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1. Introduction 

Convex optimization, which studies the problem of  minimizing convex functions over convex sets, 

and a subfield of  mathematical optimization, plays an important role in many branches of  applied 

mathematics. The foremost reason is that; it is very suitable to extremum problems. For instance, some 

necessary conditions for the existence of  a minimum also become sufficient in the in terms of  convexity. And 

convex optimization can be a smooth or a non-smooth convex optimization. Since the concept of  convexity 

does not satisfy some mathematical models, various generalizations of  convexity such as quasi-convexity and 

pseudo-convexity, which retain some important properties of  convexity and equally provide a better 

representation of  reality were introduced in the literature to fill these gaps.  

While the quasi-convexity property of  a function guarantees the convexity of  their sublevel sets, the 

pseudo-convexity property implies that the critical points are minimizers [25]. One of  the features of  convexity 

of  functions is the relationship it has with the monotonicity of  some maps. For example, a differentiable 

function is said to be convex if  and only if  its gradient is a monotone map. In non-smooth analysis, the 

generalized convexity of  functions can be equally characterized in terms of  the generalized monotonicity of  

their related operators, [12]. 

The concepts of  pseudo-convexity, traced to [30], within his research on analytical functions and 

independently introduced into the field of  optimization by [32], has many applications in mathematical 

programming and economic problems [20, 22, 29]. And pseudo-monotonicity, introduced by [24] as a 

generalization of  monotone operators has been used to describe a property of  consumer’s demand 

correspondence [18]. Although the simplest class of  pseudo-monotone operators consists of  gradients of  

pseudo-convex functions, there are some monotone operators that are not sub-differentials, [18]. And 
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generalized monotonicity of  maps is frequently used in complementarity problems, equilibrium problems and 

variational inequalities [17].  

Variational inequalities, formulated between late 60s and early 70s by an Italian Mathematician, 

Stampacchia, solve a wide range of  problems in mathematical optimization, operations research, economic 

equilibrium problems and engineering sciences [11, 15, 37]. Results on relations of  variational inequalities 

with differentiable optimization problems also show that the Stampacchia Variational Inequality (SVI) is a 

necessary condition for optimality, while the Minty Variational Inequality (MVI) is a sufficient optimality 

condition and similar result on generalizations of  SVI and MVI to multivalued operators for non-smooth 

optimization problems exists [9]. 

Consider an optimization problem   

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥), subject to 𝑥 ∈ 𝐶.       

(1) 

where𝑓: 𝐶 ⊆ 𝑋 → ℝ ∪ {+∞} is a lower semi-continuous (l.s.c.) Clarke-Rockafeller sub-differentiable function 

on as subset 𝐶 of a real Banach space 𝑋. We characterize (1) by the corresponding monotonicity of their 

Clarke-Rockafeller sub-differential operator 𝜕𝑓 and investigate their optimality conditions, using variational 

inequalities.   

 

2. Preliminaries  

Let 𝑋 be a real Banach space with norm ‖. ‖, 𝑋∗ be its topological dual and 〈𝑥∗, 𝑥〉 be the duality pairing 

between 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋∗. We denote the closed segment [𝑥, 𝑦] = {𝜆𝑥 + (1 − 𝜆)𝑦:  𝜆 ∈ [0,1]} for 𝑥, 𝑦 ∈ 𝑋, and 

define (𝑥, 𝑦], [𝑥, 𝑦) and (𝑥, 𝑦) similarly. 

Definition 2.1 [33] Let𝑓: 𝑋 → ℝ ∪ {+∞} be an extended real valued function,   the effective domain is defined 

by  

dom(𝑓) = {𝑥 ∈ 𝑋: 𝑓(𝑥) < +∞}. 

Definition 2.2 [5] A function 𝑓: 𝑋 → ℝ ∪ {+∞}  is said to be lower semi-continuous at 𝑥 ∈ 𝑋 if  and only if: ∀𝜆 ∈ ℝ,  such that 𝜆 < 𝑓(𝑥), ∃𝑉 ⊂ 𝑈(𝑥): 𝜆 < 𝑓(𝑦)∀𝑦 ∈ 𝑉. 

Definition 2.3 [3, 29] A lower semi-continuous function 𝑓: 𝑋 → ℝ ∪ {+∞}  is said to be quasi-convex, if  for 

any 𝑥, 𝑦 ∈ 𝑋 and 𝑧 ∈ [𝑥, 𝑦] we have 𝑓(𝑧) ≤ max⁡{𝑓(𝑥), 𝑓(𝑦)}.         

 

(2) 

Definition 2.4 (See [3, 21, 29]) A lower semi-continuous function 𝑓: 𝑋 → ℝ ∪ {+∞}  is said to be strictly quasi-

convex, if  the inequality (2) is strict when 𝑥 ≠ 𝑦. 

