
Scope 
Volume 13 Number 3 September 2023 

 

 

411 www.scope-journal.com 

 

 

Zero-Truncated Model Estimations of Fake Drug Syndicates Inonitsha 

Southeast, Nigeria 

Ugochukwu Osisiogu1, Theresa Efor2, Chinwuba Emeka3 

 

1 Ebonyi State University, Department of Industrial Mathematics and Applied Statistics, Abakaliki, 

Ebonyi State, Nigeria. 
2Ebonyi State University, Department of Industrial Mathematics and Applied Statistics, Abakaliki, Ebonyi 

State, Nigeria. 
3Ebonyi State University, Department of Industrial Mathematics and Applied Statistics, Abakaliki, Ebonyi 

State, Nigeria. 

 

Corresponding Author:  Theresa Efor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.  Introduction 

Onitsha, a commercial city of Anambra State, is in the Southeast of Nigeria. According to the National 

Population Commission (NPC) estimate, the city has a population of 1.5 million inhabitants in 2021. The 

National Bureau of Statistics (NBS) 2021 report, estimated annual volume of trade in Onitsha-Market to 

be in excess of three billion US dollars, with about 40% of this earnings coming from none banking 

transactions. This makes Onitsha market one of the highest Gross Domestic Product (GDP) in Nigeria 

and one of the biggest Markets in Africa, the report stated.  

Being the commercial hub of Southeast of Nigeria, different goods and services are traded in Onitsha 

markets. Among them are Building Material Market; Ceramic Market; Foods and Vegetables Market; 
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estimators under zero-truncated Poisson model gives the population size of fake drug Syndicates as 6579. As 

1434 were observed, this means that only about 22% of these Syndicates are observed with 95% confidence 

interval of 19%-25% leaving about 78% unobserved still in the distribution chain of this drugs. Similarly, the 

weighted estimator for the four candidate estimators under zero-truncated geometric model is 12649 with only 

about 11% of the population being observed with confidence interval of 10%-13%, leaving about 89% still in 
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Footwear Market; Abada Market; Main Market; Drug Markets and so forth. Following frequent demand 

for cheap drugs, fake and adulterated drugs freely entered into Onitsha drug market without control. The 

influx had nearly peaked in 2007 before the National Agency for Food and Drug Administration Control 

(NAFDAC)set up a Special Zonal Office in Onitsha to control the spread. 

NAFDAC Onitsha Special Office thus embarked on aggressive surveillance and arrested many syndicates, 

sealed off many pharmaceutical stores found with fake or adulterated drugs; seizedtruck loads of fake or 

adulterated drugs and either destroyed or confiscated them. The Daily Champion Newspapers in its 

March, 2007 edition reported that NAFDAC Onitsha Zonal Office intercepted many truck loads of fake, 

banned and substandard drugs worth about 6.5 billion naira. In fact, the alarming situation resulted in 

closing down the whole drug markets in Onitsha by NAFDAC in 2007.  

The Chairman of Kano State Taskforce on Counterfeit Drugs also added his voice to the return of fake 

drugs in Onitsha drug markets. He, therefore, called for immediate closure of the market to insulate the 

country from unwholesome drugs where counterfeit drugs were being shipped to Kano, (Guardian 

Newspapers May 2018). The chairman said: “From 2012 when the Taskforce was established till date, we 

have confiscated and destroyed fake drugs including codeine, tramadol and other out of prescription 

medication drugs from Onitsha drug markets”  

The genuine traders in Onitsha drug markets even lamented on the return of drug cartels. Bridge Head 

Drug Market Traders Association raised the alarm in a press conference in 2020, saying that drug barons 

were trying to use the upcoming election in the market to return to the business by foisting one of their 

candidates as a leader. “If you know the history of our market”, they said, you will know that the market 

was closed down many years ago by Prof. Dora Akunyili when she was Director General of NADFAC 

because the market became notorious for fake drugs (Daily Post Newspapers, March 15, 2020).These were 

some of the disturbing comments about the return of fake drugs in Onitsha Markets.  .  

Arrest of syndicates of these drugs by NAFDAC, National Drug Law Enforcement Agency (NDLEA) and 

the Police were huge, confiscation and destruction of them were alarming, yet the influx continued to soar. 

This means there are many fake drug syndicates that escaped arrest by the NAFDAC. Hence the cell 𝑓0 is 

empty in the NAFDAC records. 

Frequency counts of observed cases in a single register or multiple registers with the aim to estimate the 

number of unobserved cases give rise to zero truncated models. This method has been used to estimate the 

hidden populations of illicit drug users and homeless persons in [1].Let us consider a population of size N 

and count variable Y taking values from the set of integers {0, 1, 2, 3…}. For example, in the study of drug 

syndicates Y might represent the number of times a syndicate is arrested. Also denote with𝑓0, 𝑓1, 𝑓2  …, the 

frequency with which a 0, 1, 2, …, occurs in this population. Again consider a list where every syndicate 

arrested is included except Y = 0, meaning that the syndicate escape arrest. This list reflects a count 

variable truncated at zero which we denote by Y0.Accordingly, the list will have observed 

frequencies𝑓1, 𝑓2, 𝑓3  …, but the frequency f0 of zeros in the population is unknown.  

Let 𝑛 denotes the size of the observed zero-truncated counts with 𝑓𝑘 being the frequency of observing 

exactly 𝑘 counts. 

In this paper, we use similar description of[2], that fake drug syndicates (in general terminology can be 

regarded as units) that are arrested only once are also called singleton, units that occur twice are called 

doubletons and units that occur thrice are called tripletons, and so forth. In Table I, there are 1250 

singletons, whereas there are only 94 doubletons and 25 tripletons. This huge number of singletons might 

be easily explained as being caught once by the NAFDAC officials.  
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1.1. Objectives 

The objectives of this paper are the following 

 To use estimators namely Maximum Likelihood, Turing, Chao's Lower Bound, and  Zelterman 

 estimators under zero truncated Poisson distribution in estimating fake drug  Syndicates in 

Onitsha  

  To use estimators namely Maximum Likelihood, Turing, Chao's Lower Bound, and  Zelterman 

estimators       under zero truncated geometric distribution to estimate the population size of fake 

drug Syndicates in Onitsha 

 To construct a weighted estimators for estimating the fake drug Syndicates in Onitsha  

 

2. Materials and Methods 

Capture-recapture methods have been proven to provide reliable estimates of hidden populations, 

including illegal populations in [3].  The method relies on a pattern found in the observed part of the 

population to make inference on the unobserved part. We start by reviewing some methodologies relevant 

to our study. 

