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Introduction 

Wavelet transform can be considered as a refinement of Fourier transform. Fourier 

transform is used in signal processing for transforming the time domain signal to 

frequency domain. It provides only frequency resolution of signal but does not provide 

time resolution. Fourier analysis is not useful for those signals whose frequency vary 

with time. For example, speech, music, images and medical signals have changing 

frequency. Fourier transform is also not applicable for the signals which contain 

discontinuities and sharp spikes. Wavelet transform overcomes the shortcomings of the 

Fourier transform. Wavelets can examine signals simultaneously in both time and 

frequency domain [1]. Wavelet transform is useful for aperiodic, transient and 

intermittent signals. Wavelets have several useful properties such as orthogonality, 

compact support, exact representation of polynomials to a certain degree and ability to 

represent functions at different levels of resolution. Wavelet analysis and its 

applications have become one of the fastest growing research areas in recent years. It 

has applications in the field of data compression, computer graphics, signal processing, 

numerical analysis, time-frequency analysis, pattern recognition, image processing, 

data mining and other medical image technology like EEG, ECG etc. The numerical 

methods based on wavelets have been developed for the solution of differential 

equations, integral equations, integro-differential equations, partial differential 

equations, fuzzy integro-differential equationsetc [2]. In these numerical methods 
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different kind of wavelet families such asHaar [3], Chebyshev [4], Taylor [5] etc. have 

been used. 

 

1. Historical Development 

Wavelet analysis is a rapidly developing area of mathematics with applications in the 

field of science and engineering. The concept of wavelet analysis can be viewed as the 

synthesis of various ideas originated from different disciplines including mathematics, 

physics and engineering (e.g. Littlewood-Paley theory, Calderón Zygmund operators, 

quadrature mirror filters, sideband coding in signal processing, pyramidal algorithms in 

image processing, coherent states in quantum mechanics and renormalization theory).  

Wavelet theory has gained present growth through the work of Strömberg (1981), 

Grossman and Morlet (1984), Battle(1987), Mallat (1988), Chui (1992), Coifman et al. 

(1992), Daubechies (1992), Meyer (1992)[1, 6-12]. Many other researchers have also made 

significant contributions. Wavelet transform deals with decomposition of signal or 

function in terms of basis functions. These basis functions are generated by applying 

translations and dilations operations on the mother wavelet function. Wavelets have 

applications in financial time series analysis, climate analysis, heart monitoring, seismic 

signal denoising, audio and video compression, computer graphics, compression of 

medical and thumb impression records, numerical analysis etc. 

Wavelet analysis can be regarded as a generalization of Fourier analysis. Fourier analysis 

has two components: Fourier series and Fourier transform. Fourier series is the 

representation of a periodic signal into a series of basis functions (sine and cosine). For 

non-periodic functions the Fourier series is converted to Fourier integral. The complex 

form of Fourier integral is known as Fourier transform. In Fourier transform, signals are 

assumed infinite in time and in Fourier series signal are assumed periodic. But in real 

life we deal with signals which are of short duration and non-periodic. Also, in Fourier 

analysis entire Fourier spectrum is affected by a change in signal in small 

neighbourhood of a particular time. This means that in Fourier transform for 

integration we require complete description of the signal over the whole of the real line (−∞,∞). 
D. Gabor was the first who observed the drawback of Fourier transform in time-

frequency analysis in 1946 [13] and used the concept of window function to define 

another transform. He used the Gaussian function as window function and defined the 

Gabor transform. This Gabor transform can be generalized to any other window Fourier 

transform by using any window function. This time-frequency analysis method is called 

short-time Fourier transform (STFT) or windowed Fourier transform. In STFT, we first 

select the desired portion of the given signal and then take the Fourier transform of 

that part. The drawback of STFT is that it uses a single window for all frequencies and 

therefore the resolution of analysis is same at all locations in time-frequency plane. Due 

to Heisenberg uncertainty principle, a window of large width provides good frequency 

resolution but poor time resolution and a small window width provides good time 
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resolution and poor frequency resolution. So, we cannot get both good time and good 

frequency resolution simultaneously. 

