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1. Introduction  

Let G be a finite, simple connected graph with vertex set  V G  and edge set  E G . The degree of  a 

vertex v is the number of  vertices adjacent to v.  G and  G denote the maximum and minimum 

degree among the vertices of  G. We refer [1] for undefined term and notation. A topological index is a 

numerical parameter mathematically derived from the graph structure. Numerous such topological 

indices have been considered in theoretical chemistry and have some applications. The Revan vertex 

degree of  a vertex in G is defined as        G G
r v G G d v    . The Revan edge connecting 

the Revan vertices u and v will be denoted by uv. The first and second Revan indices of  a graph G, 

defined as      
 

1 G G

uv E G

R G r u r v


  and      
 

2 G G

uv E G

R G r u r v


  .  

 

2. Preliminaries 

Definition 2.1 The square of  a graph G is obtained by starting with G, and adding the edges between 

two vertices whose distance in G is two. 

Definition 2.2 For a graph, the maximum degree denoted by  G , is the vertex with greatest 

number of  edges incident to it. The minimum degree denoted by  G , is the degree of  the vertex 

with least number of  edges incident to it. 

Definition 2.3 The Revan vertex degree of  a vertex in G is defined as 

       G G
r v G G d v    . 

Abstract: There are many topological indices. Among the  degree based topological indices, Randic 

index Zagreb indices, Banhatti indices etc. The Revan vertex degree of  a vertex in G is defined as 

       G G
r v G G d v    . The revan edge connecting the revan vertices u and v will be 

denoted by uv. The first and second Revan indices of  a graph G, defined as 

     
 

1 G G

uv E G

R G r u r v


  and      
 

2 G G

uv E G

R G r u r v


  . In this paper we obtain the first 

and second Revan indices of  certain graphs say square path, square cycle, wheel graph, fan graph and 

comb graph.  
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Definition 2.4 The first and second Revan indices of  a graph G, defined as 

     
 

1 G G

uv E G

R G r u r v


  and      
 

2 G G

uv E G

R G r u r v


  .  

Definition 2.5  Comb is a graph obtained by joining a single pendent edge to each vertex of  a path.  

Definition 2.6 The corona graph 
1 2
*G G of  two graphs 

1
G  and 

2
G is graph G obtaining by taking 

one copy o of  f
1

G  which has 
1

p - vertices ,and 
1

p copies of  
2

G and then joining 
th

i  vertex 
1

G  to 

every vertex in the 
th

i  copy of  
2

G .  

 

 

3. Main Results  

Theorem 3.1 Let 
n

P  is the path graph then  

1. 
1
( ) 2

n
R P n  

2.  2
1R G n   

Proof. Let G be the graph 
n

P . In the path graph by the algebraic method there are two types of  edges on 

the degree of  end vertices as follows 

      12 12
/ 1& 2 , 2

G G
E uv E G d u d v E      

      22 22
/ 2& 2 , 3

G G
E uv E G d u d v E n      .  

Thus we have two types of  revan edges based on the degree of  the end revan vertices of  each edge as 

follows, we have     3G G   . 

      21 21
/ 2& 1 , 2

G G
RE uv E G r u r v RE      

      11 11
/ 1& 1 , 3

G G
RE uv E G r u r v RE n       

1. To compute 
1
( )

n
R P , we see that 

   
 

       

    
21 11

1

1

( )

2 2 1 3 1 1

6 2 6

( ) 2

G G

uv E G

G G G G

RE RE

R G r u r v

r u r v r u r v

n

n

R G n



 

   

    

  




 
 

 

2. To compute 2
( )

n
R P , we see that  

   
 

2
( )

G G

uv E G

R G r u r v


   

       
21 11

2
( )

G G G G

RE RE

R G r u r v r u r v    
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21 11

2

2

( )

2 1 2 3 1 1

4 3

( ) 1

G G G G

RE RE

R G r u r v r u r v

n

n

R G n

 

    

  
 

 

 

            

           

 Theorem 3.2Let 
2

n
P  is the square path graph then  

1. 
2

1
( ) 8 2

n
R P n   

2.  2

2
8 20

n
R P n   

Proof. Let G be the graph 
2

n
P . In the square path graph by the algebraic method there are four 

types of  edges on the degree of  end vertices as follows 

      24 24
/ 2& 4 , 2

G G
E uv E G d u d v E      

      23 23
/ 2& 3 , 2

G G
E uv E G d u d v E      

      34 23
/ 3& 4 , 4

G G
E uv E G d u d v E      

      44 44
/ 4& 4 , 2 11

G G
E uv E G d u d v E n       

Thus we have four types of  revan edges based on the degree of  the end revan vertices of  each edge as 

follows, we have     6G G   . 