Table 1 represents the  Frequency distribution (per count) of NAFDAC records on fake drug syndicates 

(FDSs) in Onitsha Markets from January 2011―December 2011 (figures extracted from A Quarterly 

Magazines of National Agency for Food and Drug Administration and Control (NAFDAC) Vol.2 No.2 

2011 

 

 

 

TABLE I 

 

Kind of offense committed  Number of arrest per month   𝑛 𝑓1𝑓2𝑓3𝑓4𝑓5𝑓6𝑓7𝑓8𝑓9𝑓10𝑓11𝑓12 

Sale of falsified drug 

Sale of expired drug 

Sale of unregistered drug 

Sale of banned drug 

565    54    15      9      8      5     5     3     3     1      1      0 

288    20      6      3      3      2     1     1     0     1      0      0 

210    14      3      4      3      2     1     1     0     0      0      0 

187      6      1      2      2      2     1     1     0     0      0      0 

669 

325 

238 

202 

Count of FDSs  1250  94    25    18    16    11     8     6     3     2      1      0 1434 

Frequency distribution (per count) of NAFDAC 

 

2.1 Horvitz-Thompson estimator: With capture-recapture experiment, the frequency counts of arrested 

syndicates are the variable of interest. NAFDAC records provides a count 𝑌𝑘> 0 of how many times a 

syndicate 𝑘𝑡ℎ has been arrested, for 𝑘 = 1, 2,…, 𝑛 and 𝑌𝑘 = 0 for syndicates that escape arrest. If we let 𝑃0 

be the probability of a syndicate that escaped arrest, then 𝑁(1- 𝑃0) is the expected number of syndicates 

that has been arrested which can be estimated. This leads us to a simple equation used to estimate the 

population size N. Thus we have: 𝑁 = 𝑁𝑃0+ 𝑁(1 − 𝑃0) = 𝑁𝑃0 + 𝑛.       (2.1) 

This simple equation (2.1) can be solved by estimating N to provide the Horvitz-Thomson estimator which 

we shall note as: �̂�𝐻𝑇𝐸 = 𝑛(1−𝑃0)         (2.2) 

The variance of Horvitz-Thomson estimator (�̂�𝐻𝑇𝐸) as can be seen in[4]is given as 𝑉𝑎𝑟(�̂�𝐻𝑇𝐸)= 
𝑛(1−𝑃0)𝑃0(1−𝑃0)2         (2.3) 
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A common approach for deriving an estimator, P0, is based upon counting repeated trials. According to 

[4], this is referred to as a capture–recapture experiment in continuous time (CRECT).The estimators we 

use in this study is built upon this Horvitz-Thompson estimator. 

2.2Poisson model with zero-truncation 

A typical capture-recapture method is interested in finding appropriate models for the count variables. In 

the study of animal abundance, the probability of capturing of animals usually followed a binomial 

distribution. If there are many trapping occasions with little catch,binomial distribution need to be 

approximated by Poisson which work well in rare a success. Let Y follows a Poisson distribution with 

parameter ʎ so that:  𝑃(𝑌 = 𝑘)  = 𝑃0(𝑘|ʎ) = 
exp (−ʎ)ʎ𝑘𝑘! ,   𝑘 = 0, 1, 2, 3, …     (2.4) 

The zero-truncated Poisson distribution is defined as a probability function conditional on y > 0, such that: 𝑃(𝑌+ = 𝑘) = 𝑃0+(𝑘|ʎ)=
exp (−ʎ)ʎ𝑘1−exp (−ʎ)𝑘! , 𝑘 = 0, 1, 2, 3, …    (2.5) 

If we let 𝑛 to be the number of syndicates arrested, and 𝑓0 the frequencies of syndicates not arrested, then 

population of syndicates N shall be: 

N = 𝑛 + 𝑓0(2.6) 

 

2.3Geometric model with truncation: Geometric distribution on the other hand arises as a result of a 

mixtureof Poisson parameter with exponential distribution according to [5]. The geometric distribution has 

a major interesting property that turns out to be useful for the truncated process: 

Let (1 − 𝑝)𝑘  𝑝 be the geometric for 𝑘 = 0,1, …  . The zero-truncated geometric is of the form (1 − 𝑝)𝑘−1𝑝;𝑘 = 1,2, 3, … 

Assuming that each syndicate in the population has equal chance of being arrested, it then follows that: 𝑃𝑘(𝑌 > 0) = 𝑃(𝑌 > 0) = 1 − 𝑃(𝑌 = 0)      (2.6) 

Hence, therefore, the population size of syndicates can be estimated by means of the Horvitz-Thompson 

estimator: �̂� = ∑ 11−𝑃(𝑌=0)𝑛𝑘=1  = 
𝑛exp (−ʎ)    (2.7) 

 

 

 

3.  Estimators of Poisson and Geometric Models 

 

3.1 Maximum likelihood estimator (�̂�𝑴𝑳𝑬):Authors in [6] defined Maximum likelihood method as a 

traditional technique used to derive estimators.  If we let 𝐾1, 𝐾2,...,𝐾𝑛be a random sample with probability 

density function𝑓(𝑘; 𝜃), the likelihood function is defined as: 

 𝐿(𝜃)= ∏ 𝑓(𝑘; 𝜃)𝑛𝑖=1      (3.0) 

 

We can then obtain the maximum likelihood estimator (MLE) for unknown parameter 𝜃 by maximizing 

the function,𝐿(𝜃), by differentiating it with respect to𝜃 and equating to zero.  For instance, if we let 𝑌𝑖 be 

the number of times that 𝑖thsyndicate was arrested over the surveillance period say,𝐾 = 1,2,3, … , 𝑘. The 

count data 𝐾 is modeled by the zero-truncated Poisson distribution with probability function: 
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𝑃0+(𝑘; ʎ) = 
exp (−ʎ)ʎk𝑘!(1−exp(−ʎ)); ʎ> 0,  𝑘 = 1, 2, 3, …      (3.1) 

 

If we let 𝑓𝑘 denotes the frequencies of syndicates arrested 𝑘 times over the period of the surveillance where 𝑘 = 1,2, … 𝑚 and ∑ 𝑓𝑘𝑚𝑘=1 = n. Then, the likelihood function for this zero-truncated count density shall be: 

𝐿(ʎ)= ∏ ( 𝑃0(𝑘,   ʎ)1−exp (−ʎ))𝑓𝑘𝑚𝑘=1 𝑘 = 1,2, … , 𝑚      (3.2) 

With the information in (3.2), the log-likelihood function shall be: 𝑙(ʎ) = −𝑛ʎ + logʎ ∑ k𝑓𝑘 − ∑ 𝑓𝑘mk=1 log(k!) − nlog(1 − exp(−ʎ))mk=1  (3.3) 

When we take derivative of 𝑙(ʎ) with respect to ʎ we shall have: 

𝜕𝑙𝜕ʎ = −𝑛 + 1ʎ ∑ 𝑘𝑓𝑘 − 𝑛 𝑒𝑥𝑝(−ʎ)1−exp (−ʎ)𝑚𝑘=1  = 0       (3.4) 

1𝑛 ∑ 𝑘𝑓𝑘𝑚𝑘=1 = 
ʎ1−exp (−ʎ) �̅� = 

ʎ̂1−exp (−ʎ̂ ) or ʎ̂= �̅�(1 − exp (− ʎ̂)  

 

ByapplyingTaylor’s series approximation, the value of ʎ̂ can be approximated as  

 ʎ̂ = 2(�̅�−1�̅� ) 

The likelihood function (3.3) can be maximized with algorithm between the E-Step and M-step. 