Definition 2.5 (See [12]) Let 𝑇: 𝑋 → 𝑋∗ be a multivalued operator with domain 𝐷(𝑇) = {𝑥 ∈ 𝑋: 𝑇(𝑥) ≠ ∅}. 𝑇 is 

said to be quasi-monotone if  for any 𝑥, 𝑦 ∈ 𝑋, 𝑥∗ ∈ 𝑇 and 𝑦∗ ∈ 𝑇(𝑦), we have 〈𝑥∗, 𝑦 − 𝑥〉 > 0 ⟹ 〈𝑦∗, 𝑦 − 𝑥〉 ≥ 0.       

Definition 2.6 (See [12]) Let 𝑇: 𝑋 → 𝑋∗ be a multivalued operator with domain 𝐷(𝑇) = {𝑥 ∈ 𝑋: 𝑇(𝑥) ≠ ∅}. 𝑇 is 

said to be pseudo-monotone if  for any 𝑥, 𝑦 ∈ 𝑋, 𝑥∗ ∈ 𝑇 and 𝑦∗ ∈ 𝑇(𝑦), we have 〈𝑥∗, 𝑦 − 𝑥〉 ≥ 0 ⟹ 〈𝑦∗, 𝑦 − 𝑥〉 ≥ 0.        

 

(3) 

Definition 2.7 (See [29]) Let 𝑇: 𝑋 → 𝑋∗ be a multivalued operator with domain 𝐷(𝑇) = {𝑥 ∈ 𝑋: 𝑇(𝑥) ≠ ∅}. 𝑇 is 

said to be strictly pseudo-monotone if  for any different two points 𝑥, 𝑦 ∈ 𝑋, 𝑥∗ ∈ 𝑇 and 𝑦∗ ∈ 𝑇(𝑦), we have 〈𝑥∗, 𝑦 − 𝑥〉 ≥ 0 ⟹ 〈𝑦∗, 𝑦 − 𝑥〉 > 0.       (4) 

Definition 2.8 (See [2]) An operator 𝜕 that associates to any lower semi-continuous function 𝑓: 𝑋 → ℝ ∪ {+∞} 
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and a point 𝑥 ∈ 𝑋 a subset 𝜕𝑓(𝑥) of  𝑋∗ is a sub-differential if  it satisfies the following properties: 

(i) 𝜕𝑓(𝑥) = {𝑥∗ ∈ 𝑋∗: 〈𝑥∗, 𝑦 − 𝑥〉 + 𝑓(𝑥) ≤ 𝑓(𝑦), ∀𝑦 ∈ 𝑋}, whenever 𝑓 is convex; 

(ii) 0 ∈ 𝜕𝑓(𝑥), whenever 𝑥 ∈ 𝑑𝑜𝑚⁡𝑓 is a local minimum of 𝑓; 

(iii) 𝜕(𝑓 + 𝑔)(𝑥) ⊂ 𝜕𝑓(𝑥) + 𝜕𝑔(𝑥), whenever 𝑔 is a real a real-valued convex continuous function 

which is 𝜕-differentiable at 𝑥, 

where 𝑔-differentiable at 𝑥 means that both 𝜕𝑔(𝑥) and 𝜕(−𝑔)(𝑥) are non-empty. We say that 𝑓 is 𝜕-

differentiable at 𝑥 when 𝜕𝑓(𝑥) is non-empty while 𝜕𝑓(𝑥) are called the sub-gradients of  𝑓 at 𝑥.  

Definition 2.9 (See [2]) The Clarke-Rockafellar generalized directional derivative of  𝑓 at 𝑥0 ∈ dom(𝑓) in the 

direction 𝑑 ∈ 𝑋 is given by 𝑓↑(𝑥0, 𝑑) = sup𝜀>0 limsup𝑥→𝑓𝑥0𝜆↘0 inf𝑑′∈𝐵𝜀(𝑑) 𝑓(𝑥+𝜆𝑑′)−𝑓(𝑥)𝜆 ,     

 

(5)  

where 𝐵𝜀(𝑑) = {𝑑′ ∈ 𝑋:⁡‖𝑑′ − 𝑑‖ < 𝜀}, 𝜆 ↘ 0 indicates the fact that 𝜆 > 0 and 𝜆 → 0,  

and 𝑥 → 𝑓𝑥0 means that both  𝑥 → 𝑥0 and 𝑓(𝑥) → 𝑓(𝑥0); 

While,  

Definition 2.10 (See [3]) The Clarke-Rockafellarsubdifferential of  𝑓 at 𝑥0 is defined by  𝜕𝑓(𝑥0) = {𝑥∗ ∈ 𝑋∗: (𝑥∗, 𝑑) ≤ 𝑓↑(𝑥0, 𝑑), ∀𝑑 ∈ 𝑋};      

 

(6) 

if  𝑥0 ∈ 𝑋\dom(𝑓), then 

 𝜕𝑓(𝑥0) = ⁡∅, ([29]). 

