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Abstract:

Background: Diabetes mellitus represents a major and growing global public health
challenge, with a substantial proportion of affected individuals remaining
undiagnosed until complications arise. Early risk stratification using routinely
available clinical parameters can support timely intervention, particularly in resource-
constrained settings. Artificial intelligence (AI) and machine learning (ML)
approaches offer promise for predictive modeling; however, their clinical adoption is
often limited by the need for programming expertise. Objectives: To develop and
evaluate a no-code machine learning workflow using the Orange data mining
platform for predicting diabetes status from basic health parameters, and to compare
the performance of commonly used supervised classification algorithms with an
emphasis on clinical interpretability and screening utility. Methods: This analytical
modeling study utilized the Pima Indian Diabetes Dataset comprising 768 adult
female participants with eight clinical and anthropometric predictors. Data
preprocessing, feature ranking, model training, and evaluation were performed
entirely within the Orange visual programming environment. Six supervised
classifiers—Logistic Regression, Naive Bayes, Random Forest, Support Vector
Machine, k-Nearest Neighbors, and Decision Tree—were trained and validated using
stratified 10-fold cross-validation. Model performance was assessed using accuracy,
precision, recall, Fi-score, area under the receiver operating characteristic curve
(AUC), and Matthews correlation coefficient. Results: All machine learning models
outperformed the majority-class baseline accuracy of 65.1%. Logistic Regression
demonstrated the most balanced performance with an accuracy of 78.4%, AUC of
0.831, F1-score of 0.774, and MCC of 0.508. Naive Bayes showed comparatively higher
sensitivity, suggesting utility in screening contexts. Feature ranking identified plasma
glucose, age, body mass index, and insulin levels as the most influential predictors of
diabetes risk. Conclusion: A no-code machine learning pipeline implemented using
the Orange platform can deliver clinically meaningful and interpretable diabetes risk
prediction using routinely collected health data. Such approaches have the potential
to empower clinicians without programming expertise, support early screening
strategies, and facilitate broader adoption of Al-driven decision support in primary
care and population health settings.
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Assessment, Predictive Modeling, Decision Support Systems, Data Mining, Logistic
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Introduction and Background:

Diabetes mellitus (DM) is a major global public health challenge. The global burden
rose from ~108 million adults in 1980 to ~422 million by 2014, with age-standardized
prevalence nearly doubling from 4.7% to 8.5% and an estimated 1.5 million deaths
annually attributable to diabetes and its complications. [1,2] India carries a
disproportionate share—about 77 million adults living with diabetes and ~25 million
with prediabetes—earning it the often-quoted label “Diabetes Capital of the World.”
[3,4] Undiagnosed disease remains a critical concern; depending on the setting, up to
~50% of people with type 2 diabetes are unaware of their condition until
complications prompt testing, reflecting both asymptomatic early disease and limited
access to laboratory screening in many regions. [3,5,6] These delays elevate the risk of
microvascular and macrovascular sequelae and strain already burdened health
systems. [7,8]

Artificial intelligence (AI) and machine learning (ML) can extract predictive signals
from routinely collected health variables, enabling earlier identification of individuals
at elevated risk—even before confirmatory laboratory testing. Numerous algorithmic
approaches (logistic regression, decision trees, ensembles, deep neural networks) have
been applied to structured clinical datasets for diabetes risk stratification, with
reported classification accuracies often ranging from the mid-70% range to >90%
depending on data quality, feature engineering, and validation rigor. [9-14]

A key translational barrier is usability: most ML workflows require programming
expertise, limiting uptake by frontline clinicians. Orange, an open-source, visual,
drag-and-drop data mining environment, lowers that barrier by allowing end users to
build, train, compare, and visualize ML models without coding. [15,16] Its modular
widgets support preprocessing, feature ranking, model comparison, and performance
visualization, making it a strong candidate platform for clinician-led exploratory
analytics in resource-constrained settings.

The present project leverages Orange to build and evaluate no-code ML pipelines on
the Pima Indian Diabetes Dataset (PIDD)—a benchmark dataset containing basic
clinical and anthropometric variables (e.g., glucose, BMI, age, insulin) and binary
diabetes outcome labels in adult Pima Indian females. [17] PIDD remains widely used
for method benchmarking because its variables resemble those encountered in
community screening programs.