(i) Expectation (E-Step): The expected value of unobserved case 𝑓0 given that the observed variable is 

known, the current estimates of likelihood parameter are derived as follows: 𝑓0 = 𝐸(𝑓0, 𝑓1, 𝑓2 … . . , 𝑓𝑚;  ʎ)     = 𝑝0𝑁     (3.5) 

     = exp(−ʎ)(n + 𝑓0 ) 

Hence  𝑓0 = 
𝑛 𝑝01−𝑝0 = 

𝑛 exp (−ʎ)1−exp (−ʎ)    (3.6) 

 

(ii) Maximization (M-Step): In this step, the unobserved, complete data likelihood function is maximized 

by using observed cases (𝑛) and unobserved cases (𝑓0) that is imputed from initial value in first iteration 

and from 𝑓0 from E-Step for next iteration. The estimate of ʎ in M-Step is  ʎ̂𝑀𝐿𝐸 = 
1𝑛+𝑓0 (0𝑓0 + 1𝑓1 + 2𝑓2 + ⋯ + 𝑚𝑓𝑚)  (3.7) 

Where, 𝑛 is the total number of observed cases and on the condition that 𝑓0= 𝑓0. The EM-algorithm 

requires iterating between E-step and M-step until ʎ̂𝑀𝐿𝐸 and 𝑓0converges. The initial value is very 

important to start the procedure, so it should be selected carefully. In [5], the authors suggested that the 

value may beset to sample mean.  

(iii) Maximization (Poisson Approach):As a result of replacing ʎ̂𝑀𝐿𝐸in Horvitz-Thompson approach 

(2.2), the population size estimator with regard to maximum likelihood under Poisson shall be: N̂𝑀𝐿𝐸−𝑝 = 
𝑛 1−exp (ʎ̂𝑀𝐿𝐸) (3.8) 

The variance of (3.7) was estimated as 



Scope 
Volume 13 Number 3 September 2023 

 

 

416 www.scope-journal.com 

 

 

𝑉𝑎�̂�(�̂�𝑀𝐿𝐸−𝑃)= 
�̂�𝑀𝐿𝐸−𝑃(𝑒𝑥𝑝( ∑ 𝑘𝑓𝑘�̂�𝑀𝐿𝐸−𝑃)− ∑ 𝑘𝑓𝑘�̂�𝑀𝐿𝐸−𝑃)    (3.9) 

  

For variance estimate (3.9), the reader isreferred to [7]), [8], [9] and [10])for more understanding.  

(iv). Maximization (Geometric Approach): Here, we consider maximum likelihood estimation under 

geometric model. We assume that count data K is modeled by a geometric distribution with probability 

function 𝑝𝑘 = (1 − 𝑝)𝑘p; 𝑘 = 0, 2,…and the zero-truncated geometric likelihood is of the form 𝐿(𝑝)=∏ ((1 − 𝑝)𝑘−1𝑝𝑓𝑘)𝑚𝑘=1 . 

The log-likelihood function is 𝑙𝑜𝑔𝐿(𝑝) = log (1 − 𝑝) ∑ 𝑓𝑘(𝑘 − 1) + log 𝑝 ∑ 𝑓𝑘𝑚𝑘=1𝑚𝑘=1   (3.10)  

To find the maximum likelihood estimator (MLE) of unknown parameter 𝑝 we differentiate (3.10) with 

respect to 𝑝 and set it to zero, and we shall have: 

 𝜕𝑙𝜕p = − ∑ 𝑓𝑘(𝑘−1)𝑚𝑘=11−𝑝 + ∑ 𝑓𝑘𝑚𝑘=1𝑝  = 0 �̂� = 
𝑛𝑆 

Hence under the assumption of zero-truncated geometric model the population size estimator with the 

maximum likelihood approach shall be: �̂�𝑀𝐿𝐸−𝐺  = 
𝑛1−𝑛/𝑆   (3.11) 

Wheres =∑ 𝑘𝑓𝑘𝑚𝑘=1 . The variance estimation of the MLE-G in (3.11) can be estimated as  𝑉𝑎�̂�(�̂�𝑀𝐿𝐸−𝐺) = 
𝑆2𝑛2(𝑆−𝑛)2        (3.12) 

For more details of (3.12), the reader is referred to [11]. 

 

3.2 Turing estimator (�̂�𝑻): According to[5], Turing estimation is formulated to estimate the number of 

classes or species of animals which is defined as the sum of probabilities of observed classes. For the 

author, the estimator can be used to estimate the total number of population. Let 𝑓𝑘 be the frequency of 

individuals detected exactly k times, k = 0, 1, 2, .., m where m is the largest observed count. The total 

number of observed cases in the sample is 𝑛 = ∑ 𝑓𝑘𝑚𝑘=1  and the total number of captured cases can be 

defined as  𝑆 = 1𝑓1 + 2𝑓2 + ⋯ + 𝑚𝑓𝑚 

 

3.3. Turing Estimation under Poisson: Under Poisson,let 𝑝𝑘 denotes the probability that a syndicate has 

been arrested exactly 𝑘 times. Assume that K has homogeneous Poisson distribution with parameter ʎ so 

that 𝑝0= exp(−ʎ) and 𝑝1= ʎ exp(−ʎ),we can write: 𝑝0= exp(−ʎ ) = 
exp(−ʎ)ʎʎ  = 

𝑝1𝐸(𝐾)        (3.13) 

The estimator of 𝑝0can be calculated from observed frequency as follows: 
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�̂�0 = 
𝑓1/𝑁𝑆/𝑁  = 

𝑓1𝑆           (3.14) 

If we plug �̂�0 into Horvitz-Thompson estimator, Turing estimator for estimating the population size is 

given by: �̂�𝑇_𝑃 = 
𝑛1−𝑓1/𝑆          (3.15) 

  

The variance for Turing estimator can be estimated as 

𝑣𝑎�̂�(N̂𝑇_𝑃) = 
𝑛𝑓1/𝑆(1−𝑓1/𝑆)2 + 𝑛2(1−𝑓1/𝑆)4 (𝑓1(1−𝑓1𝑁 )𝑆2 + 𝑓12𝑆3)     (3.16) 

 

3.4. Turing Estimation under Geometric: Let K have a marginal probability mass function following the 

geometric distribution with parameter 𝑝 where 𝑝0= 𝑝; 𝑝1 = (1 − 𝑝)𝑝 and 𝐸(𝐾) = (1 − 𝑝)/𝑝 so that 

𝑃1𝐸(𝐾)  = 
𝑝(1−𝑃)(1−𝑝)/𝑝 = 𝑝2 

 √ 𝑃1𝐸(𝐾) = 𝑝 = 𝑝0 

The estimate of 𝑝0 can be calculated from the observed frequency as follows: �̂�0∗ = √𝑓1/𝑆       (3.17) 

 

Therefore, the extension of Turing estimator for estimating the population size under geometric model is 

given by: �̂�𝑇_𝐺 = 
𝑛1−√𝑓1/𝑆         (3.18) 

The variance of �̂�𝑇_𝐺 can be derived as 

𝑣𝑎�̂�(N̂𝑇_𝐺) = 
𝑛√𝑓1/𝑆(1−√𝑓1/𝑆)2 + 𝑛2 ( 𝑆+𝑓14𝑆2(1−√𝑓1/𝑆)4)      

 (3.19) 

 

3.5 Chao’s lower bound estimator (�̂�𝑪): Estimators we have so far discussed are developed under 

homogenous Poisson mode, but in practice it is rarely met. Therefore, it is more suitable to incorporate 

heterogeneity, and in doing that we assume that the target population may be composed of a variety of 

subgroups. Chao, in [12] provided a lower bound estimator for the population size N under the 

heterogeneous Poisson population. 

