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I. INTRODUCTION 

Sensors are sophisticated devices that are more often in use 

to give response to some type of input from the physical 

environment. In a prescribed way, sensors are used to give the 

sensible difference between the elements of earth surface. The 

input to the sensor can come from any type of resource 

elements like light, heat, moisture water, motion etc. Remote 

sensors are typical devices that takes the energy from the earth 

surface in the form of signals and convert them into human 

readable form in the form of images. According to the 

Cambridge English Dictionary, the word “remote” means far 

away in distance and “sensing” means being aware of 

something. Thus, “remote sensing” can be literally defined as 

being aware of something from a far distance. The first work 

of remote sensing was taking pictures from the balloons using 

the newly invented camera in 1840. Ms. Evelyn Pruitt of 

United States working in Naval research was the first person 

to use the term "remote sensing", which is now commonly 

used to describe the science and art of identifying, observing, 

and measuring an object without coming into direct contact 

with it.   

II. OPTICAL REMOTE SENSING 

Optical Remote Sensing in the electromagnetic spectrum uses 

visible, near infrared (NIR) and short-wave infrared (SWIR) 

sensors to collect the information of the earth's surface in the 

form of imagery by detecting the solar radiation reflected 

from targets on the ground. Optical sensors are restricted to 

coverage of the optical region generally considered to extend 

from 0.4 to 1000 μm, but restricted further by atmospheric  

 

transmission to windows within the 0.4- to 15-pm region, and 

emphasizes modern sensors and technology development as  

well as future sensors and missions. Optical remote sensing 

signals are divided into channels or bands. Instead of 

frequencies, wavelengths are commonly used to distinguish 

Optical remote sensing bands. Human eyes are sensitive to the 

band of wavelengths from about 0.4 to about 0.7 μm, which is 
called visible band in optical remote sensing. The visible band 

consists of three colors: red, green, and blue (RGB). Blue 

wavelengths are approximately 0.4–0.5 μm, green is 0.5–0.6 

μm, and red is 0.6–0.7 μm. The three visible-light bands can 

be combined into a single band called panchromatic band or 

separately into blue, green, and red bands, respectively. 

Electromagnetic radiation with wavelengths between 0.7 and 

1.3 μm is the near infrared (NIR) band; EMR with 
wavelengths between 1.3 and 3.0 μm is the shortwave infrared 
(SWIR) band. Since the NIR and SWIR bands are strongly 

reflected from the Earth’s surface, they both are together 

called the reflected infrared band. Optical remote sensing 

systems are classified into the four types as (1) Panchromatic 

Imaging System (2) Multispectral Imaging System (3) Super 

spectral Imaging System and (4) Hyperspectral Imaging 

System. 

A. Applications of Optical Remote Sensing 

Optical remote sensing can be directly used for detecting 

things on the earth related to their position, if they have 

changed, and so on. In fact, indirect applications of optical 

remote sensing are even broader and deeper, and are playing 

an active role in sustainable development all over the world. 

Optical remote sensing is an effective and efficient technique 

for many land-use- and land-cover-related investigations at 

scales from landscape to global. The greater the spatial scales, 

the more advantages optical remote sensing can have. As a 

conventional and oldest remote sensing technique, optical 

Abstract: It is a known fact that there are three powerful 

sensing techniques to observe the activities on the earth 

surface. They are given as optical remote sensing, thermal 

remote sensing, and microwave remote sensing. There are 

some practical and theoretical differences between the 

sensors and their applications. The aim of the present 

review is to show how the microwave sensing is different 

from other sensing techniques by describing the 

properties of all the types of remote sensors and how these 
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discusses the scope of various mechanisms like 
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remote sensing in the context of image interpretation. 
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remote sensing has been broadly used since the end of World 

War II. Airborne and space borne optical remote sensing has 

made unique contributions to understanding the dynamics of 

the atmosphere, oceans, and the vegetation cover of the land 

and has provided new perspectives in the study of the solid 

Earth. Associated with continuous advances in remote 

sensing, optical remote sensing has been applied in many 

fields, including archaeology, aquatic ecosystems, 

biodiversity, climatology, forest measurements, global 

change, habitat detection and conservation, human health, 

invasive species, land use and land cover, urban morphology, 

vegetation stress, and wildfire management. The applications 

of optical remote sensing is explained in all the possible areas 

with the methodology used along with the sensor type in 

Table 1.  

Table- I: Applications of optical remote sensing 

Application Sub-category Methodology Satellite 

Object 

detection 

Aircraft detection 
Fully Convolution Neural Networks [1], 

Rotation-invariant hough forest [2] 
Quickbird [1, 2] 

Ship detection 

 

Visual saliency and Adaboost Classifier [3], Saliency and 

rotation invariant descriptor [4] 
Quickbird [3, 4] 

Vehicle detection 
“Reed-Xiaoli” (RX) algorithm + Adaboost 

algorithm+Haar like features [5], Random forest+CNN [6] 

Google Earth [5] 

LIDAR [6] 

Oil tank detection 
Ellipse Line Segment Detector + HOG [7] 

Visual saliency + Hough transform [8] 
Quickbird [7, 8] 

Cloud detection 
Color model and threshold based image segmentation [9], 

Cloud Index and Cloud shadow Index [10] 

WorldView-2, XY-3, 

Pleiades-1, GF-1 [9], 

IKONOS [10] 

Urban 

Planning and 

development 

Building detection Morphological operations+λ scheduling algorithm [11] LiDAR [11] 

Road detection 
Image segmentation using Deep Convolution neural 

networks [12], Gaussian Mixture Model [13] 

GF-2 satellite [12] 

WorldView-2 [13] 

LULC mapping Texture feature analysis + Random Forest Classifier [14] LiDAR [14] 

Agriculture 

Crop mapping NDVI Statistics [15], Vegetation Indices [16] SPOT [15], Landsat [16] 

Crop Yield 

estimation 

Vegetation Statistics [17], Leaf Area Index (LAI) and 

Average Canopy Height (Hcanopy) [18] 

AVHRR, MODIS and 

SPOT [17], GF-1 [18] 

 

Hydrology 

Snow cover 

mapping 
Vegetation indices [19], Snow cover index [20] 

PROBA-V [19] 

Landsat [20] 

Surface water 

monitoring 

Normalized Difference water Index [21] 

Modified optimized water index [22] 
Landsat 8 [21, 22] 

Forestry Forest Mapping 
Region growing segmentation [23] 

Physical parameters [24] 
LiDAR [23, 24] 

Ocean 

monitoring 

Ocean current 

estimation 
Maximum cross correlation [25] 

Geostationary Ocean 

Color Imager [25] 

Surface temperature 

estimation 

Suspended particulate matter (SPM) concentration on the 

value of sea surface emissivity (SSE) [26] 
MODIS [26] 

Disaster 

Management 

Volcano Monitoring 
Physical properties and aerial survey [27] 

Back propagation neural network [28] 

LiDAR DTM [27] 

AVHRR [28] 

Oil spill detection 
Recursive Neural network [29], Image segmentation with 

saliency map model (Tamminga et al. 2015) 

Landsat and DubaiSat-2 

[29], Landsat 8, GF-1[30] 

 

III. THERMAL INFRARED REMOTE SENSING 

Thermal remote sensing is based on the measurement of 

electromagnetic radiation in the infrared region of the 

spectrum. The astronomer Sir Frederick William Herschel 

discovered the infrared portion of the electromagnetic 

spectrum in 1800. The data collected by the Television IR 

Operational Satellite (TIROS) launched in 1960 is the first 

published satellite of the thermal remote sensing by the U. S. 

