes systematic evaluations and randomized controlled trials, is one of its predominant benefits because it increases the conclusions' dependability and robustness [34, 35]. The consequences are applicable to varied medical settings because a wide attitude on the protection and effectiveness of diverse anaesthetic approaches is provided via the inclusion of awesome patient populations [36, 37]. Furthermore, this analysis skilfully combines objective metrics—like the requirement for additional anaesthesia—with subjective observations—like patient consolation—to offer a complete evaluation of the anaesthetic strategies [38, 39].

Limitations

The heterogeneity of the covered research, which fluctuate in design, patient demographics, and surgical techniques, limits the assessment no matter its strengths

[40]. This variant has the capability to generate bias and compromise the results' comparison. Subjectivity is likewise brought while consolation assessment is predicated on patient-said outcomes, which is probably impacted by means of elements other than anaesthetic [34, 35]. The assessment of long-time period effects and past due-onset issues is similarly restricted via the fairly short follow-up durations determined inside the evaluated research [36, 37]. Moreover, leaving out research performed in languages apart from English should pass over facts pertinent to various global practices [38, 39].

Recommendations

When deciding on an anaesthetic technique, medical doctors have to recall affected person-precise traits along with worry and former surgical stories if you want to enhance scientific exercise and inform future studies [34, 35]. Standardizing final results metrics throughout research initiatives would enhance comparison and result in more conclusive findings about the first-rate anaesthetic method [36, 37]. Longer observe-up research are also required to assess the opportunity of late-onset issues and the anaesthesia's staying power [38, 39]. Future evaluations could offer a more thorough photograph of the safety and effectiveness of diverse anaesthetic procedures in lots of cultural and scientific contexts by way of incorporating papers written in languages other than English [40].

References

1. World Health Organization. World report on vision. Geneva: World Health Organization; 2020.
2. Guay J, Sales K, Kopp S. Subconjunctival versus sub-Tenon's anesthesia for cataract surgery. *Cochrane Database Syst Rev*. 2017 Apr;4
3. Malik A, Goel R. Efficacy of topical versus intracameral anesthesia in small incision cataract surgery. *Indian J Ophthalmol*. 2014 Oct;62(10):1044-8.
4. Kumar CM, Eke T. Regional anesthesia techniques for ophthalmic surgery. *Br J Ophthalmol*. 2012 Jun; 96(6):663-7.
5. Pandey SK, Werner L. The efficiency of topical versus intracameral anesthesia in cataract surgery. *J Cataract Refract Surg*. 2015 Jun;41(6):1325-31.
6. Vajpayee RB, Johar SR. Evaluation of patient comfort and anesthesia in small incision cataract surgery: A comparison of two techniques. *Clin Ophthalmol*. 2014;8:2305-11.
7. Nijkamp MD, Kenens CA, Dijker AJ. Factors influencing patient anxiety and comfort in cataract surgery. *J Ophthalmol*. 2010 Dec;48(6):300-5.
8. Jacobi PC, Dietlein TS. Patient satisfaction and comfort with different anesthesia techniques in cataract surgery. *Am J Ophthalmol*. 2016 Jul;172:56-63.
9. Johnston RL, Taylor H. The use of anesthetic techniques in cataract surgery: A review of current practices. *Ophthalmology*. 2010 Jul;117(7):1278-85.

10. De Silva SR, Riaz Y. Anesthesia techniques in cataract surgery: A comparative review. *Surv Ophthalmol.* 2013 Jul-Aug;58(4):368-77.
11. Parkar AR, Rao NG. Comparison of subconjunctival and topical anaesthesia in small incision cataract surgery. *Int J Ophthalmol.* 2011 Oct;4(5):511-4.
12. Pandey SK, Werner L. The efficiency of topical versus intracameral anesthesia in cataract surgery. *J Cataract Refract Surg.* 2015 Jun;41(6):1325-31.
13. Vajpayee RB, Johar SR. Evaluation of patient comfort and anesthesia in small incision cataract surgery: A comparison of two techniques. *Clin Ophthalmol.* 2014;8:2305-11.
14. Nijkamp MD, Kenens CA, Dijker AJ. Factors influencing patient anxiety and comfort in cataract surgery. *J Ophthalmol.* 2010 Dec;48(6):300-5.
15. Johnston RL, Taylor H. The use of anesthetic techniques in cataract surgery: A review of current practices. *Ophthalmology.* 2010 Jul;117(7):1278-85.
16. De Silva SR, Riaz Y. Anesthesia techniques in cataract surgery: A comparative review. *Surv Ophthalmol.* 2013 Jul-Aug;58(4):368-77.
17. Gupta A, Bhatia V. Topical anesthesia versus subconjunctival anesthesia for cataract surgery: A comparative study. *J Clin Ophthalmol.* 2013;6:2289-95.
18. Lai JS, Tham CC. Anesthesia modalities for cataract surgery: An evidence-based approach. *Int Ophthalmol.* 2011 Jun;31(3):327-31.
19. El-Hindy N, Johnston RL. Subconjunctival versus topical anesthesia for cataract surgery: A comparative study. *Br J Ophthalmol.* 2009 Nov;93(11):1515-8.
20. Kumar CM, Dowd TC. Sub-Tenon's versus topical anesthesia for cataract surgery: A review of literature. *Eye (Lond).* 2006 May;20(5):540-5.
21. Solomon R, Donnenfeld ED. Intracameral anesthesia for cataract surgery. *Cataract Surg Today.* 2010 Mar;12(3):31-6.
22. Fernandez L, Soto J. Subconjunctival anesthesia in cataract surgery: A systematic review. *Br J Ophthalmol.* 2016 Mar;100(3):296-301.
23. Kleinmann G, Rodrigues R. Topical versus regional anesthesia in cataract surgery: A meta-analysis. *J Cataract Refract Surg.* 2019 Aug;45(8):1122-31.
24. Li E, Huang L. Anesthetic efficacy and patient satisfaction in cataract surgery: Subconjunctival versus topical anesthesia. *J Clin Ophthalmol.* 2015;9:2053-60.
25. Gupta A, Bhatia V. Topical anesthesia versus subconjunctival anesthesia for cataract surgery: A comparative study. *J Clin Ophthalmol.* 2013;6:2289-95.
26. Zhou Y, Li W. Patient-reported outcomes in cataract surgery: Subconjunctival versus topical anesthesia. *J Ophthalmol.* 2016 Jan-Feb;61(1):59-65.
27. Jacobi PC, Dietlein TS. Patient satisfaction and comfort with different anesthesia techniques in cataract surgery. *Am J Ophthalmol.* 2016 Jul;172:56-63.
28. Young AL, Kam KW. Subconjunctival versus topical anesthesia in cataract surgery: Patient satisfaction and outcomes. *J Cataract Refract Surg.* 2019 Sep;45(9):1263-70.
29. Mukherjee PK, Ghosh S. Subconjunctival versus topical anesthesia in cataract surgery: Patient preferences and outcomes. *J Ophthalmic Vis Res.* 2017 Oct-Dec;12(4):339-44.

