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1. Introduction 

Bioinformatics is an interdisciplinary field that combines biological sciences with computational 
methods, playing a pivotal role for researchers and scientists engaged in various biological experiments 
aimed at enhancing the well-being of living organisms. It depends on three principal elements such as huge 
database with a vast array of biological data, algorithms, statistical techniques employed to elucidate 
relationships within expansive datasets, and computational tools designed for analysing and interpreting 
biological data. Within biological databases, Microarray gene expression data is one of the biological 
databases that contain the gene expression values for different samples. The primary objective of analyzing 

Abstract 

Three-dimensional data are increasingly prevalent across biomedical and social domains. Notable 
examples are gene-sample-time, individual-feature-time, or node-node-time data, generally called 
observation attribute-context data. The unsupervised analysis of three-dimensional data can be pursued to 
discover putative biological modules, disease progression profiles, and communities of individuals with 
coherent behaviour, among other patterns of interest. It is thus key to enhancing the understanding of 
complex biological, individual, and societal systems. The clustering technique is one of the important 
unsupervised approaches for mining similar patterns either row-wise or column-wise. Biclustering 
performs simultaneous clustering of both rows and columns by identifying the similarities under a specific 
subset of conditions. On the other hand, the Triclustering algorithm extracts similar pattern subsets 
including row, column and also the third dimension mostly as time. This review paper focuses on the 
triclustering approach followed in many kinds of data such as binary data, big data and most importantly 
in gene expression data. This work also divulges the computational overhead in dealing the three-
dimensional data. It also provides a detailed view of the approaches followed in different triclustering 
algorithms, measures used, dataset applied and also the validation framework followed. Finally, it 
highlights challenges and opportunities to advance the field of triclustering and its applicability to 
complex three-dimensional data analysis. 
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microarray gene expression data is to identify patterns in gene expression that differentiate experimental 
and control samples, facilitating the classification of new samples based on their gene expression profiles. 

1.1. Three-Dimensional Microarray Data  

Microarray technology has been very effective in the examination of the expression of thousands of 
genes at a time and it has revolutionized the study of gene expression data. The activity of measuring all 
genes for the number of biological replicates across each space or time point is referred to as three-
dimensional datasets. The time series datasets in microarray technology have been used to measure in a 
single experiment, the expression values of thousands of genes under a huge variety of experimental 
conditions across different time points. Due to its huge volume of data, several computational methods are 
needed to analyze such datasets. Fig. 1 shows the three-dimensional time series dataset representation in 
which each slice represents one-time point. 

 

Fig. 1. Three-Dimensional Dataset Representation 

1.2. Clustering Analysis 

Data mining research mainly targets on effective and scalable knowledge discovery from databases that 
give appropriate solutions in time. Clustering is one of the unsupervised approaches for revealing the 
interesting patterns in the underlying data. Clustering algorithms group, the data objects into sets of disjoint 
classes known as clusters. It aims to maximize similarity within the clusters as well as to minimize 
similarity between the clusters, based on a distance measure (Jiang et al.2006). In the context of gene 
expression data, extracting information of gene expression levels that vary among the different conditions 
includes grouping of co-expressed genes. If two genes have similar expression profiles across some 
conditions or samples, then there may be some relationship between their functions which reflects a 
common regulation pattern (Pollard & Van Der Laan 2002). Traditional clustering algorithms may be either 
gene-based clustering or sample-based clustering. In gene-based clustering, the genes that are similar across 
a set of samples are clustered whereas in sample-based clustering, the samples that are similar across a set of 
genes are grouped. However, these clustering algorithms fail to find the group of genes that are similarly 
expressed over a subset of experimental conditions. This problem is solved by biclustering algorithms 
(Cheng & Church 2000).  
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1.3. Biclustering 

Biclustering is a two-dimensional clustering method where the genes and conditions are grouped 
simultaneously. A bicluster can be defined as a subset matrix with a set of genes and a set of samples or 
experimental conditions. With a given gene expression matrix, a bicluster has a set of genes that behave 
similarly under a subset of experimental conditions. There are different types of biclusters extracted such as 
bicluster with constant values, bicluster with coherent values on rows or columns and bicluster with 
coherent values. 

Biclustering, block clustering, co-clustering and two-mode clustering are data mining techniques that 
allow synchronizing clustering of rows and columns of a gene expression matrix. Given a set of n rows in m 
columns (i.e., an n ×m matrix), the co-clustering algorithm generates a co-cluster subset of rows that exhibit 
similar behavior across a subset of a column. 

In addition to biclustering along the gene-sample dimensions, there has been a lot of interest in mining 
gene expression patterns across time. Hence, Triclustering finds the subset of genes that are similarly 
expressed across a subset of experimental conditions or samples over a subset of time points.  