Definition 2.11 (See [12, 29]) A lower semi-continuous function 𝑓: 𝑋 → ℝ ∪ {+∞}  is said to be quasi-convex  

(with respect to Clarke-RockerfellerSubdifferentials) if  for any 𝑥, 𝑦 ∈ 𝑋, ∃𝑥∗ ∈ 𝜕𝑓(𝑥): 〈𝑥∗, 𝑦 − 𝑥〉 > 0 ⟹ ∀𝑧 ∈ [𝑥, 𝑦],  𝑓(𝑧) ≤ 𝑓(𝑦).    

(7) 

Definition 2.12 (See[12, 29]) A lower semi-continuous function 𝑓: 𝑋 → ℝ ∪ {+∞}  is said to be pseudo-convex  

(with respect to Clarke-Rockerfeller Subdifferentials) if  for any 𝑥, 𝑦 ∈ 𝑋: ∃𝑥∗ ∈ 𝜕𝑓(𝑥): 〈𝑥∗, 𝑦 − 𝑥〉 ≥ 0 ⟹ 𝑓(𝑥) ≤ 𝑓(𝑦).      

 

(8) 

Definition 2.13 (See [3, 21, 29]) A lower semi-continuous function 𝑓: 𝑋 → ℝ ∪ {+∞}  is said to be strictly 

pseudo-convex  (with respect to Clarke-Rockerfeller Subdifferentials) if  for any two different points 𝑥, 𝑦 ∈ 𝑋: ∃𝑥∗ ∈ 𝜕𝑓(𝑥): 〈𝑥∗, 𝑦 − 𝑥〉 ≥ 0 ⟹ 𝑓(𝑥) < 𝑓(𝑦), when 𝑥 ≠ 𝑦.     

 

(9) 

Definition 2.14 [29] A lower semi-continuous function 𝑓: 𝑋 → ℝ ∪ {+∞}  is said to be radially continuous if  

for all 𝑥, 𝑦 ∈ 𝑋,  𝑓 is continuous on [𝑥, 𝑦]. 
Definition 2.15 [29] A function 𝑓: 𝑋 → ℝ ∪ {+∞}  is said to be radially non-constant if  for all 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ≠ 𝑦, 𝑓 ≢ constant on [𝑥, 𝑦]. 
Definition 2.16 A sub-differential operator 𝜕𝑓 is said to satisfy the Stampacchia variational inequality (10) at 𝑥 ∈ 𝐶 if: 〈𝑥∗, 𝑦 − 𝑥〉 ≥ 0∀𝑦 ∈ 𝐶, ∀𝑥∗ ∈ ⁡𝜕𝑓(𝑥).       

 

(10) 
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Definition 2.17 While a sub-differential operator 𝜕𝑓 satisfies the Minty variational inequality (11) at 𝑥, if:  ∀𝑦 ∈ 𝐶, 〈𝑦∗, 𝑦 − 𝑥〉 ≤ 0, ∀𝑦∗ ∈ ⁡𝜕𝑓(𝑦).        

 

(11) 

Theorem 2.1  (Approximate mean value inequality). Let𝑓: 𝑋 → ℝ ∪ {+∞} be a Clarke-Rockafeller sub-

differentiable lower semi-continuous (l.s.c.) function on a Banach space 𝑋. Let𝑎, 𝑏 ∈ 𝑋 with 𝑎 ∈ dom 𝑓 and 𝑎 ≠ 𝑏. Let 𝜌 ∈ ℝ be such that 𝜌 ≤ 𝑓(𝑏). Then, there exist 𝑐 ∈ [𝑎, 𝑏) and 𝑥𝑛 → 𝑓𝐶 and 𝑥𝑛∗ ∈ 𝜕𝑓(𝑥𝑛) such that 

(i) lim⁡inf𝑛→+∞ 〈𝑥𝑛∗ , 𝑐 − 𝑥𝑛〉 ≥ 0; 

(ii) lim⁡inf𝑛→+∞ 〈𝑥𝑛∗ , 𝑏 − 𝑎〉 ≥ 𝜌 − 𝑓(𝑎). 

Proof. (See [2]). 

Lemma 2.2 Let𝑓: 𝑋 → ℝ ∪ {+∞} be a Clarke-Rockafeller sub-differentiable lower semi-continuous (l.s.c.) 

function on a Banach space 𝑋. Let𝑎, 𝑏 ∈ 𝑋 with 𝑓(𝑎) < 𝑓(𝑏). Then, there exist 𝑐 ∈ [𝑎, 𝑏), and two sequences 𝑐𝑛 → 𝑐, and 𝑐𝑛∗ ∈ 𝜕𝑓(𝑐𝑛) with  

 〈𝑐𝑛∗ , 𝑥 − 𝑐𝑛〉 > 0 for every 𝑥 = 𝑐 + 𝜆(𝑏 − 𝑎) with 𝜆 > 0.     