      43 43
/ 4& 3 , 2

G G
RE uv E G r u r v RE      

      42 42
/ 4& 2 , 2

G G
RE uv E G r u r v RE      

      32 32
/ 3& 2 , 4

G G
RE uv E G r u r v RE      

      22 43
/ 2& 2 , 2 11

G G
RE uv E G r u r v RE n       

1. To compute 
2

1
( )

n
R P , we see that 

   
 

               

        
 

43 42 32 22

1

1

( )

2 4 3 2 4 2 4 3 2 2 11 2 2

14 12 20 2 11 4

46 8 44

( ) 8 2

G G

uv E G

G G G G G G G G

RE RE RE RE

R G r u r v

r u r v r u r v r u r v r u r v

n

n

n

R G n



 

       

        

    

  
 



   

 

2. To compute 
2

2
( )

n
R P , we see that  

   
 

2
( )

G G

uv E G

R G r u r v
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43 42 32 22

2

2

( )

2 4 3 2 4 2 4 3 2 2 11 2 2

24 16 24 8 44

( ) 8 20

G G G G G G G G

RE RE RE RE

R G r u r v r u r v r u r v r u r v

n

n

R G n

   

        

    
 

   

 

            

       

Theorem 3.3 Let n
C  is the cycle graph then  

1. 1
( ) 4

n
R C n  

2.  2
4

n
R C n  

Proof. Let G be the graph n
C . In the cycle graph by the algebraic method there is one type of  edges on 

the degree of  end vertices as follows 

      22 22
/ 2& 2 ,

G G
E uv E G d u d v E n      

Thus we have one type of  revan edges based on the degree of  the end revan vertices of  each edge as 

follows, we have     4G G   . 

      22 22
/ 2& 2 ,

G G
RE uv E G r u r v RE n      

1. To compute 1
( )

n
R C , we see that 

   
 

   

 
22

1

1

( )

2 2

( ) 4

G G

uv E G

G G

RE

R G r u r v

r u r v

n

R G n



 

 

 






 

2. To compute 2
( )

n
R C , we see that  

   
 

2
( )

G G

uv E G

R G r u r v


   

   

 
22

2

2

( )

2 2

( ) 4

G G

RE

R G r u r v

n

R G n



 




 

            

Theorem 3.4 Let 
2

n
C  is the square cycle graph then  

1. 
2

1
( ) 16

n
R C n  

2.  2

2
32

n
R C n  

Proof. Let G be the graph 
2

n
C . In the square cycle graph by the algebraic method there is one type of  

edges on the degree of  end vertices as follows 

      44 44
/ 4& 4 , 2

G G
E uv E G d u d v E n      
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Thus we have one type of  revan edges based on the degree of  the end revan vertices of  each edge as 

follows, we have     8G G   . 

      44 44
/ 4& 4 , 2

G G
RE uv E G r u r v RE n      

1. To compute 
2

1
( )

n
R C , we see that 

   
 

   

 
44

1

1

( )

2 4 4

( ) 16

G G

uv E G

G G

RE

R G r u r v

r u r v

n

R G n



 

 

 






 

2. To compute 
2

2
( )

n
R C , we see that  

   
 

2
( )

G G

uv E G

R G r u r v


   

   

 
44

2

2

( )

2 4 4

( ) 32

G G

RE

R G r u r v

n

R G n



 




 

            

Theorem 3.5 Let 
1,n

W  is the wheel graph then  

1.  1 1,
( ) 3 1

n
R W n n   

2.    2

2 1,
3

n
R W n n   

Proof. Let G be the graph 
1,n

W . In the wheel graph by the algebraic method there are two types of  

edges on the degree of  end vertices as follows 

      3 3
/ 3& ,

n G G n
E uv E G d u d v n E n      

      33 33
/ 3& 3 ,

G G
E uv E G d u d v E n      

Thus we have two types of  revan edges based on the degree of  the end revan vertices of  each edge as 

follows, we have     3G G n    . 

      3 3
/ 3& ,

n G G n
RE uv E G r u r v n RE n      

      / & ,
nn G G nn

RE uv E G r u n r v n RE n      

1. To compute 
1 1,
( )

n
R W , we see that 

   
 

       

   

 

3

1

2 2

1

( )

3

3 2

( ) 3 1

n nn

G G

uv E G

G G G G

RE RE

R G r u r v

r u r v r u r v

n n n n n

n n n

R G n n
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2. To compute 
2 1,
( )

n
R W , we see that  

   
 

2
( )

G G

uv E G

R G r u r v


   

       

   

 

3

2

2 3

2

2

( )

3

3

( ) 3

n nn

G G G G

RE RE

R G r u r v r u r v

n n n n n

n n

R G n n

 

  

 

 

 

 

            

Theorem 3.5 Let n
F  is the fan graph then  

1. 
2

1
( ) 3 3 6

n
R F n n    

2.   3 2

2
3 1

n
R F n n n     

Proof. Let G be the graph n
F . In the fan graph by the algebraic method there are four types of  edges on 

the degree of  end vertices as follows 

      2 2
/ 2& , 2

n G G n
E uv E G d u d v n E      

      3 3
/ 3& , 2

n G G n
E uv E G d u d v n E n       

      23 23
/ 2& 3 , 2

G G
E uv E G d u d v E      

      33 33
/ 3& 3 , 3

G G
E uv E G d u d v E n       

Thus we have four types of  revan edges based on the degree of  the end revan vertices of  each edge as 

follows, we have     2G G n    . 