Later the thermal infrared data of coarse resolution were ideal 

for monitoring regional cloud patterns and frontal movement. 
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Thermal infrared has a wavelength of between 8.0 to 15 μm. 
Thermal energies are easily absorbed by water and other 

gases due to its wavelength restrictions and so the thermal 

images are recorded in two particular wavelengths of 3 to 5 

μm and 8 to 15 μm. Hence, thermal IR imagery is difficult to 
interpret and process because there is absorption by moisture 

in the atmosphere. The objects, which has a temperature 

greater than zero emits the thermal radiation. Thermal 

energies cannot be absorbed by visualization, since the eyes 

of human beings are sensitive to shorter wavelengths. 

Normally thermal energy can be felt with the help of a touch. 

Thermal imagery can be acquired during the day or night, as it 

is dependent on the temperature of the objects but not on the 

sunlight. There are some key factors such as thermal 

conductivity, thermal capacity and thermal inertia on which 

the results of thermal imagery depends. Thermal energies can 

be absorbed even in complete darkness, but cannot penetrate 

through the clouds because of wavelength. However, thermal 

energy can be absorbed in smoke. 

A. Applications of Thermal Infrared Remote Sensing 

Optical remote sensing can be directly used for detecting 

things on the earth related to their position, if they have 

changed, and so on. In fact, indirect applications of optical 

remote sensing are even broader and deeper, and are playing 

an active role in sustainable development all over the world. 

Several centimetres of the material's surface can be 

represented by the thermal property. The unique property of 

thermal remote sensing helps in extracting information from 

the emitted radiations of soil moisture, rock types, minerals 

and geothermal anomalies. The concept of thermal remote 

sensing is quite complementary to other remote sensing data. 

Thermal remote sensing has the ability to observe temperature 

variations from the emitted infrared radiation of the targets 

and this phenomenon made the users to understand the 

significant changes the environment undergoes. There are 

some intensive applications of thermal remote sensing. 

Initially, thermal remote sensing was developed for military 

purposes; later thermal imaging has been developed for fire 

and rescue teams in forests, law enforcement, maintenance 

operations, security professionals, and more. The application 

of thermal remote sensing is extended to detect approaching 

people or vehicles, to track the footsteps of a fugitive, or to 

learn why a fire resists extinguishment. The applications of 

thermal remote sensing are given in Table 2. The most 

important applications of thermal remote sensing are 

temperature estimation of the earth’s surface, crop mapping 

and monitoring. 

 

Table- II: Applications of thermal remote sensing 

Application Sub-category Methodology Satellite 

Object 

detection 

Ship detection 

Chess board segmentation [31] 

Region based deep forest using convolution neural 

networks [32] 

MACS - Maritime Security (Mar) 

[31] 

TG-1 satellite [32] 

Cloud detection 
Cloud kappa values [33] 

Cloud detection algorithm [34] 
MODIS [33, 34] 

Oil tank detection 
LBP features, EOH features and invariant moment 

features [35] 
TIR [35] 

Urban 

Planning and 

development 

Soil Moisture 

Normalized Difference Vegetation Index + 

temperature difference  [36], Mixture pixel reflectance 

[37] 

MODIS [36] 

IKONOS, and NOAA [37] 

Temperature 

estimation 

Multi-temporal air temperature estimation scheme 

[38] 
MODIS [38] 

Agriculture 

Crop damage 

assessment 

Fractional green cover, leaf area index, and above 

ground biomass (AGB) [39] 
MODIS [39] 

Drought stress 

Monitoring 

Component object model [40] 

Visible and shortwave infrared drought index [41] 
MODIS [40, 41] 

Evapotranspiration 
Vegetation health index and  standardized 

precipitation index [42], Crop water stress index  [43] 

GOES [42] 

Landsat  index  [43] 

Soil moisture 
Vegetation indices and Artificial neural networks 

[44], Soil moisture and Vegetation indices [45] 

AggieAir [44] 

Landsat [45] 

Hydrology 
Temperature 

estimation 

Pixel water-fraction maps are then input to a gradient 

descent algorithm  [46] 
MODIS, ASTER [46] 

Forestry 

Forest mapping 

Thermal Integrated Vegetation Index (TLIVI) and 

Advanced Thermal Integrated Vegetation Index 

(ATLIVI) [47] 

Landsat ETM [47] 

Forest fire detection 
Stochastic fire model +  biband threshold method [48] 

Agent based algorithm [49] 

MODIS [48, 49] 

 

Ocean and sea 

monitoring 

Ocean current 

estimation 
Maximum cross co-relation [50] MODIS [50] 
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Surface temperature 

estimation 
Empirical parameters [51] AVHRR [51] 

Disaster 

Management 

Volcano monitoring 
Curve-fitting algorithm [52], Absorbing aerosol index 

+ PCA [53] 

Hyperspectral TIR imager  algorithm 

[52], MODIS [53] 

Fire accidents Spectral and spatial pixel features [54] VIRR [54] 

Oil spill detection Planks constant and physical properties [55] 
Landat-7 ETM+ and Landsat-5 TM 

[55] 

Flood monitoring 
Change detection analyses [56], Robust satellite 

technique [57] 
ASTER, ETM+ [56], MODIS [57] 

 

IV. MICROWAVE REMOTE SENSING 

Microwave remote sensing fits in both active and passive 

forms of remote sensing The wavelength of microwave 

portion of the spectrum ranges from 1 cm to 1 m 

approximately. The wavelength attribute adds more 

advantages to the microwave remote sensing and has special 

application oriented characteristics compared to the visible 

and infrared remote sensing. Longer wavelengths of 

microwave radiation helps in penetrating through smoke, 

cloud cover, haze, dust and made the users feel comfortable to 

gather the information of targets under almost all weather 

conditions. The property of passive microwave sensing is 

similar to that of visible and thermal remote sensing. 