Proof. By Theorem 2.1, there exists an 𝑥0 ∈ [𝑎, 𝑏) and a sequence 𝑥𝑛 → 𝑓𝐶 and 𝑥𝑛∗ ∈ 𝜕𝑓(𝑥𝑛) verifying 

 lim⁡inf𝑛→+∞ 〈𝑥𝑛∗ , 𝑐 − 𝑥𝑛〉 ≥ 0 and lim⁡inf𝑛→+∞ 〈𝑥𝑛∗ , 𝑏 − 𝑎〉 > 0.     

 

(12) 

Putting 𝑥 = 𝑐 + 𝜆(𝑏 − 𝑎) with 𝜆 > 0 it holds 

 〈𝑥𝑛∗ , 𝑥 − 𝑥𝑛〉 = 〈𝑥𝑛∗ , 𝑐 − 𝑥𝑛〉 + 𝜆〈𝑥𝑛∗ , 𝑏 − 𝑎〉 > 0      

 

(13) 

for 𝑛 very large.            

 

3. Relationship between Generalized Convexity and Generalized Monotonicity  

Theorem 3.1 Let𝑓: 𝑋 → ℝ ∪ {+∞} be a lower semi-continuous (l.s.c.) Clarke-Rockafeller subdifferentiable 

function on a Banach space 𝑋. Then, 𝑓 is quasi-convex if  and only if  𝜕𝑓 is quasi-monotone. 

Proof. We show that if  𝑓 is not quasi-convex, then 𝜕𝑓 is not quasi-monotone.  

Suppose that there exist some 𝑥, 𝑦, 𝑧 in 𝑋 with 𝑧 ∈ [𝑥, 𝑦] and 𝑓(𝑧) > max⁡{𝑓(𝑥), 𝑓(𝑦)}. According to Lemma 

2.2 applied with 𝑎 = 𝑥 and 𝑏 = 𝑧, there exists a sequence 𝑦𝑛 ∈ dom𝜕𝑓 and 𝑦𝑛∗ ∈ 𝜕𝑓(𝑦𝑛) such that 𝑦𝑛 → 𝑦̅ ∈ [𝑥, 𝑧], 𝑦̅ ≠ 𝑧 and 〈𝑦𝑛∗, 𝑦 − 𝑦𝑛〉 > 0.     (14) 

Let 0 < 𝜆 ≤ 1 be such that 𝑧 = 𝑦̅ + 𝜆(𝑦 − 𝑦̅) and set 𝑧𝑛 = 𝑦𝑛 + 𝜆(𝑦 − 𝑦𝑛), so that 𝑧𝑛 → 𝑧. Since 𝑓 is lower 

semi-continuous, we may pick 𝑛 ∈ ℕ very large with 𝑓(𝑧𝑛) > 𝑓(𝑦). Apply Lemma 2.2 again with 𝑎 = 𝑦 and 𝑏 = 𝑧𝑛 to find sequences 𝑥𝑘 ∈ dom𝜕𝑓, 𝑥𝑘∗ ∈ 𝜕𝑓(𝑥𝑘) such that  𝑥𝑘 → 𝑥̅ ∈ [𝑦, 𝑧𝑛], 𝑥̅ ≠ 𝑧𝑛 and 〈𝑥𝑘∗ , 𝑦𝑛 − 𝑥𝑘〉 > 0.     (15) 

In particular, 𝑥̅ ≠ 𝑦𝑛 and  〈𝑦𝑛∗, 𝑥̅ − 𝑦𝑛〉 = ‖𝑥̅−𝑦𝑛‖‖𝑦−𝑦𝑛‖ 〈𝑦𝑛∗, 𝑦 − 𝑦𝑛〉 > 0;      (16) 

hence, 〈𝑦𝑛∗, 𝑥𝑘 − 𝑦𝑛〉 > 0 for 𝑘 sufficiently large. But 〈𝑦𝑛∗, 𝑦𝑛 − 𝑥𝑘〉 > 0, showing that 𝜕𝑓 is not quasi-monotone.   

Conversely, we suppose that 𝑓 is quasi-convex and show that 𝜕𝑓 is quasi-monotone. Let 𝑥∗ ∈ 𝜕𝑓(𝑥) 

and  𝑦∗ ∈ 𝜕𝑓(𝑦) with 〈𝑥∗, 𝑦 − 𝑥〉 > 0. We need to verify that 𝑓↑(𝑦, 𝑥 − 𝑦) ≤ 0. We fix 𝜀 > 0 and 𝜔 ∈ (0, 𝜀) 

such that 〈𝑥∗, 𝑣 − 𝑥〉 > 0 for all 𝑣 ∈ 𝐵𝜔(𝑦). 