      2 2
/ 2& , 2

n G G n
RE uv E G r u r v n RE      

          2 1 2 1
/ 2& 1 , 2

G Gn n
RE uv E G r u r v n RE n         

            1 1 1 1
/ 1& 1 , 3

G Gn n n n
RE uv E G r u n r v n RE n            

          1 1
/ & 1 , 2

G Gn n n n
RE uv E G r u n r v n RE        

1. To compute 1
( )

n
R F , we see that 

   
 

       
 

   
  

   
 

         
       

2 2 1 1 1 1

1

2 2

2

1

( )

2 2 2 2 1 3 1 1 2 1

2 4 2 2 8 6 4 2

( ) 3 3 6

n n n n n n

G G

uv E G

G G G G G G G G

RE RE RE RE

R G r u r v

r u r v r u r v r u r v r u r v

n n n n n n n n

n n n n n n

R G n n
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2. To compute 2
( )

n
R F , we see that  

   
 

2
( )

G G

uv E G

R G r u r v


   

       
 

   
  

   
 

            
     
   

2 2 1 1 1 1

2

2

2 2

2 3 2 2

3 2

2

( )

2 2 2 2 1 3 1 2 1

4 2 2 2 3 2 1 2 2

4 2 6 4 5 7 3 2 2

( ) 3 1

n n n n n n

G G G G G G G G

RE RE RE RE

R G r u r v r u r v r u r v r u r v

n n n n n n n

n n n n n n n n

n n n n n n n n

R G n n n

   

   

           

         

         

   

   

 

            

Theorem 3.6 Let 1n
C K  is the corona graph then  

1. 1 1
( ) 6

n
R C K n   

2.  2 1
4

n
R C K n   

Proof. Let G be the graph 1n
C K . In the corona graph by the algebraic method there are two types of  

edges on the degree of  end vertices as follows 

      13 13
/ 1& 3 ,

G G
E uv E G d u d v E n      

      33 33
/ 3& 3 ,

G G
E uv E G d u d v E n      

Thus we have two types of  revan edges based on the degree of  the end revan vertices of  each edge as 

follows, we have     4G G   . 

      13 13
/ 1& 3 ,

G G
RE uv E G r u r v RE n      

      11 11
/ 1& 1 ,

G G
RE uv E G r u r v RE n      

1. To compute 1 1
( )

n
R C K , we see that 

   
 

       

   
31 11

1

1

( )

3 1 1 1

( ) 6

G G

uv E G

G G G G

RE RE

R G r u r v

r u r v r u r v

n n

R G n



 

   

   





 
 

2. To compute 2 1
( )

n
R C K , we see that  

   
 

2
( )

G G

uv E G

R G r u r v


   



Scope 
Volume 13 Number 3 September 2023 

 

 

1210 www.scope-journal.com 

 

       

   
31 11

2

2

( )

3 1 1 1

3

( ) 4

G G G G

RE RE

R G r u r v r u r v

n n

n n

R G n

 

   

 


 

 

            

Theorem 3.7Let 1n
P K  is the comb graph then  

1. 1 1
( ) 6 2 4

n
R P K n n     

2.  2 1
4 7 4

n
R P K n n     

Proof. Let G be the graph 1n
P K . In the comb graph by the algebraic method there are four types of  

edges on the degree of  end vertices as follows 

      12 12
/ 1& 2 , 2

G G
E uv E G d u d v E      

      13 13
/ 1& 3 , 2

G G
E uv E G d u d v E n       

      23 23
/ 2& 3 , 2

G G
E uv E G d u d v E      

      33 33
/ 3& 3 , 3

G G
E uv E G d u d v E n       

Thus we have four types of  revan edges based on the degree of  the end revan vertices of  each edge as 

follows, we have     4G G   . 

      32 32
/ 3& 2 , 2

G G
RE uv E G r u r v RE      

      21 21
/ 2& 1 , 2

G G
RE uv E G r u r v RE      

      31 31
/ 3& 1 , 2

G G
RE uv E G r u r v RE n       

      11 11
/ 1& 1 , 3

G G
RE uv E G r u r v RE n       

1. To compute 1 1
( )

n
R P K , we see that 

   
 

               

         
   

32 31 21 11

1

1

( )

2 3 2 2 3 1 2 2 1 3 1 1

10 4 8 6 2 6

( ) 6 2 4

G G

uv E G

G G G G G G G G

RE RE RE RE

R G r u r v

r u r v r u r v r u r v r u r v

n n

n n

R G n n



 

       

         

     

  



   

 

2. To compute 2
( )

n
R F , we see that  

   
 

2
( )

G G

uv E G

R G r u r v
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32 31 21 11

2

2

( )

2 3 2 2 3 1 2 2 1 3 1 1

12 3 6 4 3

( ) 4 7 4

G G G G G G G G

RE RE RE RE

R G r u r v r u r v r u r v r u r v

n n

n n

R G n n
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