 

3.6 Chao’s lower bound estimator Poisson, �̂�𝑪_𝑷: Assuming that capture probability followed a Poisson 

mixture, Chao proved that the lower bound for the estimate of the number of unobserved shall be: 

𝑓0 = 
𝑓122𝑓2         (3.20) 

Where, the inequality 𝑓0 ≤ 𝑓0and its expected value are asymptotical. Finally,by adding the estimator 𝑓0 to 

the observed cases 𝑛 Chao’s lower bound estimator shall be:  

�̂�𝐶_𝑃 = 𝑛 + 
𝑓122𝑓2        (3.21) 
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The approximate variance formula for estimator in (3.21) which was provided by[11]is given as: 

𝑣𝑎�̂�(N̂𝐶_𝑃) = (14) 𝑓14𝑓23 + 𝑓13𝑓22 + (12) 𝑓12𝑓2        (3.22) 

3.7 Chao’s lower bound estimator geometric (�̂�𝑪_𝑮): Suppose Chao’s lower bound estimator under 

geometric heterogeneity is also considered,the estimate shall be: 

�̂�𝐶_𝐺 = 𝑛 + 
𝑓12𝑓2    (3.23) 

while its variance is 𝑣𝑎�̂�(N̂𝐶_𝐺) = 
𝑓14𝑓23 + 4𝑓13𝑓22 + 𝑓12𝑓2     (3.24) 

 

 

3.8 Zelterman’s estimator (�̂�𝒁): Because Poisson assumption is frequently violated, Zelterman (1988), 

argued that homogeneity Poisson probability may be valid for small ranges of Y such as from k to k+1. 

For example, singleton 𝑓1and doubleton 𝑓2 follows a homogeneous Poisson distribution, whereas other 

counts might be arbitrarily distributed according to [5] Thus, the neighbouring frequencies 𝑓𝑘 and 𝑓𝑘+1 can 

be used to estimate a parameter ʎ by considering Poisson distributions of truncated and untruncated as 

shown below: 

𝑃0(𝑘+1|ʎ)𝑃0(𝑘|ʎ)  =  
ʎ𝑘+1 and  

𝑃0+(𝑘+1|ʎ)𝑃0+(𝑘|ʎ)  = 
ʎ𝑘+1 respectively to estimate the ʎ.  

Thus we have:  ʎ = 
(𝑘+1)𝑃0+(𝑘+1|ʎ)𝑃0+(𝑘|ʎ)  = 

(𝑘+1)𝑃0+(𝑘+1|ʎ)𝑃0+(𝑘|ʎ)        (3.25)                                          

The estimator for ʎ is obtained by replacing 𝑃0+(𝑘|ʎ) with the empirical frequency𝑓𝑘 so that we shall have: ʎ ̂𝑘 = 
(𝑘+1)𝑓𝑘+1𝑓𝑘 .                                             (3.26) 

Thus, if we let k = 1, we find that ʎ ̂1 = 2𝑓2/𝑓1.The authors in [14]noted that the estimator (3.26) is often 

used for two reasons:  

i. ʎ ̂1is using frequencies in the vicinity of 𝑓0which is the target of prediction, 

ii. In many application studies for estimating 𝑓0 the majority of counts fall into 𝑓1 and 𝑓2 

For these two reasons, the estimator is not affected by changes in the data for counts larger than 2, which 

contributed largely to its robustness.  

(i) Zelterman estimator based on Poisson (�̂�𝑍−𝑃): Ifwe recall that if ʎ̂1 = 2𝑓2/𝑓1, thenZelterman estimator 

of Poisson distribution shall be: �̂�𝑍−𝑃 = 
𝑛1−𝑒𝑥𝑝(−ʎ)  =   

𝑛1−exp (−2𝑓2𝑓1 )    (3.27) 

Bohning (2006) worked out the variance of (3.26) to be: 𝑣𝑎�̂� (�̂�𝑍_𝑃) = 𝑛(
exp (−2𝑓2 𝑓1)⁄(1−exp (−2𝑓2 𝑓1))⁄ 2)[1 +  𝑛( exp (−2𝑓2 𝑓1)⁄(1−exp (−2𝑓2 𝑓1))⁄ 2) (2f2f1 )2 ( 1𝑓1 + 1𝑓2)]           (3.28) 

(ii) Zelterman estimator based on geometric distribution (�̂�𝑍_𝐺): In a similar way,Zelterman estimator 

under geometric distribution is given as  �̂�𝑍_𝐺 = 
𝑛𝑓1𝑓2              (3.29) 
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In [1], the variance of (3.27) is worked to be:𝑣𝑎�̂�(�̂�𝑍_𝐺)  =  
𝑛𝑓𝑓(𝑓1−𝑓2)𝑓22 + 𝑛2 (𝑓1𝑓22 + 𝑓12𝑓23) 

 

 

4. Analysis and Discussions 

Having reviewed some of the literatures relevant to our study,Table II shows the results of the population 

size estimates of fake drug syndicates with the four reviewed estimators under Poisson and geometric 

models.  

The data on Table II depicts that both MLE and Turing estimators have negative biases, but with small 

variances. While Zelterman’s estimator has small bias but with extra ordinary variance, Chao’s estimator 

is negatively biased a little bit but with large variance though not to be compared with other two variances 

abovementioned. In [4]the authors suggested that in such situation, there is need to combine the positive 

aspects of the estimators by construction of a weighted estimator, whichwas constructed as: 𝑁𝑊= (𝑤1�̂�𝑀𝐿𝐸 + 𝑤2�̂�𝑇 + 𝑤3�̂�𝐶 + 𝑤4�̂�𝑍)/(𝑤1 + 𝑤2 + 𝑤3 + 𝑤4), where �̂�𝑀𝐿𝐸, �̂�𝑇, �̂�𝐶  and �̂�𝑍 are the 

estimators of MLE, Turning, Chao and Zelterman respectively. Since the true variances are unknown it 

wise to use equal weights as follows: 𝑁𝑊 = 
14 (N̂𝑀𝐿𝐸+�̂�𝑇 + �̂�𝐶+ �̂�𝑍). Table III, thus, compared the four 

estimators with the weighted estimator. 

Table II 

 

Estimator 

 

Observed  

Poisson  Geometric  

Estimated     SE           CI Estimated      SE                CI 

MLE 

Turning  

Chao 

Zelterman 

1434 

1434 

1434 

1434 

2108        61.35   (1988, 2228) 

  4218       88.83   (4044, 4392) 

  9745627.01  (8516, 10974) 

10243906.70  (8466, 12020) 

   5925       276.05      (5384-6466) 

   7547       672.00      (6230-8864) 

18056      1955.81    (14223-21889) 

19069      2048.21    (15055-23083) 

Results of estimate of fake drug syndicates in Onitsha(see Table I) by four different estimators 

 

 

Table III 

 

Observed  

 

Model 

Estimator 

MLE     SE Turning SE Chao   SE Zelterman SE Weighted SE 

1434 Poisson 2108     

61.35 

4218   

88.83 

9745   627.01 10243     

906.70 

6579     421.00 

1434 Geometric 5925   

276.05 

7547 

672.00 

18056  1955.81 19069  

2048.21 

12649  1238.02 

    Result of MLE, Turing, Chao and Zelterman estimators and the weighted estimator 

 

In this study, we also categorized fake syndicates according to the offense they committed. The offenses 

are falsifying of genuine drugs, selling of expired drugs, selling of unregistered drugs and selling of banned 

drugs. Table IV displays the kind of offense a syndicate committed, the observed number of the syndicates 

arrested by the NAFDAC and the estimate of the population size of the syndicates by the four different 

estimators which we explored under Poisson and geometric models. We also constructed the weighted 

estimator of various offenses committed by the syndicates to compare it with the four estimators. The 

results of it are shown in Table V. 
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Table IV 