We fix 𝑣 ∈ 𝐵𝜔(𝑦). Since 𝑓↑(𝑦, 𝑥 − 𝑦) > 0 we can find 𝜀′ ∈ (0, 𝜀 − 𝜔), 𝑢 ∈ 𝐵𝜀′(𝑥) and 𝑡 ∈ (0,1) such that 
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𝑓(𝑢 + 𝑡(𝑣 − 𝑢) > 𝑓(𝑢). From the quasi-convexity of  𝑓 we deduce that 𝑓(𝑢) < 𝑓(𝑣), whence, 

 𝑓(𝑣 + 𝜆(𝑢 − 𝑣)) ≤ 𝑓(𝑣) for all 𝜆 ∈ (0,1), 

so that  inf𝜇∈𝐵𝜀(𝑥−𝑦) 𝑓(𝑣+𝜆𝜇)−𝑓(𝑣)𝜆 ≤ 𝑓(𝑣+𝜆(𝑢−𝑣))−𝑓(𝑣)𝜆 ≤ 0 for all 𝜆 ∈ (0,1). 

Combining the inequalities and for any 𝜀 > 0 there exists 𝜔 > 0 such that  sup𝑣∈𝐵𝜔(𝑦)𝜆∈(0,1) [inf𝜇∈𝐵𝜀(𝑥−𝑦) 𝑓(𝑣+𝜆𝜇)−𝑓(𝑣)𝜆 ] ≤ 0, 

which shows that 𝑓↑(𝑦, 𝑥 − 𝑦) ≤ 0.          

 

We consider the relationship between pseudo-convexity and quasi-convexity.  

 

Theorem 3.2 Let 𝑓: 𝑋 → ℝ ∪ {+∞} be a lower semi-continuous (l.s.c.) function on a Banach space 𝑋 such that 𝑓 Clarke-Rockafeller suddifferentiable. Consider the following assertions:  

(i) 𝑓 is pseudoconvex.  

(ii) 𝑓 is quasiconvex and (0 ∈ 𝜕𝑓(𝑥) ⟹ 𝑥 is a global minimum of 𝑓). 

Then, (i) implies (ii). And (ii) implies (i) if  𝑓 is radially continuous.  

Proof. (i)⁡⟹(ii). We want to prove that 𝑓 is quasiconvex. Suppose to the contrary that for some 𝑥, 𝑦 ∈ 𝑋, 𝑧 ∈ (𝑥, 𝑦) we have 𝑓(𝑧) > max⁡{𝑓(𝑥), 𝑓(𝑦)}. Since 𝑓 is lower semicontinuous, we can find some  𝜀 > 0 such 

that 𝑓(𝑧′) > max⁡{𝑓(𝑥), 𝑓(𝑦)}, for all 𝑧′ ∈ 𝐵𝜀(𝑧). Since 𝑧 cannot be a local nor global minimizers, there exist 

some 𝑣 ∈ 𝐵𝜀(𝑧) such that 𝑓(𝑣) < 𝑓(𝑧). From Lemma 2.2, there exist 𝑢𝑛 → 𝑢 ∈ [𝑣, 𝑧) and 𝑢𝑛∗ ∈ 𝜕𝑓(𝑢𝑛∗ ) such 

that  〈𝑢𝑛∗ , 𝑧 − 𝑢𝑛〉 > 0. 

But since 𝑧 ∈ (𝑥, 𝑦), either of  the following must hold 〈𝑢𝑛∗ , 𝑥 − 𝑢𝑛〉 > 0 or 〈𝑢𝑛∗ , 𝑦 − 𝑢𝑛〉 > 0. 

Therefore,  𝑓(𝑢𝑛) ≤ max⁡{𝑓(𝑥), 𝑓(𝑦)}. 

Which is a contradiction. 

(ii)⁡⟹(i). Let 𝑥 ∈ dom𝜕𝑓, 𝑦 ∈ 𝑋, and 𝑥∗ ∈ 𝜕𝑓(𝑥) such that 〈𝑥∗, 𝑦 − 𝑥〉 ≥ 0. If  0 ∈ 𝜕𝑓(𝑥), then 𝑥 is a 

global minimum of  𝑓 and 𝑓(𝑥) ≤ 𝑓(𝑦) in particular. Otherwise, [0 ∉ 𝜕𝑓(𝑥)], there exist 𝑑 ∈ 𝑋 such that 〈𝑥∗, 𝑑〉 > 0. We define a sequence {𝑦𝑛} by  𝑦𝑛 = 𝑦 + ( 12𝑛‖𝑑‖) 𝑑.          

For every 𝑛 ∈ ℕ, the point 𝑦𝑛 satisfies  𝑦𝑛 ∈ 𝐵1/𝑛(𝑦), 〈𝑥∗, 𝑦𝑛 − 𝑥〉 = 〈𝑥∗, 𝑦𝑛 − 𝑦〉 + 〈𝑥∗, 𝑦 − 𝑥〉 ≥ ( 12𝑛‖𝑑‖) 〈𝑥∗, 𝑑〉 > 0.    

Using (8), we obtain that, for every 𝑛, 𝑓(𝑦𝑛) ≥ 𝑓(𝑥) and by radial continuity of  𝑓, 𝑓(𝑦) ≥ 𝑓(𝑥).           

Theorem 3.3 Let𝑓: 𝑋 → ℝ ∪ {+∞} be a lower semi-continuous (l.s.c.) Clarke-Rockafeller subdifferentiable 

function. Consider the following assertions:  

(i) 𝑓 is pseudoconvex.  