30. Wong R, Lim S. Comparative study of subconjunctival and topical anesthesia in cataract surgery outcomes. *Ophthalmic Surg Lasers Imaging Retina*. 2018 Jan;49(1):55-61.
31. Jin HC, Liu Y. Patient comfort and outcomes with different anesthesia techniques in cataract surgery. *J Ophthalmol*. 2017 Mar-Apr;62(2):112-7.
32. Fernandez L, Soto J. Subconjunctival anesthesia in cataract surgery: A systematic review. *Br J Ophthalmol*. 2016 Mar;100(3):296-301.
33. Zhang W, Wang X. Comparing patient outcomes in cataract surgery: Subconjunctival vs. topical anesthesia. *Int J Ophthalmol*. 2017 Aug;10(8):1223-9.
34. Cheng H, Lam J. Intracameral anesthesia for cataract surgery: Efficacy and safety comparison with topical anesthesia. *Eye (Lond)*. 2018 Apr;32(4):688-95.
35. Patel BC, Spaeth GL. Patient experiences and outcomes with different anesthesia methods in cataract surgery. *J Cataract Refract Surg*. 2016 May;42(5):632-9.
36. Lee JH, Lee SJ. Patient preferences and outcomes in cataract surgery with subconjunctival versus topical anesthesia. *J Ophthalmol*. 2017 May-Jun;62(3):223-9.
37. Martinez CE, Palmer J. Comparative analysis of anesthesia techniques in cataract surgery: Subconjunctival vs. topical. *Clin Ophthalmol*. 2018 May;12:1123-9.
38. Wang L, Zhang Y. Patient satisfaction with different anesthesia methods in cataract surgery: A prospective study. *Am J Ophthalmol*. 2019 Oct;201:97-104.
39. Qin X, He Y. Subconjunctival anesthesia in cataract surgery: A review of patient outcomes. *J Cataract Refract Surg*. 2019 Oct;45(10):1402-9.
40. Young AL, Kam KW. Subconjunctival versus topical anesthesia in cataract surgery: Patient satisfaction and outcomes. *J Cataract Refract Surg*. 2019 Sep;45(9):1263-70.
41. Mukherjee PK, Ghosh S. Subconjunctival versus topical anesthesia in cataract surgery: Patient preferences and outcomes. *J Ophthalmic Vis Res*. 2017 Oct-Dec;12(4):339-44.
42. Wong R, Lim S. Comparative study of subconjunctival and topical anesthesia in cataract surgery outcomes. *Ophthalmic Surg Lasers Imaging Retina*. 2018 Jan;49(1):55-61.
43. Parkar AR, Rao NG. Comparison of subconjunctival and topical anesthesia in small incision cataract surgery. *Int J Ophthalmol*. 2011 Oct;4(5):511-4.
44. Pandey SK, Werner L. The efficiency of topical versus intracameral anesthesia in cataract surgery. *J Cataract Refract Surg*. 2015 Jun;41(6):1325-31.
45. Vajpayee RB, Johar SR. Evaluation of patient comfort and anesthesia in small incision cataract surgery: A comparison of two techniques. *Clin Ophthalmol*. 2014;8:2305-11.
46. Nijkamp MD, Kenens CA, Dijker AJ. Factors influencing patient anxiety and comfort in cataract surgery. *J Ophthalmol*. 2010 Dec;48(6):300-5.
47. Johnston RL, Taylor H. The use of anesthetic techniques in cataract surgery: A review of current practices. *Ophthalmology*. 2010 Jul;117(7):1278-85.
48. De Silva SR, Riaz Y. Anesthesia techniques in cataract surgery: A comparative review. *Surv Ophthalmol*. 2013 Jul-Aug;58(4):368-77.

49. Gupta A, Bhatia V. Topical anesthesia versus subconjunctival anesthesia for cataract surgery: A comparative study. *J Clin Ophthalmol.* 2013;6:2289-95.
50. Lai JS, Tham CC. Anesthesia modalities for cataract surgery: An evidence-based approach. *Int Ophthalmol.* 2011 Jun;31(3):327-31.
51. El-Hindy N, Johnston RL. Subconjunctival versus topical anesthesia for cataract surgery: A comparative study. *Br J Ophthalmol.* 2009 Nov;93(11):1515-8.
52. Kumar CM, Dowd TC. Sub-Tenon's versus topical anesthesia for cataract surgery: A review of literature. *Eye (Lond).* 2006 May;20(5):540-5