Microwave energy emitted from the objects will be of less 

magnitude and the passive microwave remote sensor within 

the field of view detects it. In addition to the temperature, the 

passive microwave remote sensor collects moisture properties 

of the emitted object or surface. An additional heavy 

equipment antenna is used in radiometers and scanners of 

passive sensors to detect and record the microwave energy. 

Whereas in active microwave sensing own source of 

microwave radiation is provided to illuminate the target. 

Imaging and Non-Imaging are two categories of active 

microwave remote sensing. RADAR is the active form of 

microwave remote sensors for imaging purposes. RADAR 

stands for RAdio Detection And Ranging, which 

fundamentally characterises the function and operation of a 

radar sensor. The imaging by radar is named as synthetic 

aperture radar (SAR) imaging. The active microwave remote 

sensor transmits a radar signal towards the target and detects 

the backscattered portion of the signal. The strength of the 

backscattered signal is measured to discriminate between 

different targets, and the time delay between the transmitted 

and reflected signals determines the distance (or range) to the 

target. The major advantage of active microwave remote 

sensing is the capability of the radiation to penetrate through 

cloud cover, so it can be applied at most weather conditions. 

The radar is an active form of microwave remote sensing used 

to image the surface at any time, day or night. These are the 

two primary advantages of radar: all-weather and day or night 

imaging. 

 

A. Application of Microwave Remote Sensing 

Passive microwave remote sensing has the same principles 

of thermal remote sensing. The energies in microwave remote 

sensing are quite low when compared to the temperature of 

the objects in thermal remote sensing. Hence, the large area 

should be covered for collecting the information. In 1978, the 

application of passive microwave remote sensing began with 

the Electrically Scanning Microwave Radiometer (ESMR). 

The main areas of applications for passive microwave remote 

sensing are sea ice detection, ocean monitoring, soil moisture 

estimation etc. Active microwave remote sensing has an 

important property of high resolution irrespective of flight 

altitude, and weather conditions. Active form of microwave 

remote sensing is radar remote sensing. Development of SAR 

imaging happened in 1950s for better resolution than fixed 

radar and applied in defence applications covering large area. 

The important applications of radar are in the areas of 

glaciology, topography, geology, oceanography and forestry. 

Radar imaging is mainly useful for disaster management 

applications of volcano and earthquake monitoring as a part 

of differential interferometry. It is also useful in environment 

monitoring like urban growth, land use land cover 

monitoring, oil spills detection, flooding, global change and 

military surveillance. SAR can also be implemented as 

inverse SAR by observing a moving target over a substantial 

time with a stationary antenna. 

 

 

Table- III: Applications of microwave remote sensing 

Application Sub-category Methodology Satellite 

Object 

detection 

Aircraft detection 

Image segmentation with saliency map  

[58] 

Threshold based image segmentation  

[59] 

Terrasar-X [58, 59] 

Ship detection 

Image Uniformity Description Factor  

[60] 

Boundary box + Feature maps [61] 

UAVSAR [60] 

Sentinel-1 [61] 

Urban 

Planning 
Building detection 

Morphological operations and image segmentation 

[62], Deep neural network and convolution neural 

network [63] 

TerraSAR-X [62, 63] 
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Road extraction 
Region growing image segmentation [64], Fuzzy 

algorithm [65] 
TerraSAR-X [64, 65] 

Land use land cover 
Object based approach [66] 

Deep belief networks [67] 

PALSAR [66] 

RADARSAT-2 [67] 

Agriculture 

Crop mapping 
Object based features  [68], Texture features along with 

SVM and KNN [69] 
TerraSAR-X [68, 69] 

Soil moisture 
Physical properties and NDVI along with ANN [70], 

Image ratioing and principle component analysis [71] 

Sentinel 1 [70] 

RADARSAT 1 [71] 

Hydrology 
Snow cover and 

mapping 

Coherence analysis [72],  Satellite retrieval algorithm  

[73] 

ENVISAT [72] 

AMSR-E and AMSR2 [73] 

Forestry Forest Mapping 
Object based classification  [74], Texture features along 

with random forest classifier  [75] 

ENVISAT [74] 

ALOS-2, TerraSAR-X [75] 

Ocean and 

sea 

management 

Iceberg detection 
Physical properties and threshold methodology [76], 

Object based image segmentation  [77] 

RADARSAT-2 [76] 

ENVISAT ASAR [77] 

Wind speed 

detection 

Heapsort bucket method with Gauss–Markov theorem  

[78], Physical and mathematical properties  [79] 

RADARSAT 2 [78] 

PALSAR [79] 

Disaster 

Management 

Landslide 

Monitoring 

NDVI threshold  [80], Backscattering coefficient 

difference and intensity correlation  [81] 

RADARSAT-2 [80] 

COSMO-SkyMed [81] 

Oil spill detection 
Genetic algorithm  [82], Artificial Neural Networks  

[83] 

RADARSAT-2 [82], ERS-2 

SAR and ENVSAT ASAR [83] 

Flood Monitoring 
Change detection using wavelet analysis [84] 

Neuro-fuzzy flood mapping technique  [85] 

TerraSAR-X [84] 

COSMO-SkyMed [85] 

 

V. CHALLENGES IN REMOTE SENSING 

The challenges in the remote sensing techniques to be 

resolved under different aspects like the sensor capabilities, 

resolution techniques, image interpretation and analysis are 

given in Table 4. 

VI.  IMAGE INTERPRETATION 

Interpretation of the image is the most extensive form to 

perform remote sensing analysis through the detection and 

extraction of features in the target image. Image interpretation 

is the procedure to identify the pixel values of the image with 

some analytical power. Image interpretation is also given as 

extracting the qualitative and quantitative information 

including various attributes like shape, structure, object 

detection, function, condition, quality, etc. with the help of 

human computer interaction. The method of image 

interpretation is highly robust technique in identifying 

different features of vegetation type and condition, 

anthropogenic landscape features of industries, roads and 

geographical structures. The very good need of successful 

image interpretation is a good technical analyst with some 

familiarity about the image processing techniques. There are 

four ways in which remote sensing differs from our real life: 

(1) On the air process is responsible for the Imagery 

collection (2) Many sensors record imagery beyond the 

visible portion of the electromagnetic spectrum. A colour 

infrared image of healthy vegetation will appear red rather 

than green. (3) Imagery may be acquired at unfamiliar 

resolutions and scales. (4) Depth is lost, while viewing a 

two-dimensional image, unless one can view it 

stereoscopically so as to simulate the third dimension of 

height. 