(ii) 𝜕𝑓 is pseudomonotone  

Then, (i) implies (ii). And (ii) implies (i) if  𝑓 is radially continuous.  

Proof. (i)⁡⟹(ii). Suppose 𝑥∗ ∈ 𝜕𝑓(𝑥) such that 〈𝑥∗, 𝑦 − 𝑥〉 ≥ 0. By Theorem 3.2, 𝑓 is quasiconvex. By 
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Theorem 3.1, we conclude that 𝜕𝑓 is quasimonotone. Hence 〈𝑦∗, 𝑦 − 𝑥〉 ≥ 0, for all 𝑦∗ ∈ 𝜕𝑓(𝑦). Suppose to 

the contrary that for some 𝑦∗ ∈ 𝜕𝑓(𝑦), we have 〈𝑦∗, 𝑦 − 𝑥〉 = 0. From (8), we obtain 𝑓(𝑥) ≥ 𝑓(𝑦).      

However, since 𝑓↑(𝑥, 𝑦 − 𝑥) > 0, there exist 𝜀 > 0, such that for some 𝑥𝑛 → 𝑥, 𝜆𝑛 ↘ 0 and for all 𝑦′ ∈ 𝐵𝜀(𝑦), we have 𝑓(𝑥𝑛 + 𝑡𝑛(𝑦′ − 𝑥𝑛)) > 𝑓(𝑥𝑛). By the quasiconvexity of  𝑓, it implies that 𝑓(𝑦′) > 𝑓(𝑥𝑛) 

for every 𝑦′ ∈ 𝐵𝜀(𝑦). In particular, 𝑓(𝑦′) > 𝑓(𝑥) because 𝑓 is lower semicontinuous. Thus, 𝑓(𝑦′) ≥ 𝑓(𝑦). This 

shows that 𝑦 is a local minimum and also a global minimum, which is a contradiction since we can have that 𝑓(𝑦) > 𝑓(𝑥𝑛).      

(ii)⁡⟹(i). Using Theorem , we prove that 𝑓 is pseudoconvex. Since 𝜕𝑓 is pseudomonotone, 𝜕𝑓 is 

quasimonotone. By Theorem 3.2, 𝑓 is quasi-convex.  On the other hand, if  𝑥 is not a minimizer of  𝑓, there 

exists 𝑦 ∈ 𝑋 such that 𝑓(𝑦) < 𝑓(𝑥). Using Lemma 2.2, we find 𝑢 ∈ dom𝜕𝑓 and 𝑢∗ ∈ ⁡𝜕𝑓(𝑢) such that 〈𝑢∗, 𝑥 −𝑢〉 > 0 and by the pseudo-monotonicity of  𝜕𝑓, 〈𝑥∗, 𝑥 − 𝑢〉 > 0 for every 𝑥∗ ∈ ⁡𝜕𝑓(𝑥). Hence, 0 does not 𝜕𝑓(𝑥). 

Consequently, 𝑓 satisfies condition 0 ∈ 𝜕𝑓(𝑥), which implies that  𝑥 is a global minimum of  𝑓, which 

completes the proof. ∎ 

Theorem 3.4 Let𝑓: 𝑋 → ℝ ∪ {+∞} be a lower semi-continuous (l.s.c.) Clarke-Rockafeller subdifferentiable 

function on a Banach space 𝑋. Consider the following assertions:  

(i) 𝑓 is strictly pseudoconvex.  

(ii) 𝑓 is strictly quasiconvex and (0 ∈ 𝜕𝑓(𝑥) ⟹ 𝑥 is a global minimum of 𝑓), 

Then, (i) implies (ii). And (ii) implies (i) if  𝑓 is radially continuous.  

Proof. (i)⁡⟹(ii). We want to prove that 𝑓 is strictly quasiconvex. Let 𝑓be a strictly pseudo-convex function, 

then by Theorem 3.2, the function 𝑓 is quasiconvex and satisfies the optimality condition 0 ∈ 𝜕𝑓(𝑥) ⟹ (𝑥 is a global minimum of  𝑓). 

Since 𝑓 is quasiconvex, then according to [14], it suffices to prove that 𝑓is radially non-constant. 

Assume by contradiction that thereexists a closed segment [𝑥, 𝑦] with with 𝑥 ≠ 𝑦 where with 𝑓 is constant. Let 𝑧 ∈ (𝑥, 𝑦)and apply the strict pseudo-convexityproperty to 𝑥 and 𝑧, then 𝑓(𝑧) = 𝑓(𝑥) ⟹ (∀𝑧∗ ∈ 𝜕𝑓(𝑧):〈𝑧∗, 𝑥 − 𝑧〉 < 0). 

Using the same argument for 𝑧and 𝑦we obtain 𝑓(𝑧) = 𝑓(𝑦) ⟹ (∀𝑧∗ ∈ 𝜕𝑓(𝑧):〈𝑧∗, 𝑦 − 𝑧〉 < 0). 

