
Scope 
Volume 15 Number 04 December 2025 

 

1474 www.scope-journal.com 

 

Artificial Intelligence Driven Diabetes Risk Assessment with 

Orange: A No-Code Machine Learning Approach 

 
1 Atul Tiwari; 2 Rameshwar Kumar; 3 Ajay SK; 4 Asitava Deb Roy 

 

Corresponding Author: Asitava Deb Roy  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract: 
Background: Diabetes mellitus represents a major and growing global public health 
challenge, with a substantial proportion of affected individuals remaining 
undiagnosed until complications arise. Early risk stratification using routinely 
available clinical parameters can support timely intervention, particularly in resource-
constrained settings. Artificial intelligence (AI) and machine learning (ML) 
approaches offer promise for predictive modeling; however, their clinical adoption is 
often limited by the need for programming expertise. Objectives: To develop and 
evaluate a no-code machine learning workflow using the Orange data mining 
platform for predicting diabetes status from basic health parameters, and to compare 
the performance of commonly used supervised classification algorithms with an 
emphasis on clinical interpretability and screening utility. Methods: This analytical 
modeling study utilized the Pima Indian Diabetes Dataset comprising 768 adult 
female participants with eight clinical and anthropometric predictors. Data 
preprocessing, feature ranking, model training, and evaluation were performed 
entirely within the Orange visual programming environment. Six supervised 
classifiers—Logistic Regression, Naïve Bayes, Random Forest, Support Vector 
Machine, k-Nearest Neighbors, and Decision Tree—were trained and validated using 
stratified 10-fold cross-validation. Model performance was assessed using accuracy, 
precision, recall, F1-score, area under the receiver operating characteristic curve 
(AUC), and Matthews correlation coefficient. Results: All machine learning models 
outperformed the majority-class baseline accuracy of 65.1%. Logistic Regression 
demonstrated the most balanced performance with an accuracy of 78.4%, AUC of 
0.831, F1-score of 0.774, and MCC of 0.508. Naïve Bayes showed comparatively higher 
sensitivity, suggesting utility in screening contexts. Feature ranking identified plasma 
glucose, age, body mass index, and insulin levels as the most influential predictors of 
diabetes risk. Conclusion: A no-code machine learning pipeline implemented using 
the Orange platform can deliver clinically meaningful and interpretable diabetes risk 
prediction using routinely collected health data. Such approaches have the potential 
to empower clinicians without programming expertise, support early screening 
strategies, and facilitate broader adoption of AI-driven decision support in primary 
care and population health settings. 

Keywords: Diabetes Mellitus, Artificial Intelligence, Machine Learning, Risk 
Assessment, Predictive Modeling, Decision Support Systems, Data Mining, Logistic 

Regression, Early Diagnosis 
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Introduction and Background:  

Diabetes mellitus (DM) is a major global public health challenge. The global burden 

rose from ~108 million adults in 1980 to ~422 million by 2014, with age-standardized 

prevalence nearly doubling from 4.7% to 8.5% and an estimated 1.5 million deaths 

annually attributable to diabetes and its complications. [1,2] India carries a 

disproportionate share—about 77 million adults living with diabetes and ~25 million 

with prediabetes—earning it the often-quoted label “Diabetes Capital of the World.” 
[3,4] Undiagnosed disease remains a critical concern; depending on the setting, up to 

~50% of people with type 2 diabetes are unaware of their condition until 

complications prompt testing, reflecting both asymptomatic early disease and limited 

access to laboratory screening in many regions. [3,5,6] These delays elevate the risk of 

microvascular and macrovascular sequelae and strain already burdened health 

systems. [7,8]  

Artificial intelligence (AI) and machine learning (ML) can extract predictive signals 

from routinely collected health variables, enabling earlier identification of individuals 

at elevated risk—even before confirmatory laboratory testing. Numerous algorithmic 

approaches (logistic regression, decision trees, ensembles, deep neural networks) have 

been applied to structured clinical datasets for diabetes risk stratification, with 

reported classification accuracies often ranging from the mid-70% range to >90% 

depending on data quality, feature engineering, and validation rigor. [9–14]  

A key translational barrier is usability: most ML workflows require programming 

expertise, limiting uptake by frontline clinicians. Orange, an open-source, visual, 

drag-and-drop data mining environment, lowers that barrier by allowing end users to 

build, train, compare, and visualize ML models without coding. [15,16] Its modular 

widgets support preprocessing, feature ranking, model comparison, and performance 

visualization, making it a strong candidate platform for clinician-led exploratory 

analytics in resource-constrained settings.  