Aims and Objectives:

Aim: To develop and validate a robust, no-code ML workflow in Orange to predict
diabetes status from basic health parameters in the PIDD, with an emphasis on clinical
interpretability and screening utility.

1475 | www.scope-journal.com



Scope
Volume 15 Number 04 December 2025

Specific Objectives:

1. To import the PIMA Indian Diabetes Dataset into Orange and perform initial data
inspection, clean missing or zero-value entries in clinically implausible fields (e.g.,
zero blood pressure), and conduct descriptive statistical analyses of each feature.

2. To assess the clinical relevance and statistical distributions of the eight predictor
variables (pregnancies; plasma glucose; diastolic blood pressure; triceps skinfold
thickness; serum insulin; BMI; diabetes pedigree function; age) of the PIMA dataset
and apply feature selection techniques available in Orange (e.g., correlation
filtering, recursive feature elimination) to identify the most informative subset of
variables for diabetes prediction.

3. To configure and train a suite of supervised classification algorithms in Orange,
including but not limited to:

» Logistic Regression

» k-Nearest Neighbors

» Decision Tree

« Random Forest

« Support Vector Machine
= Naive Bayes

4. To compare classifiers based on key metrics viz. accuracy, sensitivity (recall),
specificity, precision, Fi-score, and area under the ROC curve (AUC) and identify
the optimal model balancing predictive performance and clinical interpretability.

5. To examine feature importance scores and decision boundaries of the
best-performing model to understand which health parameters most strongly
influence diabetes risk.

By achieving these objectives, the research desires to deliver an accessible, data-driven
decision-support tool capable of early diabetes risk identification, thereby empowering
healthcare professionals with actionable insights and improving patient care
pathways.

Methodology:

Study Design

Analytical modelling study using secondary, de-identified tabular data (PIDD) to
develop supervised binary classification models for diabetes status (present/absent).
The workflow was executed entirely in Orange (v3.x) to preserve a no-code user
experience. [15,17,18]

Dataset

The PIDD contains 768 records of Pima Indian females >21 years with 8 predictor
variables: Pregnancies, Plasma Glucose (2-h OGTT), Diastolic Blood Pressure, Triceps
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Skinfold Thickness, 2-h Serum Insulin, BMI, Diabetes Pedigree Function, and Age; the
target variable is binary diabetes status. [17,21]

Data Quality Assessment & Cleaning

Physiologically implausible zeros in several numeric fields (e.g., glucose, blood
pressure, skinfold, insulin, BMI) were flagged as missing. Mean imputation was
applied to replace missing values; univariate outliers (>3 IQR) were capped at the
1st/ggth percentiles to stabilize model training. Continuous features were min-max
scaled to [0,1] to support distance- and margin-based algorithms. [22-24]

Feature Ranking / Selection

Orange’s Information Gain Ratio and Gini Decrease scoring widgets were applied
to rank predictors. Glucose showed the highest discriminative value; Age and BMI
followed, consistent with established clinical risk factors. Insulin contributed
additional signal; remaining variables (Pregnancies, Skin Thickness, Diabetes Pedigree
Function, Blood Pressure) showed declining importance but were retained for initial
modeling. [25-28]

Fig 1: Feature ranking method showing the identified features (Screenshot)
Model Set

Six algorithms reflecting a mix of linear, probabilistic, instance-based, and ensemble
approaches were selected: Logistic Regression, Naive Bayes, Random Forest, Support
Vector Machine (RBF kernel), k-Nearest Neighbors (k=5 default), and Decision Tree.
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These represent common, well-studied classifiers in structured clinical datasets and
are natively supported in Orange. [15,17,29-32]

Training & Internal Validation

Stratified 10-fold cross-validation was implemented through Orange’s Test & Score
widget to preserve class proportions (~35% diabetic / ~65% non-diabetic) across folds.
Performance metrics returned per model included Classification Accuracy (CA),
Precision, Recall, Fi-score, AUC, and Matthews Correlation Coefficient (MCC).
Confusion matrices and ROC curves were generated using dedicated widgets for
interpretive review. [33-36]

Fig 2: Screenshot of Workflow in Orange for the Index Study

Baseline Comparator
A naive majority-class baseline (always predict non-diabetic) was computed to
contextualize ML gains; baseline CA =65.1% given PIDD class distribution. [17,37]

Results:

This presents the performance results of the models trained and validated using the
PIMA Indian Diabetes dataset. The evaluation is based on several key performance
metrics that provide a comprehensive understanding of how well each model predicts
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the presence of diabetes. We also compare the models to a baseline approach and
discuss their relative strengths and weaknesses.