Since 𝜕𝑓(𝑧) is nonempty, it follows that 

for all 𝑧∗ ∈ 𝜕𝑓(𝑧),〈𝑧∗, 𝑥 − 𝑦〉 < 0and 〈𝑧∗, 𝑥 − 𝑦〉 > 0), which is a contradiction.  

(ii)⁡⟹(i). Assume that 𝑓satisfies condition ii) and 𝑓 is radially continuous. Then by Theorem 3.2, 𝑓 is 

pseudoconvex. We prove that 𝑓is pseudo-convex. Suppose by contradiction that there exist 𝑥 ≠ 𝑦 in X and 𝑥∗ ∈ 𝜕𝑓(𝑥) such that 〈𝑥∗, 𝑦 − 𝑥〉 ≥ 0 and 𝑓(𝑥) ≥ 𝑓(𝑦).   

Then, it follows by pseudo-convexity property that ∀𝑧 ∈ [𝑥, 𝑦], 𝑓(𝑧) = 𝑓(𝑥). 

Since 𝑓is quasi-convex, then we have ∀𝑧 ∈ [𝑥, 𝑦], 𝑓(𝑧) ≥ 𝑓(𝑥) ≥ 𝑓(𝑦). 

So f is not radially non-constant on X (since f is constant on [𝑥, 𝑦]) which contradicts the fact 𝑓is  strictly quasi-

convex.  

Theorem 3.5 Let 𝑓: 𝑋 → ℝ ∪ {+∞} be a lower semi-continuous (l.s.c.) function such that 𝑓 is radially Clarke-

Rockafeller Sub-differentiable. Consider the following assertions:  

(i) 𝑓 is strictly pseudo-convex.  

(ii) 𝜕𝑓 is strictly pseudomonotone  

Then, (i) implies (ii). And (ii) implies (i) if  𝑓 is radially continuous.  
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Proof. (i)⁡⟹(ii). Suppose that 𝑓 is strictly pseudoconvex. We want to prove that 𝜕𝑓 is strictly pseudomonotone. 

Suppose to the contrary that there exist two distinct points 𝑥, 𝑦 ∈ 𝑋, 𝑥∗ ∈ 𝜕𝑓(𝑥) and 𝑦∗ ∈ 𝜕𝑓(𝑦) such that 〈𝑥∗, 𝑦 − 𝑥〉 ≥ 0 and 〈𝑦∗, 𝑦 − 𝑥〉 ≤ 0. 

Since 𝑓 is strictly pseudoconvex, we have that 𝑓(𝑥) < 𝑓(𝑦) and 𝑓(𝑦) < 𝑓(𝑥). 

Which is a contradiction. Therefore, 𝜕𝑓 is strictly pseudomonotone. 

  (ii)⁡⟹(i). Suppose that 𝑓 satisfies condition (ii) and 𝑓 is radially continuous. We want to prove that 𝑓 

is strictly pseudoconvex. Suppose to the contrary that there exist two distinct points 𝑥, 𝑦 ∈ 𝑋, and 𝑥∗ ∈ 𝜕𝑓(𝑥) 

such that  〈𝑥∗, 𝑦 − 𝑥〉 ≥ 0 and 𝑓(𝑥) ≥ 𝑓(𝑦). 

Then,  

 〈𝑥∗, 𝑧 − 𝑥〉 ≥ 0 for all 𝑧 ∈ [𝑥, 𝑦].       (17)  

By theorem 3.3, 𝑓 is quasiconvex. Consequently, 𝑓 must be constant on [𝑥, 𝑦]. Contrarily, from (16) and the 

strict monotonicity of  𝜕𝑓(𝑥), we have  〈𝑥∗, 𝑧 − 𝑥〉 > 0, ∀𝑧 ∈ (𝑥, 𝑦) and ∀𝑧∗ ∈ 𝜕𝑓(𝑧).      (18) 

Pick 𝑧0 ∈ (𝑥, 𝑦) such that 𝜕𝑓(𝑧0) ≠ ∅ (such a 𝑧0 exists since 𝑓 is a radially Clarke-Rockafeller sub differentiable 

function). Choose any z0∗ ∈ 𝜕𝑓(𝑧0). Then, 〈z0∗ , 𝑧0 − 𝑥〉 > 0. Therefore, 〈z0∗ , 𝑦 − 𝑧0〉 > 0. Consequently, there 

exist 𝜀 > 0 such that 〈z0∗ , 𝑦′ − 𝑧0〉 > 0 for all 𝑦′ ∈ 𝐵𝜀(𝑦). 

By the pseudo-convexity of  𝑓, it follows that 𝑦 is a global minimum of  𝑓. Hence, 𝑧0 is also a global 

minimum of  𝑓. Thus, 0 ∈ 𝜕𝑓(𝑧0) and this is a contradiction with (19). 

 

4. Optimality Conditions and Variational Inequalities 

We study the necessary and sufficient conditions for a point 𝑥 to be a global minima of  a pseudo-

convex, lower semi-continuous and radially continuous function 𝑓 over a convex set 𝐶. 