The present project leverages Orange to build and evaluate no-code ML pipelines on 

the Pima Indian Diabetes Dataset (PIDD)—a benchmark dataset containing basic 

clinical and anthropometric variables (e.g., glucose, BMI, age, insulin) and binary 

diabetes outcome labels in adult Pima Indian females. [17] PIDD remains widely used 

for method benchmarking because its variables resemble those encountered in 

community screening programs.  

 

Aims and Objectives: 

Aim: To develop and validate a robust, no-code ML workflow in Orange to predict 

diabetes status from basic health parameters in the PIDD, with an emphasis on clinical 

interpretability and screening utility.  
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Specific Objectives: 

1. To import the PIMA Indian Diabetes Dataset into Orange and perform initial data 

inspection, clean missing or zero‐value entries in clinically implausible fields (e.g., 
zero blood pressure), and conduct descriptive statistical analyses of each feature. 

2. To assess the clinical relevance and statistical distributions of the eight predictor 

variables (pregnancies; plasma glucose; diastolic blood pressure; triceps skinfold 

thickness; serum insulin; BMI; diabetes pedigree function; age) of the PIMA dataset 

and apply feature selection techniques available in Orange (e.g., correlation 

filtering, recursive feature elimination) to identify the most informative subset of 

variables for diabetes prediction. 

3. To configure and train a suite of supervised classification algorithms in Orange, 

including but not limited to: 

▪ Logistic Regression 

▪ k-Nearest Neighbors 

▪ Decision Tree 

▪ Random Forest 

▪ Support Vector Machine 

▪ Naïve Bayes 

4. To compare classifiers based on key metrics viz. accuracy, sensitivity (recall), 

specificity, precision, F1-score, and area under the ROC curve (AUC) and identify 

the optimal model balancing predictive performance and clinical interpretability. 

5. To examine feature importance scores and decision boundaries of the 

best‐performing model to understand which health parameters most strongly 
influence diabetes risk. 

By achieving these objectives, the research desires to deliver an accessible, data-driven 

decision-support tool capable of early diabetes risk identification, thereby empowering 

healthcare professionals with actionable insights and improving patient care 

pathways. 

 

Methodology: 

Study Design 

Analytical modelling study using secondary, de-identified tabular data (PIDD) to 

develop supervised binary classification models for diabetes status (present/absent). 

The workflow was executed entirely in Orange (v3.x) to preserve a no-code user 

experience. [15,17,18]  

 

Dataset 

The PIDD contains 768 records of Pima Indian females ≥21 years with 8 predictor 
variables: Pregnancies, Plasma Glucose (2-h OGTT), Diastolic Blood Pressure, Triceps 
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Skinfold Thickness, 2-h Serum Insulin, BMI, Diabetes Pedigree Function, and Age; the 

target variable is binary diabetes status. [17,21]  

 

Data Quality Assessment & Cleaning 

Physiologically implausible zeros in several numeric fields (e.g., glucose, blood 

pressure, skinfold, insulin, BMI) were flagged as missing. Mean imputation was 

applied to replace missing values; univariate outliers (>3 IQR) were capped at the 

1st/99th percentiles to stabilize model training. Continuous features were min–max 

scaled to [0,1] to support distance- and margin-based algorithms. [22–24]  

 

Feature Ranking / Selection 

Orange’s Information Gain Ratio and Gini Decrease scoring widgets were applied 

to rank predictors. Glucose showed the highest discriminative value; Age and BMI 

followed, consistent with established clinical risk factors. Insulin contributed 

additional signal; remaining variables (Pregnancies, Skin Thickness, Diabetes Pedigree 

Function, Blood Pressure) showed declining importance but were retained for initial 

modeling. [25–28]  

 
Fig 1: Feature ranking method showing the identified features (Screenshot) 

Model Set 

 

Six algorithms reflecting a mix of linear, probabilistic, instance-based, and ensemble 

approaches were selected: Logistic Regression, Naïve Bayes, Random Forest, Support 

Vector Machine (RBF kernel), k-Nearest Neighbors (k=5 default), and Decision Tree. 
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These represent common, well-studied classifiers in structured clinical datasets and 

are natively supported in Orange. [15,17,29–32]  

 

Training & Internal Validation 

Stratified 10-fold cross-validation was implemented through Orange’s Test & Score 

widget to preserve class proportions (~35% diabetic / ~65% non-diabetic) across folds. 