Wavelet transform overcomes the drawbacks of STFT. As we know in STFT the length of 

the window function remains same during analysis of selected portion of signal but in 

wavelet transform we build a family of window functions of different length by 

translation and dilation of mother wavelet. Wavelets are effective in representing 

nonstationary (transient) signals. Unlike Fourier analysis that uses nonlocal functions 

as basis, wavelet analysis has basis which are localized in both time and frequency to 

represent nonstationary signals. Wavelets can examine signals simultaneously in time 

and frequency domain. Wavelet transform is useful for aperiodic, transient, noisy and 

intermittent signals. 

In 1910, Hungarian mathematician Alfred Haar introduced a system of functions which 

form orthonormal basis for 𝐿2(𝑅) and are constructed by dilations and translations of 

simple piecewise constant function. This system of functions is now known as Haar 

wavelets [14]. In 1982, Morlet defines wavelets as a family generated by applying 

translation and dilation operations on a singlefunction known as mother wavelet [15, 

16]. For𝜓(𝑥) ∈ 𝐿2(𝑅) known as mother wavelet, the family of wavelets𝜓𝑎,𝑏(𝑥)  are 

defined as 𝜓𝑎,𝑏(𝑥) = |𝑎|−12 𝜓(𝑥 − 𝑏𝑎 ) ;   𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0                  (1.1.1) 
By reducing 𝑎,  the support of  𝜓𝑎,𝑏(𝑥) is reduced in time and hence covers a large 

frequency range and vice versa. So 1 𝑎⁄ is a measure of frequency. The parameter 𝑏indicates the location of the wavelet window along the time axis. 

Grossman worked with Morlet to confirm that waves could be reconstructed from their 

wavelet decompositions and introduced mathematical formulation of wavelet 

transform and inverse wavelet transform [17]. 

Meyer (1985) constructed orthogonal wavelets in which the information captured by 

one wavelet is completely independent of the information captured by another wavelet 

[18]. Lemarié and Meyer (1986) constructed smooth orthonormal basis in R which have 

been very useful in image processing, signal processing, quantum field theory and 

computer vision [19]. Daubechies et al. (1986) introduced the nonorthogonal wavelet 

expansion [20]. Battle (1987) and Lemarié (1988, 1989) introducedspline orthogonal 

wavelets [21, 22]. Orthogonal wavelets have been constructed byMeyer (1989) [24] and 

Mallat (1989a,1989b) by using multiresolution analysis (MRA) [25, 26]. 

Using the MRA, Daubechies (1988) constructed the compactly supported 

orthonormalwavelets [27]. Wojtaszczyk (1997) extended the theory of MRA to 

higherdimensions by using matrix dilations [28]. 

Xia and Suter (1996) introduced vector-valued multiresolution analysis andvector-

valued wavelets for vector-valued signal spaces [29]. Vector-valued wavelets andwavelet 

packets which are orthogonal and of compact support are introduced byChen and 

Cheng (2007) [30]. Farkov (2005) constructed compactly supported orthogonal 
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𝑝 −wavelets on 𝐿2(𝑅+) [31]. Orthogonal vector-valued wavelets on 𝑅+ has 

beenconstructed by Manchanda and Sharma (2012) [32]. Manchanda and Sharma 

(2014)have also constructed vector-valued wavelet packets on 𝑅+ using Walsh 

Fouriertransform [33]. Meenakshi et al. (2012) have introduced nonuniform 

multiresolutionanalysis on 𝑅+ [34].  Meenakshi et al. (2014) have obtained wavelets 

from vector-valuednonuniform multiresolution analysis [35].Candés and Donoho 

(2000) have introduced a new extension of wavelet transform,called curvelet transform 

[36]. Curvelet transform is a high dimensional generalizationof wavelet transform 

which represents images at different scales anddifferent orientations [Candés et al. 

(2006)][37]. It has time-frequency localizationproperties of wavelets and also shows a 

high degree of directionality and anisotropy.Coifman et al. (1992) constructed the 

wavelet packets [38]. Wavelet packets are ageneralization of wavelets and the frequency 

resolution of wavelet packets are superiorthan the wavelets. They are better in 

representing oscillatory or periodic signals. 

Wavelet packets are superposition or linear combination of wavelets and formbases 

which retain properties of smoothness, localisation and orthogonality fromtheir parent 

wavelets  [39]. Wickerhauser (1994)has studied discrete wavelet packets and developed 

computer programmes to implementthem [40]. Cohen and Daubechies (1993) 

introduced biorthogonal waveletpackets [41]. Long and Chen (1997) introduced non-

separable wavelet packets on 𝑅𝑑[42]. 