To evaluate the performance of the models, we used the following standard
classification metrics:

1. Accuracy: This is the proportion of correct predictions (both diabetic and non-
diabetic) made by the model out of all predictions. It gives an overall sense of the
model’s effectiveness but can be misleading when classes are imbalanced.

Accuracy = TP+TN/TP+TN+FP+FN

*TP: True Positives

*TN: True Negatives

*FP: False Positives

*FN: False Negatives

2. Precision: Precision measures the proportion of correctly predicted positive cases
(diabetics) among all cases predicted as positive by the model. It is a measure of the
model’s accuracy in identifying diabetic cases. High precision means that the model
does not label healthy individuals as diabetic too often.

Precision = TP/TP+FP

3. Recall (Sensitivity): This is the ratio of correctly predicted diabetic cases to all
actual diabetic cases. High recall means the model is good at identifying diabetic
individuals, reducing the number of missed diagnoses.

Recall = TP/TP+FN

4. F1-Score: The F1 Score is the harmonic mean of precision and recall, providing a
single measure that balances the two. The F1 Score is particularly useful in cases of
class imbalance, where achieving a balance between precision and recall is critical.

5. Area Under the Receiver Operating Characteristic Curve (AUC): The AUC
represents the likelihood that the model will correctly classify a randomly chosen
diabetic instance as more likely than a randomly chosen non-diabetic instance. An
AUC of 1 indicates perfect classification, while 0.5 indicates random guessing.

6. Matthews Correlation Coefficient (MCC): MCC is a balanced measure that
accounts for all four quadrants of the confusion matrix (true positives, true negatives,
false positives, and false negatives). It ranges from -1 (perfectly wrong predictions) to
+1 (perfectly correct predictions), with o indicating random predictions.

(TP < TN)— (FP < EFN))

MCC =

(TP+FP)(TP+FN)
(TN + FP)(TN +FN)
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These metrics were calculated for each model based on the outcomes of the stratified
10-fold cross-validation, providing a reliable estimate of each model’s performance.All
ML models exceeded the majority-class baseline. Logistic Regression (LR) produced
the highest balanced performance: Accuracy 78.4%, AUC 0.831, F1 0.774, MCC 0.508.
[17,38,39] Naive Bayes (NB) achieved competitive performance with stronger recall
(~75%) but slightly lower precision (0.764), a profile useful in screening scenarios
prioritizing sensitivity over false positives. [17,38,40]

Random Forest (RF) and Support Vector Machine (SVM) models each yielded AUC
values around 0.8o with performance near LR on several metrics, though with modest
trade-offs in interpretability and computational overhead. [17,41,42] k-Nearest
Neighbors (kNN) and Decision Tree (DT) lagged slightly (AUC 0.698-0.766),
reflecting sensitivity to parameterization and overfitting on small datasets. [17,43]

To provide further insights into the models' performance, we visualized their results

using the following techniques:

a) ROC Curves: We used Orange’s ROC Analysis widget (Fig 3) to plot the Receiver
Operating Characteristic (ROC) curves for each model. The ROC curve illustrates
the trade-off between the true positive rate (sensitivity) and the false positive rate (1
- specificity) at different classification thresholds. The area under the ROC curve
(AUC) provides an aggregate measure of performance.