 

Offense 

 

Estimator 

 

Observe

d 

Poisson Geometric 

Estimated    SE (CI) Estimated  SE(CI) 

 

Falsifying of drug 

MLE 

Turning 

Chao 

Zeterman 

669 

669 

669 

669 

2230        105.6 (2023-2437) 

1115          42.0 (1033-1197) 

3625        476.0 (2692-4558) 

3717        482.0(2772-4662) 

1338          52.0 (1236-1440) 

1673          82.0 (1591-1755)  

6581        949.0 (4721-8441)   

7000      1027.0 (4987-9013) 

 

Selling of expired drug 

MLE 

Turning 

Chao 

Zeterman 

325 

325 

325 

325 

  878           85.0 (711-1045) 

1083        135.0 (818-1348) 

4472        526.0 (3441-5503) 

2708        613.0 (1507-3909) 

1548      170.0 (1215-1881) 

2031      411.0 (1225-2837) 

4472     1050.0 (2310-6634) 

4680     1110.9 (2503-6857) 

 

Selling of unregistered 

drug 

 

MLE 

Turning 

Chao 

Zeterman 

238 

238 

238 

238 

  680        75.3 (532-828) 

  768      146.1 (482-1054) 

1813      475.4 (881-2745) 

1983      535.8 (933-3033) 

1081       132.4 (822-1340) 

1400       254.9 (900-1900) 

3388       949.2 (1528-5248) 

3570     1010.4 (1590-5550) 

 

Selling of banned 

Drug 

MLE 

Turning 

Chao 

Zeterman 

202 

202 

202 

202 

697        99.8 (501-893) 

842        243.4 (365-1319) 

3116    1264.9 (637-5595) 

3367    1332.3 (756-5978) 

1122      165.3 (798-1446) 

1554       514.3 (546-2562) 

6030     2528.6 (1074-10986) 

6296     2647.2 (1107-11485) 

 

Results of estimate of fake drug syndicates in Onitsha Market by kind of offense committed 

 (See Table I) by the four estimators 

 

Table X 

Offense  Observe

d  

Model  MLE    SE Turing  SE Chao   SE Zelterman   

SE 

Weighted SE 

falsified drug 666 

666 

Poisson 

Geometri

c   

2230 (105.6) 

1338  (52.0) 

1115 (42.0) 

1673 (82.0) 

3625 (476.0) 

6581(949.0) 

3717(482.0) 

7000(1027.0) 

2672(276.4) 

4148(527.5) 

Expired drug 325 

325 

Poisson 

Geometri

c   

  878(85.0) 

1548 (170.0) 

1083(135.0

) 

2031(411.0

) 

4472(526.0) 

4472(1050.0) 

2708(613.0) 

4680(1110.9) 

2286(340.0) 

3183(685.5) 

Unregistered 

drug 

238 

238 

Poisson 

Geometri

c   

680 (75.3) 

1081 (132.4) 

768 (146.1) 

1400(254.0

) 

1813(475.4) 

3388(949.2) 

1983(535.8) 

3570 (1010.4) 

1311(308.2) 

2360(586.5) 

Banned 

Drug 

202 

202 

Poisson 

Geometri

c   

697 (99.8) 

1122 (165.3) 

842(243.4) 

1554(514.3

) 

3116(1264.9) 

6030(2528.6) 

3367(1332.3) 

6296(2647.2) 

2006(735) 

3751(1463.9) 

 

Results comparing MLE, Turing, Chao and Zelterman estimators of the kind offense committed and the 

weighted estimator 

 

4.1 Discussions of Results 

Chao’s lower bound, Turing and maximum likelihood estimators are some of the most qualified estimators 

used to estimate hidden population size in capture-recapture experiments. Turing and maximum 

likelihood estimations are developed under the Poisson homogeneity assumption whereas Chao’s lower 

bound is developed allowing heterogeneity.  

Coming back to the estimation of fake drug syndicates, data on Table II shows that 1434 syndicates were 

observed. Using zero-truncated Poisson model the estimators MLE, Turing, Chao and Zelterman yielded 
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2108, 4218, 9745, and 10243 respectively. But because the estimators have different results we 

consolidated their weights into one. The weighted estimator for Poisson gives the population size of fake 

syndicates as 6579. As 1434 were observed, this suggest to mean that only about 22% of the population of 

fake drug syndicates in Onitsha is observed with 95% confidence interval of 19% –25%. In similar way, the 

weighted estimator for geometric is 12649 with only about 11% of the population being observed with 

95%confidence interval of 10% –13%. We also looked at the most widely committed offense of fake drug 

syndicates. Data on Table IV shows that falsifying of genuine drug is more frequently committed offense, 

followed by selling of expired drugs.  

 

6. Conclusion: 

In conclusion, only 22% and 11% of the population of fake drug syndicates was observed under Poisson 

and geometric respectively is not good news for NAFDAC. It shows that the agency is not winning the 

war against fake drug circulation in Nigeria, especially in Onitsha drug markets. Consequently, NAFDAC 

officials should therefore redouble their efforts in the fight against the scourge, at least to reduce it to the 

barest minimum. More importantly, proper and regular record keeping of syndicate’s arrest by NAFDAC 

is advocated, at least for the agency to have empirical facts and statistical evidence to assess their 

performance, not by mere newspaper publications and press releases. Unfortunately, since after the 

NAFDAC report on fake drug syndicates (FDSs) from January 2011―December 2011 (which was 

extracted from NAFDAC Quarterly Magazine Vol.2 No.2 2011) no other report was released by the 

agency. In United Kingdom, offense of drunk-driving (DD) is recorded by the Driver and Vehicle 

Licensing Agency (DVLA), In [2]; and in Bangkok, Office of the Narcotic Control Board (ONCB) has 

record of methamphetamine in [5]; this is to mention only but a few. These databases enabled the agencies 