 

 

Table- IV: Challenges of remote sensing techniques 

Application Sensor Challenges 

Agriculture 

Optical 

Cloud cover is an important obstacle for optical satellite data. It makes use of time series much more 

complicated. Spectral signatures overlap in the optical remote sensing imagery makes the user difficult to 

separate irrigated fields from non-irrigated plots in humid areas. 

Thermal 
Thermal behaviours of crops vary with climatic conditions. Less accurate for coarse resolution and less 

reliable for the classes with contrast emissivities  

Microwave 
The coarse resolution of space borne instrument interpretations remains a challenge. The adoption of SAR 

imagery in agriculture monitoring is a major challenge due to scattering. 

Forestry 

Optical 

Cloud cover is considered as a serious limitation in tropical regions. Optical images records spectral 

responses due the interaction between the solar radiance and forest stand canopies. The spectral response 

serves as a limitation in the ability to predict forest biomass through optical remote sensing imagery. 

Thermal 

Approximate atmospheric corrections are required. MIR and TIR requires channel measurements acquired 

during day and night time of atmospheric windows. Geometry registration of thermal data is required at 

different angles increasing the additional complexity to the user. 

Microwave 

A common challenge is to quantify spatial and temporal patterns of forest cover. Water stress in forest areas 

influences a lot due to dielectric properties and geometric changes and it remains a challenge to separate the 

artefacts of scatterometer for pre-processing of data. The main problem of Interferometry SAR at X-band is 

that the interferometric rationality is not very high over the surfaces of heavy vegetation cover and forests. 

Hydrology Optical 
The reflectance of radiation caused due variance in water column depth and optical properties of water 

causes system to be environmentally limited. 
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Thermal 

Thermal sensors becomes heat as it collects the information from the target as a radiation. The coarse spatial 

resolution of thermal data poses additional problems in geometrically registering it to other data, especially 

when the latter have much higher spatial resolution. 

Ocean 

monitoring 

Optical 
Across-image variation occurs due to the environmental components such as water inherent optical 

properties, sun elevation, bathymetry, wind speed and sensor noise characteristics. 

Thermal 

The ambiguity of atmospheric summaries may have strong effects on the accuracy of land surface 

temperature (LST) retrieval. As most of the sea area is covered by clouds, the thermal data needs 

atmospheric corrections. 

Microwave 
The discrimination between open water and sea ice becomes difficult due to variable backscattering of open 

water due to wind conditions for the co-polarized (HH or VV) data at C-band. 

Geology and 

mining 

Optical 

There is no ground truth in meteorological applications for optical data due to small sample size, as a result 

geoscience applications face spatio-temporal structure challenges showing non-stationary characteristics 

and follows non-linear relationships. 

Thermal 
As discussed earlier accurate geometric registration is required in atmospheric windows of MIR and TIR 

channels. As a result initial guess values are required to predict the atmospheric profiles. 

Microwave 
Data interpretation of the wide range of materials with different backscattered radiation of different 

wavelengths is thus rendered nearly impossible, resulting in spatial resolutions as large as 20 to 100 km.   

Disaster 

Management 

Optical 

Short length of record is the major limitations of the currently available satellite observations. A large size 

data is needed to analyse the data of gravity recovery and climate experiment, which is unavailable. 

Temporal and spatial dynamics of post-fire change detection estimation became a big challenge especially in 

evaluating the post-fire boreal forest characteristic. 

Thermal 
Various factors like horizontal advection, variation of atmospheric variables like wind speed, vapour 

pressure deficit are not incorporated, which varies the target information a lot. 

Microwave 

To predict the possible developments in the entire flood area with accurate extent is another major 

challenge. Another misclassification of oil spilt dark areas in oil spill detection with look-alikes such as rain 

cells, calm sea surfaces and biogenic slicks is a major challenge. 

Urban 

planning and 

development 

Optical 

In multi-temporal analysis, especially in change detection, it is difficult to co-relate the features of isolated 

pixels to the objects. There are additional challenges like large variations in the visual appearance of objects 

caused by viewpoint variation, occlusion, background clutter, illumination, shadow. 

Thermal 

The major limitation of thermal remote sensing is that high spatial resolution sensors have low temporal 

resolution and vice versa. The data of high spatial resolution sensors are often associated with a number of 

challenges that include high acquisition costs, small swath width and low temporal resolution, which limit 

their value for change detection analysis studies, especially over large areas. 

Microwave Speckle noise is the major challenge and also the noise leads to misclassification in detection of objects. 

A. Optical Remote Sensing Image Interpretation 

Image interpretation in optical remote sensing data 

contains different types of important information like 

radiometric resolution indicating the brightness, intensity, 

tone, spectral Information with colour and hue information, 

textural Information, geometric and contextual Information. 

In optical wavelength, the transmission in clear water is 

generally high. The blue end of the spectrum has the 

maximum reflectance and decreases as wavelength increases. 

Hence, clear water appears dark-bluish. Muddled water has 

some deposit suspension that increases the reflectance in the 

red end of the spectrum, accounting for its brownish 

appearance. The reflectance of bare soil generally depends on 

its composition. Hence, the soil appears yellowish-red to the 

eye. Vegetation occupies a special place in the optical image 

due to the spectral nature and distinguishes from other land 

cover types. The absorption of radiation by chlorophyll for 

the process of photosynthesis gives the less reflectance in blue 

and red regions of the spectrum. The reflectance is peak at the 

green region leading to the green colour of vegetation. Hence, 

vegetation is identified in the higher region of near infrared 

spectrum. The shape of the reflectance spectrum can be used 

for identification of vegetation type. Strong absorption bands 

for water are around 1.45, 1.95 and 2.50 µm, but outside these 

absorption bands in the short infrared region, reflectance of 

leaves generally increases when leaf liquid water content 

decreases and this property is used for identifying tree types 

and plant conditions from remote sensing images. The short 

infrared band can be used in detecting plant drought stress and 

delineating burnt areas and fire-affected vegetation. The 

SWIR band is also sensitive to the thermal radiation emitted 

by intense fires, and hence can be used to detect active fires, 

especially during night-time when the background 

interference from SWIR in reflected sunlight is absent. 

 

B. Thermal Remote Sensing Image Interpretation 

Mostly thermal images are acquired in single band giving 

the output data as greyscale images. Darker areas of thermal 

images are cooler in nature, whereas brighter areas indicate 

areas that are warmer. To differentiate temperature in the 

single band thermal images, pseudo-color thermal images 

needs to be displayed. The information obtained from thermal 

images are obtained from reflected radiation. Remote sensing 

of direct temperature effects is carried out by sensing 

radiation emitted from matter in the thermal infrared region of 

the spectrum. The amount of solar radiation reflected from 

land and sea surfaces, as well as the amount absorbed, 

depends partly on that portion of energy from the sun that 

reaches these surfaces. A thermal sensor detects radiant 

energy from a surface target, heated through radiation (solar 

insolation and sky radiance), convention (atmospheric 

circulation) and conduction (through the ground). A primary 

objective of temperature measurements and related thermal 

responses is to infer something about the nature of the 
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composition and other physical attributes of materials at the 

earth’s surface and, in its atmosphere. Interpreting thermal 

data and images of temperature distribution over an area is 

complex. 