@ D | Q snipsketch newto take screensh x | 8 Use Snipping Tool to apture scre X | +

Fig 3: Screenshot of ROC Analysis of the Selected Models

b) Confusion Matrices: The Confusion Matrix widget in Orange was used to visualize
the number of correct and incorrect predictions made by each model. The
confusion matrix provides the number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). This helps in understanding the
classification errors made by each model, particularly for the positive class
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(diabetes). Below is an example of a confusion matrix for the Logistic Regression

model (Fig 4), showing how the model performed on a stratified 10-fold cross-
validation:

Predicted/Actual o (Non-Diabetic) 1 (Diabetic)

o (Non-Diabetic) 318 (True Negative) 31 (False Positive)

1 (Diabetic) 85 (False Negative) 104 (True Positive)

Fig 4: Screenshot of Orange Workflow showing Confusion Matrix of Logistic
Regression

From the above confusion matrix, the Orange Platform calculated the CA, precision,
recall, AUC, MCC and Fi-score for the positive class (diabetic patients) in the Test and
Score Widget as shown below:

L Testand Score - Orange

© Cross validation Evaluation results for target (None, show average over classes) V|
Number of folds: 10~ Model AUC CA F1 Prec Recall McCC
2 stratified . . - -
@ stratife Logistic Regression 8301 78(;{ 77(; 7803 0.784 0.508
Cross validation by feature
Random Forest O B B B 0.740 0411
811 740 734 733 !
O Random sampling 0 0. 0. 0
Naive Bayes . ) . . 0.755 0.479
Repeat train/test: 10 v 824 755 758 764
0. 0 0 O
Training set size: 66 % - kNN 766 738 732 731 0.738 0.406
(J stratified 0. 0 0 O
SVM 808 740 737 736 0.740 0.420
O Leave one out
O i Tree B & o 0 0.736 0.408
Test on train data 698 736 732 731 -
O Test on test data

Fig 5: Screenshot of Test and Score Widget showing calculation of the metrices
for different algorithms
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We used the same approach to calculate metrics for each model, providing a detailed
understanding of their classification capabilities.

Comparison with Baseline or Previous Models

We compared the performance of our models to a baseline model that predicts the
majority class (non-diabetic) for all instances. This naive classifier would predict "non-
diabetic" for all instances, resulting in a classification accuracy of 65.1% (since about
65% of the PIMA dataset is non-diabetic). While this baseline is simple, it serves as a
useful point of reference to assess whether the machine learning models actually offer
improvements over random guessing or the most common class.

Discussion

The comparative analysis of machine learning classifiers for diabetes prediction using
the PIMA Indian Diabetes Dataset revealed that Logistic Regression (LR) emerged as
the top- performing model, achieving an accuracy of 78.4% and an AUC of 0.831. This
performance aligns with prior studies that have highlighted LR's robustness in
handling medical datasets due to its simplicity and interpretability. For instance, Zou
et al. (2018) demonstrated the efficacy of LR in predicting diabetes, emphasizing its
balance between sensitivity and specificity [38].

Naive Bayes (NB) also exhibited commendable performance, particularly in terms of
recall, identifying 75% of actual diabetic cases. However, its slightly lower precision
indicates a higher rate of false positives. This trade-off is consistent with findings by
Sisodia and Sisodia (2018), who noted that while NB is effective in detecting positive
cases, it may not always be the most precise classifier [47].

Random Forest (RF) and Support Vector Machine (SVM) classifiers demonstrated
competitive performance, each achieving an AUC around 0.80. RF showed a slight
advantage in recall, whereas SVM had marginally better precision. These results
corroborate the work of Saxena et al. (2021), who found that ensemble methods like RF
and kernel-based methods like SVM offer robust performance in medical classification
tasks.

Conversely, k-Nearest Neighbors (kNN) and Decision Tree (DT) classifiers
underperformed relative to the other models, with lower accuracy and AUC scores.
The DT model, in particular, suffered from overfitting, limiting its generalizability.
This observation is in line with the study by Suriya and Muthu (2023), which reported
that while DTs are easy to interpret, they are prone to overfitting, especially with
complex datasets [43].