to access their performance, we therefore suggest to NAFDAC to follow suit immediately.  
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	1.  Introduction
	Onitsha, a commercial city of Anambra State, is in the Southeast of Nigeria. According to the National Population Commission (NPC) estimate, the city has a population of 1.5 million inhabitants in 2021. The National Bureau of Statistics (NBS) 2021 rep...
	Being the commercial hub of Southeast of Nigeria, different goods and services are traded in Onitsha markets. Among them are Building Material Market; Ceramic Market; Foods and Vegetables Market; Footwear Market; Abada Market; Main Market; Drug Market...
	NAFDAC Onitsha Special Office thus embarked on aggressive surveillance and arrested many syndicates, sealed off many pharmaceutical stores found with fake or adulterated drugs; seizedtruck loads of fake or adulterated drugs and either destroyed or con...
	The Chairman of Kano State Taskforce on Counterfeit Drugs also added his voice to the return of fake drugs in Onitsha drug markets. He, therefore, called for immediate closure of the market to insulate the country from unwholesome drugs where counterf...
	The genuine traders in Onitsha drug markets even lamented on the return of drug cartels. Bridge Head Drug Market Traders Association raised the alarm in a press conference in 2020, saying that drug barons were trying to use the upcoming election in th...
	Arrest of syndicates of these drugs by NAFDAC, National Drug Law Enforcement Agency (NDLEA) and the Police were huge, confiscation and destruction of them were alarming, yet the influx continued to soar. This means there are many fake drug syndicates ...
	Frequency counts of observed cases in a single register or multiple registers with the aim to estimate the number of unobserved cases give rise to zero truncated models. This method has been used to estimate the hidden populations of illicit drug user...
	Let 𝑛 denotes the size of the observed zero-truncated counts with ,𝑓-𝑘. being the frequency of observing exactly 𝑘 counts.
	In this paper, we use similar description of[2], that fake drug syndicates (in general terminology can be regarded as units) that are arrested only once are also called singleton, units that occur twice are called doubletons and units that occur thric...
	1.1. Objectives
	The objectives of this paper are the following
	2. Materials and Methods
	Capture-recapture methods have been proven to provide reliable estimates of hidden populations, including illegal populations in [3].  The method relies on a pattern found in the observed part of the population to make inference on the unobserved part...
	Table 1 represents the  Frequency distribution (per count) of NAFDAC records on fake drug syndicates (FDSs) in Onitsha Markets from January 2011―December 2011 (figures extracted from A Quarterly Magazines of National Agency for Food and Drug Administr...
	TABLE I
	Frequency distribution (per count) of NAFDAC
	2.1 Horvitz-Thompson estimator: With capture-recapture experiment, the frequency counts of arrested syndicates are the variable of interest. NAFDAC records provides a count ,𝑌-𝑘.> 0 of how many times a syndicate ,𝑘-𝑡ℎ. has been arrested, for 𝑘 = ...
	𝑁 = 𝑁,𝑃-0.+ 𝑁(1−,𝑃-0.) = 𝑁,𝑃-0.+𝑛.       (2.1)
	This simple equation (2.1) can be solved by estimating N to provide the Horvitz-Thomson estimator which we shall note as:
	,,𝑁.-𝐻𝑇𝐸.=,𝑛-(1−,𝑃-0.).         (2.2)
	The variance of Horvitz-Thomson estimator (,,𝑁.-𝐻𝑇𝐸.) as can be seen in[4]is given as
	𝑉𝑎𝑟,,,𝑁.-𝐻𝑇𝐸..= ,𝑛(1−,𝑃-0.),𝑃-0.-,(1−,𝑃-0.)-2..        (2.3)
	A common approach for deriving an estimator, P0, is based upon counting repeated trials. According to [4], this is referred to as a capture–recapture experiment in continuous time (CRECT).The estimators we use in this study is built upon this Horvitz-...
	2.2Poisson model with zero-truncation
	A typical capture-recapture method is interested in finding appropriate models for the count variables. In the study of animal abundance, the probability of capturing of animals usually followed a binomial distribution. If there are many trapping occa...
	𝑃(𝑌=𝑘)  = ,𝑃-0.(𝑘|ʎ) = ,exp(−ʎ),ʎ-𝑘.-𝑘!.,   𝑘=0, 1, 2, 3,…     (2.4)
	The zero-truncated Poisson distribution is defined as a probability function conditional on y > 0, such that:
	𝑃(,𝑌-+.=𝑘) = ,𝑃-0+.(𝑘|ʎ)=,exp(−ʎ),ʎ-𝑘.-1−exp(−ʎ)𝑘!.,  𝑘=0, 1, 2, 3,…    (2.5)
	If we let 𝑛 to be the number of syndicates arrested, and ,𝑓-0. the frequencies of syndicates not arrested, then population of syndicates N shall be:
	N = 𝑛 + ,,𝑓.-0.(2.6)
	2.3Geometric model with truncation: Geometric distribution on the other hand arises as a result of a mixtureof Poisson parameter with exponential distribution according to [5]. The geometric distribution has a major interesting property that turns out...
	Let ,(1−𝑝)-𝑘. 𝑝 be the geometric for 𝑘=0,1, …  . The zero-truncated geometric is of the form
	,(1−𝑝)-𝑘−1.𝑝;𝑘=1,2, 3, …
	Assuming that each syndicate in the population has equal chance of being arrested, it then follows that:
	,𝑃-𝑘.(𝑌>0) = 𝑃(𝑌>0) = 1−𝑃(𝑌=0)      (2.6)
	Hence, therefore, the population size of syndicates can be estimated by means of the Horvitz-Thompson estimator:
	,𝑁. = ,𝑘=1-𝑛-,1-1−𝑃(𝑌=0).. = ,𝑛-exp(−ʎ).    (2.7)
	3.  Estimators of Poisson and Geometric Models