 

C. Microwave Remote Sensing Image Interpretation 

Radar images are active form images for microwave remote 

sensing have certain characteristics that are fundamentally 

different from images obtained by using optical sensors and 

thermal remote sensors. These unique characteristics are the 

significance of the imaging radar technique, and are related to 

speckle, texture or geometry. During SAR image analysis, the 

technician must keep in mind the fact that, even if the 

information is presented as an analog product on 

photographic paper, the radar visualizes the scene in a very 

different way from the human eye or from an optical sensor. 

The backscattered energy from the target scenes are 

represented as grey levels. Shadows in radar image are due to 

the oblique incidence angle of microwave radiation emitted 

by the radar system and not to geometry of solar illumination. 

The intensity of the backscattered signal varies according to 

roughness, dielectric properties and local slope. Thus, the 

radar signal refers mainly to geometrical properties of the 

target. In contrast, measurements in the visible/infrared region 

use optical sensors where target response is related to colours, 

chemical composition and temperature. 

VII. CONCLUSION 

In this paper, the various platforms and orbits are considered 

along with their advantages and disadvantages. The mostly 

used applications of optical, thermal and microwave remote 

sensing was listed. And also the challenges of the remote 

sensing techniques were illustrated for various types of 

applications. The challenges are focussed not only on the 

image processing, but also on the hardware issues. Image 

interpretation keys are given for the sensors which motivates 

the young researches and scientists to go for the work on 

various domains of remote sensing. Images acquired by 

microwave remote sensing has some basic disadvantages like 

most of the tools used by various specialists did not work 

properly with them and it should suffice to say that a SAR 

image models are formed by sending a microwave signal 

towards the target and by recording and processing the 

reflected echo. The illumination used is coherent, and it can 

be proved that when this technique is used a special kind of 

speckle noise appears. It is convenient to recall that these 

images are formed using electromagnetic signals, complex by 

nature. In spite of the above discussed disadvantages, SAR 

images are considered one of the greatest technological leaps 

in remote sensing.  

There are various types of properties and observations 

which makes the microwave remote sensing unique and 

different from optical and thermal remote sensing. Some 

virtues of these kind of techniques are briefly summarized 

below: 

1) Polarimetry: Polarization techniques afford a prosperity 

of qualitative and quantitative information about various 

assets of a surface. The polarization concept can help to 

determine which polarization (H, V, HH, VV, HV, VH) 

images may improve the signal from a particular feature 

of land area, forest mapping and rock surfaces. Thus 

Polarimetry data is formed in different channels forming 

the full scattered matrix used to observe dielectric 

properties of surfaces, target orientation etc.   

2) Interferometry: The various challenges in microwave 

remote sensing can be addressed by developing good 

quality digital elevation models using InSAR technique. 

3) ScanSAR: At this mode, the surface area covered will be 

triple to the normal beam mode with the same cost. The 

best examples of satellites are RADARSAT-1, 

RADARSAT-2 and ASAR. 

4) SLAR: It is given as Side Looking Airborne Radar, an 

active radar to acquire the information from aircraft by 

looking in a side angle. The SLAR project generally 

takes 1:250,000-scale topographic maps and the detail of 

the image strips will be photograph-like. These are 

mainly used to cover the cloud covered areas. 

5) Bandwidth: The bandwidth of microwaves is larger 

leading to more information transmission and 

point-to-point communications. 

6) Fading: Line of sight propagation technique minimizes 

the fading effect for the wavelengths of microwave 

region, whereas fading of the signal occurs for optical 

and thermal remote sensors. 

7) Image Interpretation: The various drawbacks of optical 

and thermal image interpretation especially 

multiresolution analysis, spatial and spectral resolution 

mismatch analysis, and geometric corrections. The 

geometric corrections in microwave remote sensing can 

overcome terrain correction. 

REFERENCES 

1. Ding, P., Zhang, Y., Deng, W. J., Jia, P., & Kuijper, A. (2018). A light 

and faster regional convolutional neural network for object detection in 

optical remote sensing images. ISPRS Journal of Photogrammetry and 

Remote Sensing, 141, 208-218. 

2. Li, D., Yu, Y., Guan, H., & Zhong, L. (2017). Aeroplane detection in 

very-high-resolution images using deep feature representation and 

rotation-invariant Hough forests. International Journal of Remote 

Sensing, 38(23), 6882-6893. 

3. Ji-yang, Y., Dan, H., Lu-yuan, W., Jian, G., & Yan-hua, W. (2016). A 

real-time on-board ship targets detection method for optical remote 

sensing satellite. In IEEE 13th International Conference on Signal 

Processing (ICSP), 204-208. 

4. Dong, C., Liu, J., & Xu, F. (2018). Ship Detection in Optical Remote 

Sensing Images Based on Saliency and a Rotation-Invariant Descriptor. 

Remote Sensing, 10(3), 400. 

5. Yu, X., & Shi, Z. (2015). Vehicle detection in remote sensing imagery 

based on salient information and local shape  

6. Schilling, H., Bulatov, D., & Middelmann, W. (2018). Object-based 

detection of vehicles using combined optical and elevation data. ISPRS 

Journal of Photogrammetry and Remote Sensing, 136, 85-105. 

7. Zhang, L., Shi, Z., & Wu, J. (2015). A hierarchical oil tank detector with 

deep surrounding features for high-resolution optical satellite imagery. 

IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 8(10), 4895-4909.  

8. Cai, X., Sui, H., Ruipeng, L. V., & Song, Z. (2014). Automatic circular 

oil tank detection in high-resolution optical image based on visual 

saliency and Hough transform. In IEEE Workshop on Electronics, 

Computer and Applications, 408-411. 

9. Huang, W., Wang, Y., & Chen, X. (2018). Cloud detection for 

high-resolution remote-sensing images of urban areas using colour and 



Scope 
Volume 13 Number 3 September 2023 

  

965 www.scope-journal.com 

 

 

edge features based on dual-colour models. International Journal of 

Remote Sensing, 1-19. 

10. Zhai, H., Zhang, H., Zhang, L., & Li, P. (2018). Cloud/shadow detection 

based on spectral indices for multi/hyperspectral optical remote sensing 

imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 

235-253. 