Chui and Li (1993) studied non-orthogonal wavelet packets [43]. Quak and 

Weyrich(1997a) have introduced periodic wavelet packets [44]. Quak and Weyrich 

(1997b)have also studied spline wavelet packets on a closed interval [45]. Lian (2004) 

introducedwavelet and wavelet packet associated with dilation matrices[46]. On local 

fieldof positive characteristic, the construction of wavelet packets and wavelet 

framepackets was reported by Behera and Jahan (2012) [47]. 

Duffin and Schaeffer (1952) introduced frames for studying nonharmonic Fourierseries 

[48].Frames provide us an alternative to orthonormal or Riesz basis in Hilbertspace. 

Daubechies et al. (1986) connects frames with wavelets and Gabor system 

[49].Daubechies (1992) has introduced the necessary and sufficient condition for 

constructionof wavelet frames [11]and then the improved result has been given by 

Chuiand Shi (1993) [50]. The sufficient condition for generating orthogonal wavelet 

frameis given by Bhatt et al. (2007) [51]. The dyadic wavelet frames on positive half-

line𝑅+has been constructed by Shah and Debnath (2011) by using walsh 

Fouriertransform [52]. Sharma and Manchanda (2015a) have introduced nonuniform 

waveletframes in𝐿2(𝑅) [53]. 

Wave packets, an extension of wavelets are obtained by translation, modulationand 

dilation of a single or finite set of functions in𝐿2(𝑅)and were firstly used byCórdoba and 

Fefferman (1978) to study singular integrable operators [54]. The continuousand 

discrete wave packet systems in𝐿2(𝑅𝑑)  have been studied by Labateet al. (2004) [55]. 

Wu et al. (2014) have introduced the necessary and sufficient conditionsof the wave 
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packet frames in𝐿2(𝑅𝑛)[56]. Non uniform wave packet frames in𝐿2(𝑅) have been 

studied by Sharma and Manchanda (2015b) [57]. 

 

2. Wavelet Transform 

Definition (Wavelet). A function  𝜓(𝑥) ∈ 𝐿2(𝑅)is called a wavelet if it satisfies the 

following properties [11]: 

1. ∫ 𝜓(𝑥)𝑑𝑥 = 0,∞−∞  

2. 𝐶𝜓 = ∫ |𝜓̂(𝑤)|2|𝑤| 𝑑𝑤 < ∞∞−∞ , 

where 𝜓̂(𝑤) is the Fourier transform of 𝜓(𝑥) and 𝐶𝜓 being the admissibility constant. 

The condition (2) is known as admissibility condition.  

Examples of wavelets: 

Example 2.1 (Haar wavelet). Haar wavelet is the simplest wavelet defined on real line 

by [14] 

𝜓(𝑥) = {  
  1,   0 ≤ 𝑥 < 12 ;−1, 12 ≤ 𝑥 < 1;0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.  

 

The function  𝜓(𝑥)is zero outside the interval [0,1] (Figure 1.1). So, Haar wavelet has 

compact support. 

It has good time localisation but poor frequency localisation due to the discontinuity of  𝜓(𝑥).  

 
Example 2.2 (Mexican hat wavelet). Mexican hat wavelet is given by 
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𝜓(𝑥) = − 𝑑2𝑑𝑥2 (𝑒−𝑥2 2⁄ ) = (1 − 𝑥2)𝑒−𝑥2 2⁄  

It is the second derivative of the Gaussian function 𝑒−𝑥2 2⁄ . Its graphical representation 

is given in figure 1.2. Mexican hat wavelet has good localisation in both time and 

frequency domains. This wavelet has two vanishing moments. 

 
Example 2.3 (Daubechies wavelet). Daubechies wavelets are a family of 

compactlysupported orthogonal wavelets. These wavelets have maximal number of 

vanishing moments as compared to other wavelets. Daubechies wavelets are 

represented by DN where N denotes the number of scaling coefficients. Daubechies 

with 𝑁 = 2 vanishing moments has N coefficients. Daubechies wavelets with one 

vanishing moment i.e. D2 are the Haar wavelets. Daubechies wavelets cannot be 

expressed in closed form. 