Performance metrics returned per model included Classification Accuracy (CA), 

Precision, Recall, F1-score, AUC, and Matthews Correlation Coefficient (MCC). 

Confusion matrices and ROC curves were generated using dedicated widgets for 

interpretive review. [33–36]  

 
Fig 2: Screenshot of Workflow in Orange for the Index Study 

 

Baseline Comparator 

A naïve majority-class baseline (always predict non-diabetic) was computed to 

contextualize ML gains; baseline CA ≈65.1% given PIDD class distribution. [17,37]  
 

Results:  

This presents the performance results of the models trained and validated using the 

PIMA Indian Diabetes dataset. The evaluation is based on several key performance 

metrics that provide a comprehensive understanding of how well each model predicts 
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the presence of diabetes. We also compare the models to a baseline approach and 

discuss their relative strengths and weaknesses. 

To evaluate the performance of the models, we used the following standard 

classification metrics: 

1. Accuracy: This is the proportion of correct predictions (both diabetic and non-

diabetic) made by the model out of all predictions. It gives an overall sense of the 

model’s effectiveness but can be misleading when classes are imbalanced. 

Accuracy = TP+TN/TP+TN+FP+FN 

•TP: True Positives 

•TN: True Negatives 

•FP: False Positives 

•FN: False Negatives 

2. Precision: Precision measures the proportion of correctly predicted positive cases 

(diabetics) among all cases predicted as positive by the model. It is a measure of the 

model’s accuracy in identifying diabetic cases. High precision means that the model 

does not label healthy individuals as diabetic too often. 

Precision = TP/TP+FP 

3. Recall (Sensitivity): This is the ratio of correctly predicted diabetic cases to all 

actual diabetic cases. High recall means the model is good at identifying diabetic 

individuals, reducing the number of missed diagnoses. 

Recall = TP/TP+FN 

4. F1-Score: The F1 Score is the harmonic mean of precision and recall, providing a 

single measure that balances the two. The F1 Score is particularly useful in cases of 

class imbalance, where achieving a balance between precision and recall is critical. 

5. Area Under the Receiver Operating Characteristic Curve (AUC): The AUC 

represents the likelihood that the model will correctly classify a randomly chosen 

diabetic instance as more likely than a randomly chosen non-diabetic instance. An 

AUC of 1 indicates perfect classification, while 0.5 indicates random guessing. 

6. Matthews Correlation Coefficient (MCC): MCC is a balanced measure that 

accounts for all four quadrants of the confusion matrix (true positives, true negatives, 

false positives, and false negatives). It ranges from -1 (perfectly wrong predictions) to 

+1 (perfectly correct predictions), with 0 indicating random predictions. 
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These metrics were calculated for each model based on the outcomes of the stratified 

10-fold cross-validation, providing a reliable estimate of each model’s performance.All 

ML models exceeded the majority-class baseline. Logistic Regression (LR) produced 

the highest balanced performance: Accuracy 78.4%, AUC 0.831, F1 0.774, MCC 0.508. 

[17,38,39] Naïve Bayes (NB) achieved competitive performance with stronger recall 

(~75%) but slightly lower precision (0.764), a profile useful in screening scenarios 

prioritizing sensitivity over false positives. [17,38,40]  

Random Forest (RF) and Support Vector Machine (SVM) models each yielded AUC 

values around 0.80 with performance near LR on several metrics, though with modest 

trade-offs in interpretability and computational overhead. [17,41,42] k-Nearest 

Neighbors (kNN) and Decision Tree (DT) lagged slightly (AUC 0.698–0.766), 

reflecting sensitivity to parameterization and overfitting on small datasets. [17,43]  

To provide further insights into the models' performance, we visualized their results 

using the following techniques: 

a) ROC Curves: We used Orange’s ROC Analysis widget (Fig 3) to plot the Receiver 

Operating Characteristic (ROC) curves for each model. The ROC curve illustrates 

the trade-off between the true positive rate (sensitivity) and the false positive rate (1 

- specificity) at different classification thresholds. The area under the ROC curve 

(AUC) provides an aggregate measure of performance. 