	3.1 Maximum likelihood estimator (,,𝑵.-𝑴𝑳𝑬.):Authors in [6] defined Maximum likelihood method as a traditional technique used to derive estimators.  If we let ,𝐾-1.,,𝐾-2, . . .,,𝐾-𝑛..be a random sample with probability density function𝑓(𝑘;𝜃...
	𝐿(𝜃)= ,𝑖=1-𝑛-𝑓(𝑘;𝜃).     (3.0)
	We can then obtain the maximum likelihood estimator (MLE) for unknown parameter 𝜃 by maximizing the function,𝐿(𝜃), by differentiating it with respect to𝜃 and equating to zero.  For instance, if we let ,𝑌-𝑖. be the number of times that 𝑖thsyndic...
	,𝑃-0-+.(𝑘; ʎ) = ,exp(−ʎ),ʎ-k.-𝑘!(1−,exp-,−ʎ..).; ʎ> 0,  𝑘=1, 2, 3, …      (3.1)
	If we let ,𝑓-𝑘. denotes the frequencies of syndicates arrested 𝑘 times over the period of the surveillance where 𝑘=1,2,…𝑚 and ,𝑘=1-𝑚-,𝑓-𝑘..= n. Then, the likelihood function for this zero-truncated count density shall be:
	𝐿(ʎ)= ,𝑘=1-𝑚-,,,,𝑃-0.(𝑘,   ʎ)-1−exp(−ʎ)..-,𝑓-𝑘...𝑘=1,2,…,𝑚      (3.2)
	With the information in (3.2), the log-likelihood function shall be:
	𝑙(ʎ) = −𝑛ʎ+logʎ,k=1-m-k,𝑓-𝑘.−,k=1-m-,𝑓-𝑘..log,k!.−nlog(1−,exp-,−ʎ..). (3.3)
	When we take derivative of 𝑙(ʎ) with respect to ʎ we shall have:
	,𝜕𝑙-𝜕ʎ. = −𝑛+,1-ʎ.,𝑘=1-𝑚-,𝑘𝑓-𝑘.−,𝑛 𝑒𝑥𝑝(−ʎ)-1−exp(−ʎ).. = 0       (3.4)
	,1-𝑛.,𝑘=1-𝑚-𝑘,𝑓-𝑘..= ,ʎ-1−exp(−ʎ).
	,𝑣. = ,,ʎ.-1−exp(−,ʎ. ). or ,ʎ.= ,𝑣.(1−exp(− ,ʎ.)
	ByapplyingTaylor’s series approximation, the value of ,ʎ. can be approximated as
	,ʎ. = 2,,,𝑣.−1-,𝑣...
	The likelihood function (3.3) can be maximized with algorithm between the E-Step and M-step.
	(i) Expectation (E-Step): The expected value of unobserved case ,𝑓-0. given that the observed variable is known, the current estimates of likelihood parameter are derived as follows:
	,,𝑓.-0. = 𝐸(,𝑓-0.,,𝑓-1.,,𝑓-2.…..,,𝑓-𝑚.; ʎ)     = ,𝑝-0.𝑁     (3.5)
	= exp(−ʎ)(n+,,𝑓.-0. )
	Hence
	,,𝑓.-0. = ,𝑛 ,𝑝-0.-1−,𝑝-0.. = ,𝑛 exp(−ʎ)-1−exp(−ʎ).    (3.6)
	(ii) Maximization (M-Step): In this step, the unobserved, complete data likelihood function is maximized by using observed cases (𝑛) and unobserved cases (,𝑓-0.) that is imputed from initial value in first iteration and from ,,𝑓.-0. from E-Step for...
	,,ʎ.-𝑀𝐿𝐸. = ,1-𝑛+,𝑓-0..(0,𝑓-0.+1,𝑓-1.+2,𝑓-2.+…+𝑚,𝑓-𝑚.)  (3.7)
	Where, 𝑛 is the total number of observed cases and on the condition that ,𝑓-0.= ,,𝑓.-0.. The EM-algorithm requires iterating between E-step and M-step until ,,ʎ.-𝑀𝐿𝐸. and ,,𝑓.-0.converges. The initial value is very important to start the proced...
	(iii) Maximization (Poisson Approach):As a result of replacing ,,ʎ.-𝑀𝐿𝐸.in Horvitz-Thompson approach (2.2), the population size estimator with regard to maximum likelihood under Poisson shall be:
	,,N.-𝑀𝐿𝐸−𝑝. = ,𝑛 -1−exp(,,ʎ.-𝑀𝐿𝐸.). (3.8)
	The variance of (3.7) was estimated as
	,𝑉𝑎𝑟.,,,𝑁.-𝑀𝐿𝐸−𝑃..= ,,,𝑁.-𝑀𝐿𝐸−𝑃.-,𝑒𝑥𝑝,,,𝑘,𝑓-𝑘..-,,𝑁.-𝑀𝐿𝐸−𝑃...−,,𝑘,𝑓-𝑘..-,,𝑁.-𝑀𝐿𝐸−𝑃....    (3.9)
	(iv). Maximization (Geometric Approach): Here, we consider maximum likelihood estimation under geometric model. We assume that count data K is modeled by a geometric distribution with probability function ,𝑝-𝑘. = ,,1−𝑝.-𝑘.p; 𝑘 = 0, 2,…and the zer...
	𝐿(𝑝)=,𝑘=1-𝑚-,,(1−𝑝)-𝑘−1.,𝑝-,𝑓-𝑘.....
	The log-likelihood function is
	𝑙𝑜𝑔𝐿(𝑝) = log(1−𝑝),𝑘=1-𝑚-,𝑓-𝑘.,𝑘−1.+,log-𝑝,𝑘=1-𝑚-,𝑓-𝑘....  (3.10)
	To find the maximum likelihood estimator (MLE) of unknown parameter 𝑝 we differentiate (3.10) with respect to 𝑝 and set it to zero, and we shall have:
	,𝜕𝑙-𝜕p. = −,,𝑘=1-𝑚-,𝑓-𝑘.,𝑘−1..-1−𝑝.+,,𝑘=1-𝑚-,𝑓-𝑘..-𝑝. = 0
	,𝑝. = ,𝑛-𝑆.
	Hence under the assumption of zero-truncated geometric model the population size estimator with the maximum likelihood approach shall be:
	,,𝑁.-𝑀𝐿𝐸−𝐺. = ,𝑛-1−𝑛/𝑆.   (3.11)
	Wheres =,𝑘=1-𝑚-,𝑘𝑓-𝑘... The variance estimation of the MLE-G in (3.11) can be estimated as
	,𝑉𝑎𝑟.,,,𝑁.-𝑀𝐿𝐸−𝐺.. = ,,𝑆-2.,𝑛-2.-,,𝑆−𝑛.-2..        (3.12)
	For more details of (3.12), the reader is referred to [11].
	3.2 Turing estimator (,,𝑵.-𝑻.): According to[5], Turing estimation is formulated to estimate the number of classes or species of animals which is defined as the sum of probabilities of observed classes. For the author, the estimator can be used to e...
	𝑆=1,𝑓-1.+2,𝑓-2.+…+𝑚,𝑓-𝑚.
	3.3. Turing Estimation under Poisson: Under Poisson,let ,𝑝-𝑘. denotes the probability that a syndicate has been arrested exactly 𝑘 times. Assume that K has homogeneous Poisson distribution with parameter ʎ so that ,𝑝-0.= exp(−ʎ) and ,𝑝-1.= ʎ exp(...
	,𝑝-0.= exp(−ʎ ) = ,,exp-,−ʎ..ʎ-ʎ. = ,,𝑝-1.-𝐸(𝐾).        (3.13)
	The estimator of ,𝑝-0.can be calculated from observed frequency as follows:
	,,𝑝.-0. = ,,𝑓-1./𝑁-𝑆/𝑁. = ,,𝑓-1.-𝑆.          (3.14)
	If we plug ,,𝑝.-0. into Horvitz-Thompson estimator, Turing estimator for estimating the population size is given by:
	,,𝑁.-𝑇_𝑃. = ,𝑛-1−,𝑓-1./𝑆.          (3.15)
	The variance for Turing estimator can be estimated as
	,𝑣𝑎𝑟.,,,N.-𝑇_𝑃.. = ,𝑛,𝑓-1./𝑆-,,1−,𝑓-1./𝑆.-2..+,,𝑛-2.-,,1−,𝑓-1./𝑆.-4..,,,𝑓-1.(1−,,𝑓-1.-𝑁.)-,𝑆-2..+,,𝑓-1-2.-,𝑆-3...     (3.16)
	3.4. Turing Estimation under Geometric: Let K have a marginal probability mass function following the geometric distribution with parameter 𝑝 where ,𝑝-0.= 𝑝; ,𝑝-1. = ,1−𝑝.𝑝 and 𝐸(𝐾) = (1−𝑝)/𝑝 so that
	,,𝑃-1.-𝐸(𝐾).  = ,𝑝(1−𝑃)-(1−𝑝)/𝑝. = ,𝑝-2.
	,,,𝑃-1.-𝐸(𝐾).. = 𝑝=,𝑝-0.
	The estimate of ,𝑝-0. can be calculated from the observed frequency as follows:
	,,𝑝.-0-∗. = ,,𝑓-1./𝑆.       (3.17)
	Therefore, the extension of Turing estimator for estimating the population size under geometric model is given by:
	,,𝑁.-𝑇_𝐺. = ,𝑛-1−,,𝑓-1./𝑆..         (3.18)
	The variance of ,,𝑁.-𝑇_𝐺. can be derived as