11. Chen, Y., Cheng, L., Li, M., Wang, J., Tong, L., & Yang, K. (2014). 

Multiscale grid method for detection and reconstruction of building 

roofs from airborne LiDAR data. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, 7(10), 4081-4094. 

12. Xia, W., Zhang, Y. Z., Liu, J., Luo, L., & Yang, K. (2018). Road 

Extraction from High Resolution Image with Deep Convolution 

Network—A Case Study of GF-2 Image. In Multidisciplinary Digital 

Publishing Institute Proceedings, 2(7), 325. 

13. Li, J., Hu, Q., & Ai, M. (2018). Unsupervised road extraction via a 

Gaussian mixture model with object-based features. International 

Journal of Remote Sensing, 39(8), 2421-2440. 

14. Zhang, X. M., He, G. J., Zhang, Z. M., Peng, Y., & Long, T. F. (2017). 

Spectral-spatial multi-feature classification of remote sensing big data 

based on a random forest classifier for land cover mapping. Cluster 

Computing, 20(3), 2311-2321. 

15. Nguyen, T. T. H., De Bie, C. A. J. M., Ali, A., Smaling, E. M. A., & Chu, 

T. H. (2012). Mapping the irrigated rice cropping patterns of the 

Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image 

analysis. International journal of remote sensing, 33(2), 415-434. 

16. Campos, I., Gonzalez-Gomez, L., Villodre, J., Calera, M., Campoy, J., 

Jimenez, N., et al. (2018). Mapping within-field variability in wheat 

yield and biomass using remote sensing vegetation indices. Precision 

Agriculture, 1-23. 

17. Wu, B., Gommes, R., Zhang, M., Zeng, H., Yan, N., Zou, W., et al. 

(2015). Global crop monitoring: a satellite-based hierarchical approach. 

Remote Sensing, 7(4), 3907-3933. 

18. Li, W., Niu, Z., Wang, C., Huang, W., Chen, H., Gao, S., et al. (2015). 

Combined use of airborne LiDAR and satellite GF-1 data to estimate 

leaf area index, height, and aboveground biomass of maize during peak 

growing season. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 8(9), 4489-4501. 

19. Hawotte, F., Radoux, J., Chomé, G., & Defourny, P. (2016). Assessment 

of Automated Snow Cover Detection at High Solar Zenith Angles with 

PROBA-V. Remote Sensing, 8(9), 699. 

20. Wang, X. Y., Wang, J., Jiang, Z. Y., Li, H. Y., & Hao, X. H. (2015). An 

effective method for snow-cover mapping of dense coniferous forests in 

the upper Heihe river basin using Landsat operational land imager data. 

Remote Sensing, 7(12), 17246-17257. 

21. Acharya, T., Subedi, A., & Lee, D. (2018). Evaluation of Water Indices 

for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors, 

18(8), 2580. 

22. Moradi, M., Sahebi, M., & Shokri, M. (2017). MODIFIED 

OPTIMIZATION WATER INDEX (MOWI) FOR LANDSAT-8 

OLI/TIRS. ISPRS-International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences, 185-190. 

23. Palenichka, R., Doyon, F., Lakhssassi, A., & Zaremba, M. B. (2013). 

Multi-scale segmentation of forest areas and tree detection in LiDAR 

images by the attentive vision method. IEEE Journal of Selected Topics 

in Applied Earth Observations and Remote Sensing, 6(3), 1313-1323. 

24. Kozoderov, V. V., Dmitriev, E. V., & Sokolov, A. A. (2015). Improved 

technique for retrieval of forest parameters from hyperspectral remote 

sensing data. Optics express, 23(24), A1342-A1353. 

25. Warren, M. A., Quartly, G. D., Shutler, J. D., Miller, P. I., & Yoshikawa, 

Y. (2016). Estimation of ocean surface currents from maximum cross 

correlation applied to GOCI geostationary satellite remote sensing data 

over the Tsushima (Korea) Straits. Journal of Geophysical Research: 

Oceans, 121(9), 6993-7009. 

26. Kereszturi, G., Schaefer, L. N., Schleiffarth, W. K., Procter, J., 

Pullanagari, R. R., Mead, S., & Kennedy, B. (2018). Integrating airborne 

hyperspectral imagery and LiDAR for volcano mapping and monitoring 

through image classification. International Journal of Applied Earth 

Observation and Geoinformation, 73, 323-339. 

27. Lee, M. S., Park, K. A., Lee, H. R., Park, J. J., Kang, C. K., & Lee, M. 

(2016). Detection and dispersion of thick and film-like oil spills in a 

coastal bay using satellite optical images. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, 9(11), 

5139-5150. 

28. Li, H., Wang, Z., He, G., & Man, W. (2017). Estimating Snow Depth 

and Snow Water Equivalence Using Repeat-Pass Interferometric SAR in 

the Northern Piedmont Region of the Tianshan Mountains. Journal of 

Sensors, 2017. 

29. Munasinghe, D., Cohen, S., Huang, Y. F., Tsang, Y. P., Zhang, J., & 

Fang, Z. (2018). Intercomparison of Satellite Remote Sensing‐Based 
Flood Inundation Mapping Techniques. JAWRA Journal of the 

American Water Resources Association. 

30. Tamminga, A. D., Eaton, B. C., & Hugenholtz, C. H. (2015). 

UAS‐based remote sensing of fluvial change following an extreme flood 

event. Earth Surface Processes and Landforms, 40(11), 1464-1476. 

31. Brauchle, J., Bayer, S., & Berger, R. (2017). Automatic ship detection 

on multispectral and thermal infrared aerial images using MACS-Mar 

remote sensing platform. In Pacific-Rim Symposium on Image and 

Video Technology, 382-395. 

32. Yang, F., Xu, Q., Li, B., & Ji, Y. (2018). Ship Detection From Thermal 

Remote Sensing Imagery Through Region-Based Deep Forest. IEEE 

Geoscience and Remote Sensing Letters, 15(3), 449-453. 

33. Ghasemian, N., & Akhoondzadeh, M. (2018). Introducing two Random 

Forest based methods for cloud detection in remote sensing images. 

Advances in Space Research. 

34. Sun, L., Mi, X., Wei, J., Wang, J., Tian, X., Yu, H., & Gan, P. (2017). A 

cloud detection algorithm-generating method for remote sensing data at 

visible to short-wave infrared wavelengths. ISPRS Journal of 

Photogrammetry and Remote Sensing, 124, 70-88. 

35. Ma, L., & Chen, X. (2017, March). Detection of thermal infrared oil 

tank targets based on SVM classification. In Selected Papers of the 

Chinese Society for Optical Engineering Conferences held October and 

November 2016, 10255, 1025548. International Society for Optics and 

Photonics. 