 

Definition2.1 (Continuous wavelet transform). Continuous wavelet transform of a 

square integrable function  𝑔(𝑥) with respect to a wavelet 𝜓(𝑥) is given by[7] 

 𝑊𝜓𝑔(𝑎, 𝑏) = 1√|𝑎|∫ 𝑔(𝑥)𝜓 (𝑥 − 𝑏𝑎 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∞

−∞ 𝑑𝑥 

where 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0  and  𝜓(𝑥)̅̅ ̅̅ ̅̅ ̅ is the complex conjugate of  𝜓(𝑥). 
Definition2.2(Discrete wavelet transform). In Discrete wavelet transform a function 

is represented by a countable set of wavelet coefficients. It is an implementation of the 

wavelet transform using a discrete set of the wavelet scales and translation. We take 𝑎 =𝑎0𝑗, 𝑏 = 𝑘𝑏0𝑎0𝑗 and 𝑎0 > 1, 𝑏0 > 0 are fixed. So (1.1.1) becomes [1] 𝜓𝑗,𝑘(𝑥) = 𝑎0−𝑗 2⁄ 𝜓(𝑎0−𝑗𝑥 − 𝑘𝑏0) ,   𝑗, 𝑘 ∈ 𝑍  
For computational efficiency, we take 𝑎0 = 2 and 𝑏0 = 1. Therefore 
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𝜓𝑗,𝑘(𝑥) = 2−𝑗 2⁄ 𝜓(2−𝑗𝑥 − 𝑘) ,   𝑗, 𝑘 ∈ 𝑍  
Definition 2.3(Inverse wavelet transform). Let 𝜓(𝑥) be a wavelet and𝑊𝜓𝑔(𝑎, 𝑏) 
 is the wavelet transform of 𝑔(𝑥) ∈ 𝐿2(𝑅)with respect to𝜓(𝑥). The originalfunction 𝑔(𝑥) 
is reconstructed from its integral wavelet transform by inversewavelet transform. The 

expression for inverse wavelet transform is given by 𝑔(𝑥) = 1𝐶𝜓∫ 𝑑𝑏 ∫ 1𝑎2 (𝑊𝜓𝑔(𝑎, 𝑏))𝜓𝑎,𝑏(𝑥)𝑑𝑎,∞

−∞
∞

−∞  

 

where 𝐶𝜓is admissibility constant. 

Definition 2.4 (Wavelet family): A function 𝜓(𝑥) ∈ 𝐿2(𝑅) is called orthonormal 

wavelet if 𝜓𝑗,𝑘(𝑥) given by 𝜓𝑗,𝑘(𝑥) = 2−𝑗 2⁄ 𝜓(2−𝑗𝑥 − 𝑘),   𝑗, 𝑘 ∈ 𝑍 

form orthonormal basis in 𝐿2(𝑅). {𝜓𝑗,𝑘(𝑥) }𝑗,𝑘∈𝑍 is called wavelet family. 

Definition 2.5 (Wavelet Coefficients):  Wavelet Coefficients ℎ𝑗,𝑘 of a function 𝑔(𝑥) ∈𝐿2(𝑅)  are ) given by ℎ𝑗,𝑘 =< 𝑔,𝜓𝑗,𝑘 >= ∫ 𝑔(𝑥)𝜓𝑗,𝑘𝑑𝑥.∞

−∞  

 

Definition 2.6 (Wavelet series): The series ∑ ∑ < 𝑔,𝜓𝑗,𝑘 > 𝜓𝑗,𝑘𝑘∈𝑍𝑗∈𝑍  is called wavelet 

series of 𝑔(𝑥).  The expression given by 𝑔(𝑥) =  ∑∑ < 𝑔,𝜓𝑗,𝑘 > 𝜓𝑗,𝑘𝑘∈𝑍𝑗∈𝑍  

is wavelet representation of  𝑔(𝑥). 
 

3. Multiresolution Analysis (MRA) 

Multiresolution analysis is a method for constructing orthonormal wavelets. In MRA 

the whole function space 𝐿2(𝑅) is decomposed into subspaces at different scales. 