	,𝑣𝑎𝑟.,,,N.-𝑇_𝐺.. = ,𝑛,,𝑓-1./𝑆.-,,1−,,𝑓-1./𝑆..-2.. +, 𝑛-2.,,𝑆+,𝑓-1.-4,𝑆-2.,,1−,,𝑓-1./𝑆..-4...       (3.19)
	3.5 Chao’s lower bound estimator (,,𝑵.-𝑪.): Estimators we have so far discussed are developed under homogenous Poisson mode, but in practice it is rarely met. Therefore, it is more suitable to incorporate heterogeneity, and in doing that we assume t...
	3.6 Chao’s lower bound estimator Poisson, ,,𝑵.-𝑪_𝑷.: Assuming that capture probability followed a Poisson mixture, Chao proved that the lower bound for the estimate of the number of unobserved shall be:
	,,𝑓.-0. = ,,𝑓-1-2.-2,𝑓-2..         (3.20)
	Where, the inequality ,,𝑓.-0.≤,𝑓-0.and its expected value are asymptotical. Finally,by adding the estimator ,,𝑓.-0. to the observed cases 𝑛 Chao’s lower bound estimator shall be:
	,,𝑁.-𝐶_𝑃. = 𝑛 + ,,𝑓-1-2.-2,𝑓-2..        (3.21)
	The approximate variance formula for estimator in (3.21) which was provided by[11]is given as:
	,𝑣𝑎𝑟.,,,N.-𝐶_𝑃.. = ,,1-4..,,𝑓-1-4.-,𝑓-2-3..+,,𝑓-1-3.-,𝑓-2-2..+,,1-2..,,𝑓-1-2.-,𝑓-2..       (3.22)
	3.7 Chao’s lower bound estimator geometric (,,𝑵.-𝑪_𝑮.): Suppose Chao’s lower bound estimator under geometric heterogeneity is also considered,the estimate shall be:
	,,𝑁.-𝐶_𝐺. = 𝑛 + ,,𝑓-1-2.-,𝑓-2..   (3.23)
	while its variance is
	,𝑣𝑎𝑟.,,,N.-𝐶_𝐺.. = ,,𝑓-1-4.-,𝑓-2-3..+,,4𝑓-1-3.-,𝑓-2-2..+,,𝑓-1-2.-,𝑓-2..    (3.24)
	3.8 Zelterman’s estimator (,,𝐍.-𝒁.): Because Poisson assumption is frequently violated, Zelterman (1988), argued that homogeneity Poisson probability may be valid for small ranges of Y such as from k to k+1. For example, singleton ,𝑓-1.and doubleto...
	,,𝑃-0.(𝑘+1|ʎ)-,𝑃-0.(𝑘|ʎ). =  ,ʎ-𝑘+1. and  ,,𝑃-0+.(𝑘+1|ʎ)-,𝑃-0+.(𝑘|ʎ). = ,ʎ-𝑘+1. respectively to estimate the ʎ.
	Thus we have:
	ʎ = ,,(𝑘+1)𝑃-0+.(𝑘+1|ʎ)-,𝑃-0+.(𝑘|ʎ). = ,,(𝑘+1)𝑃-0+.(𝑘+1|ʎ)-,𝑃-0+.(𝑘|ʎ).       (3.25)
	The estimator for ʎ is obtained by replacing ,𝑃-0+.(𝑘|ʎ) with the empirical frequency,𝑓-𝑘. so that we shall have:
	,,ʎ .-𝑘. = ,,(𝑘+1)𝑓-𝑘+1.-,𝑓-𝑘...                                             (3.26)
	Thus, if we let k = 1, we find that ,,ʎ .-1. = 2,𝑓-2./,𝑓-1..The authors in [14]noted that the estimator (3.26) is often used for two reasons:
	i. ,,ʎ .-1.is using frequencies in the vicinity of ,𝑓-0.which is the target of prediction,
	ii. In many application studies for estimating ,𝑓-0. the majority of counts fall into ,𝑓-1. and ,𝑓-2.
	For these two reasons, the estimator is not affected by changes in the data for counts larger than 2, which contributed largely to its robustness.
	(i) Zelterman estimator based on Poisson (,,𝑁.-,𝑍-−.𝑃.): Ifwe recall that if ,,ʎ.-1.=2,𝑓-2./,𝑓-1., thenZelterman estimator of Poisson distribution shall be:
	,,𝑁.-,𝑍-−.𝑃. = ,𝑛-1−𝑒𝑥𝑝(−ʎ).  =   ,𝑛-1−exp(−,2,𝑓-2.-,𝑓-1..).    (3.27)
	Bohning (2006) worked out the variance of (3.26) to be:
	,𝑣𝑎𝑟. (,,𝑁.-𝑍_𝑃.) = 𝑛(,exp(−2,,𝑓-2.-,𝑓-1.).-,(1−exp(−,,2𝑓-2.-,𝑓-1.)).-2..),1+ 𝑛(,exp(−2,,𝑓-2.-,𝑓-1.).-,(1−exp(−,,2𝑓-2.-,𝑓-1.)).-2..),,,2,f-2.-,f-1...-2.,,1-,𝑓-1..+,1-,𝑓-2....           (3.28)
	(ii) Zelterman estimator based on geometric distribution (,,𝑁.-𝑍_𝐺.): In a similar way,Zelterman estimator under geometric distribution is given as
	,,𝑁.-𝑍_𝐺. = ,𝑛,𝑓-1.-,𝑓-2..             (3.29)
	In [1], the variance of (3.27) is worked to be:,𝑣𝑎𝑟.(,,𝑁.-𝑍_𝐺.)  =  ,𝑛,𝑓-𝑓.,,𝑓-1.−,𝑓-2..-,𝑓-2-2..+,𝑛-2.,,,𝑓-1.-,𝑓-2-2..+,,𝑓-1-2.-,𝑓-2-3...
	4. Analysis and Discussions
	Having reviewed some of the literatures relevant to our study,Table II shows the results of the population size estimates of fake drug syndicates with the four reviewed estimators under Poisson and geometric models.
	The data on Table II depicts that both MLE and Turing estimators have negative biases, but with small variances. While Zelterman’s estimator has small bias but with extra ordinary variance, Chao’s estimator is negatively biased a little bit but with l...
	,𝑁-𝑊.= ,,𝑤-1.,,𝑁.-𝑀𝐿𝐸.+,𝑤-2.,,𝑁.-𝑇.+,𝑤-3.,,𝑁.-𝐶.+,𝑤-4.,,𝑁.-𝑍../,,𝑤-1.+,𝑤-2.+,𝑤-3.+,𝑤-4.., where ,,𝑁.-𝑀𝐿𝐸., ,,𝑁.-𝑇., ,,𝑁.-𝐶. and ,,𝑁.-𝑍. are the estimators of MLE, Turning, Chao and Zelterman respectively. Since the true v...
	Table II
	Results of estimate of fake drug syndicates in Onitsha(see Table I) by four different estimators
	Table III
	Result of MLE, Turing, Chao and Zelterman estimators and the weighted estimator
	In this study, we also categorized fake syndicates according to the offense they committed. The offenses are falsifying of genuine drugs, selling of expired drugs, selling of unregistered drugs and selling of banned drugs. Table IV displays the kind o...
	Table IV
	Table X
	4.1 Discussions of Results
	Chao’s lower bound, Turing and maximum likelihood estimators are some of the most qualified estimators used to estimate hidden population size in capture-recapture experiments. Turing and maximum likelihood estimations are developed under the Poisson ...
	Coming back to the estimation of fake drug syndicates, data on Table II shows that 1434 syndicates were observed. Using zero-truncated Poisson model the estimators MLE, Turing, Chao and Zelterman yielded 2108, 4218, 9745, and 10243 respectively. But b...
	6. Conclusion:
	In conclusion, only 22% and 11% of the population of fake drug syndicates was observed under Poisson and geometric respectively is not good news for NAFDAC. It shows that the agency is not winning the war against fake drug circulation in Nigeria, espe...
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