36. Taktikou, E., Bourazanis, G., Papaioannou, G., & Kerkides, P. (2016). 

Prediction of soil moisture from remote sensing data. Procedia 

engineering, 162, 309-316. 

37. Gao, Z., Xu, X., Wang, J., Yang, H., Huang, W., & Feng, H. (2013). A 

method of estimating soil moisture based on the linear decomposition of 

mixture pixels. Mathematical and Computer Modelling, 58(3-4), 

606-613. 

38. Zhang, L. W., Huang, J. F., Guo, R. F., Li, X. X., Sun, W. B., & Wang, 

X. Z. (2013). Spatio-temporal reconstruction of air temperature maps 

and their application to estimate rice growing season heat accumulation 

using multi-temporal MODIS data. Journal of Zhejiang University 

SCIENCE B, 14(2), 144-161. 

39. Perry, E. M., Morse-McNabb, E. M., Nuttall, J. G., O’Leary, G. J., & 

Clark, R. (2014). Managing wheat from space: Linking modis ndvi and 

crop models for predicting australian dryland wheat biomass. IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing, 7(9), 3724-3731. 

40. Dong, H., Li, J., Yuan, Y., You, L., & Chen, C. (2017). A 

component-based system for agricultural drought monitoring by remote 

sensing. PloS one, 12(12), e0188687. 

41. Anderson, M. C., Hain, C., Otkin, J., Zhan, X., Mo, K., Svoboda, M., et 

al. (2013). An intercomparison of drought indicators based on thermal 

remote sensing and NLDAS-2 simulations with US Drought Monitor 

classifications. Journal of Hydrometeorology, 14(4), 1035-1056. 

42. Zhang, J., Yao, F., Li, B., Yan, H., Hou, Y., Cheng, G., & Boken, V. 

(2011). Progress in monitoring high-temperature damage to rice through 

satellite and ground-based optical remote sensing. Science China Earth 

Sciences, 54(12), 1801-1811. 

43. Barbagallo, S., Consoli, S., & Russo, A. (2009). A one-layer satellite 

surface energy balance for estimating evapotranspiration rates and crop 

water stress indexes. Sensors, 9(1), 1-21. 

44. Hassan-Esfahani, L., Torres-Rua, A., Jensen, A., & McKee, M. (2015). 

Assessment of surface soil moisture using high-resolution multi-spectral 

imagery and artificial neural networks. Remote Sensing, 7(3), 

2627-2646. 

45. Shafian, S., & Maas, S. J. (2015). Index of soil moisture using raw 

Landsat image digital count data in Texas high plains. Remote Sensing, 

7(3), 2352-2372. 



 

Scope 
Volume 13 Number 3 September 2023 

 

966 www.scope-journal.com 

 

46. Sentlinger, G. I., Hook, S. J., & Laval, B. (2008). Sub-pixel water 

temperature estimation from thermal-infrared imagery using vectorized 

lake features. Remote Sensing of Environment, 112(4), 1678-1688. 

47. Sinha, S., Sharma, L. K., & Nathawat, M. S. (2015). Improved 

Land-use/Land-cover classification of semi-arid deciduous forest 

landscape using thermal remote sensing. The Egyptian Journal of 

Remote Sensing and Space Science, 18(2), 217-233. 

48. Kushida, K. (2010). Detection of active wildland fires using 

multitemporal MODIS images. IEEE Geoscience and Remote Sensing 

Letters, 7(2), 301-305. 

49. Movaghati, S., Samadzadegan, F., & Azizi, A. (2013). An Agent-Based 

Approach for Regional Forest Fire Detection Using MODIS Data: A 

Preliminary Study in Iran. Journal of the Indian Society of Remote 

Sensing, 41(1), 21-33. 

50. Liu, J., Emery, W. J., Wu, X., Li, M., Li, C., & Zhang, L. (2017). 

Computing Coastal Ocean Surface Currents from MODIS and VIIRS 

Satellite Imagery. Remote Sensing, 9(10), 1083. 

51. Wloczyk, C., Richter, R., Borg, E., & Neubert, W. (2006). Sea and lake 

surface temperature retrieval from Landsat thermal data in Northern 

Germany. International Journal of Remote Sensing, 27(12), 2489-2502. 

52. Smekens, J. F., & Gouhier, M. (2018). Observation of SO2 degassing at 

Stromboli volcano using a hyperspectral thermal infrared imager. 

Journal of Volcanology and Geothermal Research, 356, 75-89. 

53. Hirn, B., Di Bartola, C., & Ferrucci, F. (2009). Combined use of SEVIRI 

and MODIS for detecting, measuring, and monitoring active lava flows 

at erupting volcanoes. IEEE Transactions on Geoscience and Remote 

Sensing, 47(8), 2923-2930. 

54. Lin, Z., Chen, F., Niu, Z., Li, B., Yu, B., Jia, H., & Zhang, M. (2018). An 

active fire detection algorithm based on multi-temporal FengYun-3C 

VIRR data. Remote Sensing of Environment, 211, 376-387. 

55. Xing, Q., Li, L., Lou, M., Bing, L., Zhao, Z., & Li, Z. (2015). 

Observation of oil spills through Landsat thermal infrared imagery: a 

case of deepwater horizon. Aquatic Procedia, 3, 151. 

56. Franci, F., Mandanici, E., & Bitelli, G. (2015). Remote sensing analysis 

for flood risk management in urban sprawl contexts. Geomatics, Natural 

Hazards and Risk, 6(5-7), 583-599. 

57. Faruolo, M., Coviello, I., Lacava, T., Pergola, N., & Tramutoli, V. 

(2010). On the potential of Robust Satellite Technique (RST) approach 

for flooded areas detection and monitoring using thermal infrared data. 

In IEEE International on Geoscience and Remote Sensing Symposium 

(IGARSS), 914-917. 

58. Tan, Y., Li, Q., Li, Y., & Tian, J. (2015). Aircraft detection in 

high-resolution SAR images based on a gradient textural saliency map. 

Sensors, 15(9), 23071-23094. 

59. Tan, Y., Wu, D., Li, Y., Li, Q., & Tian, J. (2013). Adaptive aircraft 

detection in high-resolution SAR images. In Automatic Target 

Recognition and Navigationc (MIPPR). International Society for Optics 

and Photonics, 8918, 891816. 

60. Li, W., Zou, B., & Zhang, L. (2017). Ship detection in a large scene SAR 

image using image uniformity description factor. In IEEE SAR in Big 

Data Era: Models, Methods and Applications (BIGSARDATA), 1-5. 