 
Fig 3: Screenshot of ROC Analysis of the Selected Models 

 

b) Confusion Matrices: The Confusion Matrix widget in Orange was used to visualize 

the number of correct and incorrect predictions made by each model. The 

confusion matrix provides the number of true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN). This helps in understanding the 

classification errors made by each model, particularly for the positive class 
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(diabetes).  Below is an example of a confusion matrix for the Logistic Regression 

model (Fig 4), showing how the model performed on a stratified 10-fold cross-

validation: 

Predicted/Actual 0 (Non-Diabetic) 1 (Diabetic) 

0 (Non-Diabetic) 318 (True Negative) 31 (False Positive) 

1 (Diabetic) 85 (False Negative) 104 (True Positive) 

 
Fig 4: Screenshot of Orange Workflow showing Confusion Matrix of Logistic 

Regression 

From the above confusion matrix, the Orange Platform calculated the CA, precision, 

recall, AUC, MCC and F1-score for the positive class (diabetic patients) in the Test and 

Score Widget as shown below: 

 
Fig 5: Screenshot of Test and Score Widget showing calculation of the metrices 

for different algorithms 
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We used the same approach to calculate metrics for each model, providing a detailed 

understanding of their classification capabilities. 

 

Comparison with Baseline or Previous Models 

We compared the performance of our models to a baseline model that predicts the 

majority class (non-diabetic) for all instances. This naive classifier would predict "non-

diabetic" for all instances, resulting in a classification accuracy of 65.1% (since about 

65% of the PIMA dataset is non-diabetic). While this baseline is simple, it serves as a 

useful point of reference to assess whether the machine learning models actually offer 

improvements over random guessing or the most common class. 

 

Discussion 

The comparative analysis of machine learning classifiers for diabetes prediction using 

the PIMA Indian Diabetes Dataset revealed that Logistic Regression (LR) emerged as 

the top- performing model, achieving an accuracy of 78.4% and an AUC of 0.831. This 

performance aligns with prior studies that have highlighted LR's robustness in 

handling medical datasets due to its simplicity and interpretability. For instance, Zou 

et al. (2018) demonstrated the efficacy of LR in predicting diabetes, emphasizing its 

balance between sensitivity and specificity [38]. 

Naïve Bayes (NB) also exhibited commendable performance, particularly in terms of 

recall, identifying 75% of actual diabetic cases. However, its slightly lower precision 

indicates a higher rate of false positives. This trade-off is consistent with findings by 

Sisodia and Sisodia (2018), who noted that while NB is effective in detecting positive 

cases, it may not always be the most precise classifier [47]. 

Random Forest (RF) and Support Vector Machine (SVM) classifiers demonstrated 

competitive performance, each achieving an AUC around 0.80. RF showed a slight 

advantage in recall, whereas SVM had marginally better precision. These results 

corroborate the work of Saxena et al. (2021), who found that ensemble methods like RF 

and kernel-based methods like SVM offer robust performance in medical classification 

tasks. 

Conversely, k-Nearest Neighbors (kNN) and Decision Tree (DT) classifiers 

underperformed relative to the other models, with lower accuracy and AUC scores. 

The DT model, in particular, suffered from overfitting, limiting its generalizability. 

This observation is in line with the study by Suriya and Muthu (2023), which reported 

that while DTs are easy to interpret, they are prone to overfitting, especially with 

complex datasets [43]. 

Importantly, all evaluated machine learning models surpassed the baseline accuracy of 

65.1%, underscoring the predictive value of the features within the PIMA dataset. This 

findingsupports the assertion by Chou et al. (2023) that machine learning techniques 

can significantly enhance the early detection of diabetes by leveraging existing clinical 

data.Using a fully no-code Orange workflow, we achieved clinically meaningful 
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diabetes risk prediction from a minimal feature set of routinely collected health 

parameters. LR offered the best trade-off between discrimination, calibration 

simplicity, and interpretability—attributes long valued in clinical risk modeling. 