Importantly, all evaluated machine learning models surpassed the baseline accuracy of
65.1%, underscoring the predictive value of the features within the PIMA dataset. This
findingsupports the assertion by Chou et al. (2023) that machine learning techniques
can significantly enhance the early detection of diabetes by leveraging existing clinical
data.Using a fully no-code Orange workflow, we achieved clinically meaningful
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diabetes risk prediction from a minimal feature set of routinely collected health
parameters. LR offered the best trade-off between discrimination, calibration
simplicity, and interpretability—attributes long valued in clinical risk modeling.
[29,38,46]

NB’s higher recall suggests utility in rule-in screening contexts where failing to flag
at-risk patients carries greater harm than generating false positives; this mirrors earlier
reports showing NB to be a strong baseline classifier in tabular medical data.
[40,47,48]

RF and SVM performed competitively and may be attractive when marginal AUC gains
justify modest reductions in transparency or increases in computation—consistent
with comparative studies of ML methods for diabetes detection. [41,42,49]

DT and kNN underperformance reflect known limitations (overfitting; sensitivity to
scale and noisy features) in modest-sized clinical datasets; pruning, distance metric
tuning, or ensemble wrapping could improve these models if required for
explainability reasons. [43,50]

Feature Relevance

Feature ranking highlighted Glucose as the dominant predictor, followed by Age,
BMI, and Insulin—aligning with epidemiologic data linking hyperglycemia, adiposity,
and advancing age to diabetes risk. [3,4,25-28,51]

Interpretability and Clinical Adoption

Model transparency is essential for clinician trust. LR coefficients can be
communicated as odds ratios; DT paths and RF feature importance plots aid shared
decision-making. Orange’s visual interface and widget outputs (e.g., feature ranks,
ROC panels) support rapid iterative discussion between data teams and clinical
stakeholders, lowering adoption barriers. [15,52-54]

Implementation Considerations

Operational challenges included data quality defects (zero values), class imbalance,
platform learning curve, and runtime constraints when running repeated cross-
validations on standard desktops; structured preprocessing, stratified sampling, and
workflow versioning mitigated these barriers. [22,23,55]

Comparison with Literature

Reported LR accuracy (78.4%) and AUC (0.831) in this project fall within the upper
performance range of prior PIDD studies reporting ~70-80% accuracy for
conventional classifiers and >90% for tuned deep or hybrid models under select
conditions. [9-14,38,42,49]
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Recall
Precisio efa. . F1
Study Model | Accuracy (Sensitivity AUC
n ) Score
C t Stud Logisti
HITERt STudy 0515 %C 78.4% 78.3% 78.4% 77.4% 0.831
(2025) Regression
Zou et al. 8 Logisti
ouet al. (2018) O8Is %C 75.2% 76.0% 72.5% 74.1% 0.812
[38] Regression
Sisodia and .
T Naive
Sisodia (2018) Bayes 73.4% 71.2% 74.8% 72.9% 0.789
[47]
Random 0 0 0 0
Saxena et al. Forest / 78.1% / 79.5% / 75.3%/ 773% /| 0.830/
ores 0, 0 () 0,
(2021) [13] SVM 79.3% 80.1% 78.9% 79.5% 0.845
Suri d 64.8%
M irﬁya(z; ) Decision 68.3% / 66.1% / 63.8%/ 4/ ° 0.715 /
uthu
(43] 3 Tree / kNN 71.5% 70.4% 68.2% 602 0.740
43 9.2%

Table 1: Comparison of results across various models achieved in different

related studies

Limitations of the Study and Future Directions:
o Use of a single dataset (PIDD) with limited generalizability: The use of Orange is
central to the study. It would be helpful to briefly compare Orange with other no-
code/low-code platforms such as KNIME, Rapid Miner, or Google Auto ML Tables
in future studies.

e Lack of external validation: External validation across sex, ethnicity, and care

settings; integration of longitudinal laboratory and wearable data; cost-effectiveness

modeling and user-centered design studies to optimize clinician workflows are

recommended next steps. [57-60]

Conclusion:

A no-code ML pipeline built in Orange can deliver practical, interpretable diabetes

risk prediction from basic health measures, outperforming simple majority-class

heuristics and aligning with published performance benchmarks for traditional

classifiers on the PIDD. Logistic Regression provided the most balanced, interpretable

performance; Naive Bayes offered higher sensitivity for screening; RF/SVM furnished

competitive alternatives when incremental performance gains are needed. Broader

validation and workflow integration studies are warranted to translate such tools into

routine primary-care screening and population health programs. [17,38,41,57]
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