61. Wang, Y., Wang, C., & Zhang, H. (2018). Combining a single shot 

multibox detector with transfer learning for ship detection using 

sentinel-1 SAR images. Remote Sensing Letters, 9(8), 780-788. 

62. Cao, Y., Su, C., & Yang, G. (2014). Detecting the number of buildings 

in a single high-resolution SAR image. European Journal of Remote 

Sensing, 47(1), 513-535. 

63. Xu, Z., Wang, R., Zhang, H., Li, N., & Zhang, L. (2017). Building 

extraction from high-resolution SAR imagery based on deep neural 

networks. Remote Sensing Letters, 8(9), 888-896. 

64. Lu, P., Du, K., Yu, W., Wang, R., Deng, Y., & Balz, T. (2014). A new 

region growing-based method for road network extraction and its 

application on different resolution SAR images. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 

7(12), 4772-4783. 

65. Saati, M., Amini, J., & Maboudi, M. (2015). A method for automatic 

road extraction of high resolution sar imagery. Journal of the Indian 

Society of Remote Sensing, 43(4), 697-707. 

66. Polychronaki, A., Gitas, I. Z., Veraverbeke, S., & Debien, A. (2013). 

Evaluation of ALOS PALSAR imagery for burned area mapping in 

Greece using object-based classification. Remote Sensing, 5(11), 

5680-5701. 

67. Lv, Q., Dou, Y., Niu, X., Xu, J., Xu, J., & Xia, F. (2015). Urban land use 

and land cover classification using remotely sensed SAR data through 

deep belief networks. Journal of Sensors, 2015. 

68. Jiao, X., Kovacs, J. M., Shang, J., McNairn, H., Walters, D., Ma, B., & 

Geng, X. (2014). Object-oriented crop mapping and monitoring using 

multi-temporal polarimetric RADARSAT-2 data. ISPRS Journal of 

Photogrammetry and Remote Sensing, 96, 38-46. 

69. Pei, Z., Zhang, S., Guo, L., McNairn, H., Shang, J., & Jiao, X. (2011). 

Rice identification and change detection using TerraSAR-X data. 

Canadian Journal of Remote Sensing, 37(1), 151-156. 

70. Alexakis, D. D., Mexis, F. D. K., Vozinaki, A. E. K., Daliakopoulos, I. 

N., & Tsanis, I. K. (2017). Soil moisture content estimation based on 

Sentinel-1 and auxiliary earth observation products. A hydrological 

approach. Sensors, 17(6), 1455. 

71. Wall, J., Collingwood, A., & Treitz, P. (2010). Monitoring surface 

moisture state in the Canadian High Arctic using synthetic aperture 

radar (SAR). Canadian Journal of Remote Sensing, 36(sup1), 

S124-S134. 

72. Kumar, V., & Venkataraman, G. (2011). SAR interferometric coherence 

analysis for snow cover mapping in the western Himalayan region. 

International Journal of Digital Earth, 4(1), 78-90. 

73. Tsutsui, H., & Maeda, T. (2017). Possibility of Estimating Seasonal 

Snow Depth Based Solely on Passive Microwave Remote Sensing on the 

Greenland Ice Sheet in Spring. Remote Sensing, 9(6), 523. 

74. Ling, F., Li, Z., Chen, E., Huang, Y., Tian, X., Schmullius, C., et al. 

(2013). Forest and Non-Forest Mapping with Envisat ASAR Images. In 

Dragon 2 Final Results and Dragon 3 Kickoff Symposium, 704. 

75. Cartus, O., Siqueira, P., & Kellndorfer, J. (2018). An Error Model for 

Mapping Forest Cover and Forest Cover Change Using L-Band SAR. 

IEEE Geoscience and Remote Sensing Letters, 15(1), 107-111. 

76. Komarov, A. S., & Buehner, M. (2017). Automated detection of ice and 

open water from dual-polarization RADARSAT-2 images for data 

assimilation. IEEE Transactions on Geoscience and Remote Sensing, 

55(10), 5755-5769. 

77. Mazur, A. K., Wåhlin, A. K., & Krężel, A. (2017). An object-based SAR 

image iceberg detection algorithm applied to the Amundsen Sea. 

Remote sensing of environment, 189, 67-83. 

78. Tang, R., Liu, D., Han, G., Ma, Z., & de Young, B. (2014). 

Reconstructed wind fields from multi-satellite observations. Remote 

Sensing, 6(4), 2898-2911. 

79. Kim, T. S., Park, K. A., Li, X., & Hong, S. (2014). SAR-derived wind 

fields at the coastal region in the East/Japan Sea and relation to coastal 

upwelling. International journal of remote sensing, 35(11-12), 

3947-3965. 

80. Plank, S., Twele, A., & Martinis, S. (2016). Landslide mapping in 

vegetated areas using change detection based on optical and 

polarimetric sar data. Remote Sensing, 8(4), 307. 

81. Konishi, T., & Suga, Y. (2018). Landslide detection using 

COSMO-SkyMed images: a case study of a landslide event on Kii 

Peninsula, Japan. European Journal of Remote Sensing, 51(1), 205-221. 

82. Marghany, M. (2016). Automatic Mexico Gulf Oil Spill Detection from 

Radarsat-2 SAR Satellite Data Using Genetic Algorithm. Acta 

Geophysica, 64(5), 1916-1941. 

83. Singha, S., Bellerby, T. J., & Trieschmann, O. (2013). Satellite oil spill 

detection using artificial neural networks. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, 6(6), 

2355-2363. 

84. Ajadi, O. A., Meyer, F. J., & Liljedahl, A. (2017). Detection of 

aufeis-related flood areas in a time series of high resolution SAR images 

using curvelet transform and unsupervised classification. In IEEE 

International Symposium on Geoscience and Remote Sensing 

(IGARSS), 77-180. 

85. Ouled Sghaier, M., Hammami, I., Foucher, S., & Lepage, R. (2018). 

Flood extent mapping from time-series sar images based on texture 

analysis and data fusion. Remote Sensing, 10(2), 237. 


	I. Introduction
	II. OPTICAL REMOTE SENSING
	A. Applications of Optical Remote Sensing

	III. THERMAL INFRARED REMOTE SENSING
	A. Applications of Thermal Infrared Remote Sensing

	IV. MICROWAVE REMOTE SENSING
	A. Application of Microwave Remote Sensing

	V. CHALLENGES IN REMOTE SENSING
	VI.  IMAGE INTERPRETATION
	A. Optical Remote Sensing Image Interpretation
	B. Thermal Remote Sensing Image Interpretation
	C. Microwave Remote Sensing Image Interpretation

	VII. CONCLUSION
	REFERENCES