Theorem 4.1 Let𝑓: 𝐶 ⊆ 𝑋 → ℝ ∪ {+∞} be a lower semi-continuous Clarke-Rockafeller differentiable pseudo-

convex function, and 𝑥̅ ∈ 𝐶. Then the following assertions are equivalent  

(i) 𝑥̅ is an optimal solution of (1). 

(ii) 𝜕𝑓 satisfies (11) at 𝑥̅ ∈ 𝐶. 

Proof. (i)⁡⟹(ii). Suppose that 𝑥̅ is a solution of  (1), then by Definition 2.12, if  𝑓(𝑥̅) ≤ 𝑓(𝑥), then we have 

 ∀𝑥∗ ∈ 𝜕𝑓(𝑥),  〈𝑥∗, 𝑥̅ − 𝑥〉 ≤ 0.    

So, the variational inequality (11) holds. 

 (ii)⁡⟹(i). let 𝑥 ∈ 𝐶 such that 𝑥 ≠ 𝑥̅ then for some 𝑦 ∈ (𝑥̅, 𝑥). Then, 

 ∀𝑦∗ ∈ 𝜕𝑓(𝑦),  〈𝑦∗, 𝑥̅ − 𝑦〉 ≤ 0.  

Which follows that  

 ∀𝑦∗ ∈ 𝜕𝑓(𝑦),  〈𝑦∗, 𝑥 − 𝑦〉 ≤ 0.  

Since 𝜕𝑓(𝑦) is nonempty and from the pseudoconvexity of  𝑓 we have ∀𝑦 ∈ (𝑥̅, 𝑥),  𝑓(𝑦) ≤ 𝑓(𝑥).    

But since 𝑓 is lsc, then 𝑓(𝑥̅) ≤ 𝑓(𝑥).        ∎ 

We proceed to maximization problem. 

 Let 𝐶 ⊆ 𝑋 be convex and nonempty. Consider the maximization problem: 

  𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥), subject to 𝑥 ∈ 𝐶,      (19) 

where  𝑓a strictly pseudoconvex lower semi-continuous (l.s.c.) and radially Clarke-Rockafeller differentiable 

function. 
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Theorem 4.3 Let𝑓: 𝐶 ⊆ 𝑋 → ℝ ∪ {+∞} be a lower semi-continuous Clarke-Rockafeller Sub-differentiable 

pseudo-convex function. let 𝑥̅ ∈ 𝐶 such that −∞ ≤ inf𝐶 ⁡𝑓 < 𝑓(𝑥̅).         (20)  

Then, 𝑥̅ is a maximum of  𝑓 on 𝐶 if  and only if  for all 𝑥 ∈ 𝐶 such that 𝑓(𝑥) = 𝑓(𝑥̅) and for all 𝑥∗ ∈ 𝜕𝑓(𝑥) we 

have: 〈𝑥∗, 𝑦 − 𝑥〉 ≤ 0 ∀𝑦 ∈ 𝐶\{𝑥}.       (21) 

Proof.⟹Suppose that 𝑥 is a solution of  (14). Let 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑓(𝑥̅) and let 𝑥∗ ∈ 𝜕𝑓(𝑥). Then,  𝑓(𝑦) = 𝑓(𝑥), ∀𝑦 ∈ 𝐶. 

Since 𝑓 is strictly pseudoconvex, then 〈𝑥∗, 𝑦 − 𝑥〉 < 0, ∀𝑦 ∈ 𝐶\{𝑥}. ⟸ Suppose that there exist 𝑧 ∈ 𝐶 such that 𝑓(𝑧) > 𝑓(𝑥̅). By the hypothesis, there exist 𝑧0 ∈ 𝐶 such that 𝑓(𝑧0) < 𝑓(𝑥̅). Since 𝑓 is strongly radially Clarke-Rockafeller sub-differentiable, then there exists some 𝑥0 ∈ (𝑧0, 𝑧) such that 𝑓(𝑥0) = 𝑓(𝑥̅) and 𝜕𝑓(𝑥0) ≠ ∅. Pick any 𝑥0∗ ∈ 𝜕𝑓(𝑥0). Then,  〈𝑥0∗, 𝑧 − 𝑥0〉 < 0 and 〈𝑥0∗, 𝑥0 − 𝑥0〉 < 0, which is a contradiction. 

Thus, 𝑥̅ is a maximum of 𝑓 on 𝐶. 

 

5. Conclusion   

We extended the relationships between convex functions and corresponding monotone maps to 

pseudo-convexity and the corresponding pseudo-monotonicity of  their sub-differentiable maps. We 

characterized the lower semi-continuous Clarke-Rockafeller sub-differentiable pseudo-convex functions (1) by 

the corresponding monotonicity of  their Clarke-Rockafeller sub-differential operator 𝜕𝑓 and presented their 

optimality conditions, using variational inequalities. 
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