Definition 1.3.15. A multiresolution analysis (MRA) is a sequence of subspaces {𝑉𝑗}𝑗∈𝑍  of 𝐿2(𝑅)with the following axioms [11]: 

1. … ⊂ 𝑉−1 ⊂ 𝑉0 ⊂ 𝑉1 ⊂ ⋯, 
2. ⋃ 𝑉𝑗∞𝑗=−∞̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐿2(𝑅), 
3. ⋂ 𝑉𝑗 = {0},∞𝑗=−∞  

4. 𝑔(𝑥) ∈ 𝑉0 if ad only if 𝑔(𝑥 − 𝑘) ∈ 𝑉0  ∀ 𝑘 ∈ 𝑍, 
5. 𝑔(𝑥) ∈ 𝑉0 if ad only if 𝐷2𝑗𝑔(𝑥) ∈ 𝑉𝑗    ∀ 𝑗 ∈ 𝑍, 
6. There exists a scaling function 𝜙(𝑥) in 𝑉0 such that {𝜙(𝑥 − 𝑘): 𝑘 ∈ 𝑍} is an 

orthonormal basis for 𝑉0.  
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Since  {𝜙(𝑥 − 𝑘): 𝑘 ∈ 𝑍} is an orthonormal basis for 𝑉0 and by property (5) of MRA, {𝜙𝑗,𝑘(𝑥) = 2𝑗 2⁄ 𝜙(2𝑗𝑥 − 𝑘)|𝑘 ∈ 𝑍} is an orthonormal basis of 𝑉𝑗. For 𝑗 = 1, 𝜙1,𝑘(𝑥) = 21 2⁄ 𝜙(2𝑥 − 𝑘)|𝑘 ∈ 𝑍 is an orthonormal basis of 𝑉1. 

Now 𝜙0,0(𝑥) = 𝜙(𝑥) ⊂ 𝑉0 ⊂ 𝑉1 

Hence 𝜙(𝑥) = √2∑ ℎ𝑘𝜙(2𝑥 − 𝑘)∞𝑘=−∞  

This equation is called dilation equation (two scale relation for scaling function) 

and the coefficients ℎ𝑘  are called the low pass filter coefficients. 

For given nested sequence of approximation subspaces 𝑉𝑗 we now define the detail 

space 𝑊𝑗as the orthogonal complement of  𝑉𝑗 in 𝑉𝑗+1  i.e. 𝑉𝑗 ⊥ 𝑊𝑗 
and                                                        𝑉𝑗+1 = 𝑉𝑗⊕𝑊𝑗 (1.3.1) 

Applying (1.3.1) recursively, 𝑉𝑗 = 𝑉𝑗−1⊕𝑊𝑗−1                                                            𝑉𝑗 = 𝑉𝑗−2⊕𝑊𝑗−2⊕𝑊𝑗−1 𝑉𝐽 = 𝑉𝐽0 ⊕𝑊𝐽0 ⊕𝑊𝐽1 ⊕𝑊𝐽2 ⊕…⊕𝑊𝐽−1 ,           𝐽 > 𝐽0  (1.3.2) 

Therefore, we can analyze a function of 𝑉𝑗 at different scales using relation (1.3.2). 

On continuing the above decomposition of (1.3.2) for 𝐽0 → −∞ and 𝐽 → ∞, we get ⊕−∞∞ 𝑊𝑗 = 𝐿2(𝑅) 
The information in moving from 𝑉0 to 𝑉1 is captured by translation of 𝜓(𝑥).  So, 

for a given MRA there always exist a function 𝜓0,0(𝑥) = 𝜓(𝑥) ∈ 𝑊0 (called mother 

wavelet) such that {𝜓𝑗,𝑘(𝑥) = 2𝑗 2⁄ 𝜓(2𝑗𝑥 − 𝑘)|𝑘 ∈ 𝑍} 
is an orthonormal basis of 𝑊𝑗. 
Now 𝜓(𝑥) ∈ 𝑊0 ⊂ 𝑉1 

so 𝜓(𝑥) = √2 ∑ 𝑔𝑘𝜙(2𝑥 − 𝑘).∞

𝑘=−∞  

The above equation is called wavelet equation (two scale relation for wavelet function). 

The coefficients𝑔𝑘are called high pass filter coefficients. 

So, mother wavelet function  𝜓(𝑥) can be constructed by MRA using sequences of 

subspaces 𝑉𝑗of 𝐿2(𝑅) (called approximation spaces) that satisfies the properties 

(1)-(6) of MRA and sequence of subspaces𝑊𝑗 (detail spaces) of 𝐿2(𝑅)which satisfy 

relation (1.3.1). 
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