[29,38,46]  

NB’s higher recall suggests utility in rule-in screening contexts where failing to flag 

at-risk patients carries greater harm than generating false positives; this mirrors earlier 

reports showing NB to be a strong baseline classifier in tabular medical data. 

[40,47,48]  

RF and SVM performed competitively and may be attractive when marginal AUC gains 

justify modest reductions in transparency or increases in computation—consistent 

with comparative studies of ML methods for diabetes detection. [41,42,49]  

DT and kNN underperformance reflect known limitations (overfitting; sensitivity to 

scale and noisy features) in modest-sized clinical datasets; pruning, distance metric 

tuning, or ensemble wrapping could improve these models if required for 

explainability reasons. [43,50]  

 

Feature Relevance 

Feature ranking highlighted Glucose as the dominant predictor, followed by Age, 

BMI, and Insulin—aligning with epidemiologic data linking hyperglycemia, adiposity, 

and advancing age to diabetes risk. [3,4,25–28,51]  

 

Interpretability and Clinical Adoption 

Model transparency is essential for clinician trust. LR coefficients can be 

communicated as odds ratios; DT paths and RF feature importance plots aid shared 

decision-making. Orange’s visual interface and widget outputs (e.g., feature ranks, 

ROC panels) support rapid iterative discussion between data teams and clinical 

stakeholders, lowering adoption barriers. [15,52–54]  

 

Implementation Considerations 

Operational challenges included data quality defects (zero values), class imbalance, 

platform learning curve, and runtime constraints when running repeated cross-

validations on standard desktops; structured preprocessing, stratified sampling, and 

workflow versioning mitigated these barriers. [22,23,55]  

 

Comparison with Literature 

Reported LR accuracy (78.4%) and AUC (0.831) in this project fall within the upper 

performance range of prior PIDD studies reporting ~70–80% accuracy for 

conventional classifiers and >90% for tuned deep or hybrid models under select 

conditions. [9–14,38,42,49]  
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Study Model Accuracy 
Precisio

n 

Recall 

(Sensitivity

) 

F1 

Score 
AUC 

Current Study 

(2025) 

Logistic 

Regression 
78.4% 78.3% 78.4% 77.4% 0.831 

Zou et al. (2018) 

[38] 

Logistic 

Regression 
75.2% 76.0% 72.5% 74.1% 0.812 

Sisodia and 

Sisodia (2018) 

[47] 

Naive 

Bayes 
73.4% 71.2% 74.8% 72.9% 0.789 

Saxena et al. 

(2021) [13] 

Random 

Forest / 

SVM 

78.1% / 

79.3% 

79.5% / 

80.1% 

75.3%/ 

78.9% 

77.3% / 

79.5% 

0.830 / 

0.845 

Suriya and 

Muthu (2023) 

[43] 

Decision 

Tree / kNN 

68.3% / 

71.5% 

66.1% / 

70.4% 

63.8%/ 

68.2% 

64.8% 

/ 

69.2% 

0.715 / 

0.740 

Table 1: Comparison of results across various models achieved in different 

related studies 

 

Limitations of the Study and Future Directions: 

• Use of a single dataset (PIDD) with limited generalizability: The use of Orange is 

central to the study. It would be helpful to briefly compare Orange with other no-

code/low-code platforms such as KNIME, Rapid Miner, or Google Auto ML Tables 

in future studies. 

• Lack of external validation: External validation across sex, ethnicity, and care 

settings; integration of longitudinal laboratory and wearable data; cost-effectiveness 

modeling and user-centered design studies to optimize clinician workflows are 

recommended next steps. [57–60] 

 

Conclusion: 

A no-code ML pipeline built in Orange can deliver practical, interpretable diabetes 

risk prediction from basic health measures, outperforming simple majority-class 

heuristics and aligning with published performance benchmarks for traditional 

classifiers on the PIDD. Logistic Regression provided the most balanced, interpretable 

performance; Naïve Bayes offered higher sensitivity for screening; RF/SVM furnished 

competitive alternatives when incremental performance gains are needed. Broader 

validation and workflow integration studies are warranted to translate such tools into 

routine primary-care screening and population health programs. [17,38,41,57]  
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