1.4. Triclustering 

 Given a time series gene expression data, a Triclustering algorithm aims to extract a set of 
triclusters such that each tricluster satisfy the properties like homogeneity and statistical significance. The 
homogeneity describes the structure, coherence and quality of a triclustering solution. The structure is 
conceived as the number, size, shape and position of triclusters. The coherence of a tricluster is defined by 
the observed correlation of values. The quality of a tricluster is the amount of tolerated noise. A tricluster is 
statistically significant if its occurrence probability deviates from expectations when it is unexpectedly low 
against a null data model. Fig. 2 shows Triclustering models (Henriques&Madeira2018). 

 
 

Fig. 2. A Triclustering Model 

Triclustering algorithms aims to find genes that have similar expression profiles along a segment of 
timeseries in a subset of conditions. A coherent tricluster may contain a set of genes which exhibits either 
similar numeric values for the times and conditions (coherent values) or similar behaviors either as 
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correlated positive and negative changes in the expression values (coherent behavior) (Madeira & 
Oliveira2004). These types of coherent clusters contain information which helps in identifying useful 
phenotypes, potential genes that are related to these phenotypes and their regular relations (Tchagang et al.  
2012). 

In recent years, analyzing the microarray data for finding the coexpressed gene patterns has got the focus 
of researchers. Considering time series microarray datasets, there is a need for mining the gene expression 
patterns which are similarly expressed with both samples and time points. There are some existing 
triclustering algorithms for mining the triclusters from the gene expression dataset. This chapter deals with 
the review of existing triclustering algorithms for microarray datasets and also for other datasets. 

2. Triclustering for Microarray Datasets 

Mining coherent gene clusters from the Gene-Sample-Time (GST) point microarray dataset (Jiang et al.  
2004) is proposed for extracting clusters that contain a subset of genes and samples that are coherent along 
with the time series. It performs gene-sample search and sample-gene search for completely extracting a 
coherent gene cluster. In sample-gene search, for each subset of sample combinations, a set of genes that are 
coherent are grouped and later some of the sample subsets could be pruned. Similarly, in gene-sample 
search, for each combination of genes, the set of samples that are coherent are grouped and later it could be 
pruned. Since the number of samples is lesser than the number of genes in the dataset, the sample-gene 
search performs better than the gene-sample search. 

TriCluster (Zhao &Zaki2005) is the first introduced triclustering algorithm for extracting coherent 
clusters in three-dimensional datasets. It mines the overlapping and arbitrarily positioned clusters in which 
each cluster can have constant and similar values and also scaling and shifting patterns across each 
dimension. It constructs a graph-based model for mining the clusters. It splits each time point separately and 
develops a multigraph containing similar value ranges between two samples for each gene-sample matrix. It 
then finds the maximal cliques in that multigraph for extracting biclusters for that particular time point. 
Next, another multigraph is developed from the extracted biclusters of each time point and searching the 
cliques again from this graph will result in the set of triclusters. And, if needed the clusters can be merged or 
deleted for reducing the overlaps. 

Sometimes, the absolute values of two dimension profiles in a graph may vary but their overall trend 
may remain consistent. According to biologists, the two genes are biologically associated when their trends 
are similar. TriCluster algorithm sticks to the symmetry property by considering only the absolute values of 
the genes, samples and time points. gTricluster (Jiang et al.  2006) algorithm breaks this property by 
extracting triclusters based on a general tricluster model. gTricluster applies a basic similarity metric called 
Spearman Rank Correlation for determining the similarity of two expression profiles. A new 3D cluster 
model is represented for GST microarray data. It also maintains the biological association of the genes with 
samples and time points. Initially the maximal coherent subset samples for each gene are identified and 
similarity matrix for each is computed. Among all the maximal cliques, depth first search is applied for 
extracting the triclusters.  

Extended Dimension Iterative Signature Algorithm (EDISA) (Supper et al. 2007) is proposed for 
clustering 3D gene-condition-time datasets. Initial modules are constructed from the dataset which are 
refined by eliminating genes and samples until the members in the module compile with each other. Three 
possible modules are obtained such as module with independent response profiles, similar modules with 
similar responses under all conditions and a condition specific response. Pearson correlation is used for 
identifying similarity between two gene profiles. 
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Gene expression data of biological experiments have huge volume of data and in turn, it imposes burden 
in analyzing the data. In TriCluster algorithm, constructing multigraphs and combining the information to 
construct a graph again turns the triclustering problem to be NP complete which needs a parallelism 
concept to attain feasible solutions. ParTricluster algorithm (Araújo et al. 2008) is proposed for 
implementing the TriCluster algorithm in parallel using filter-labelled-stream in support with ant-hill 
parallel programming environment. The result analysis shows that it scales even well with large data size. It 
explores many parallelisms in filter stream models like task parallelism, data parallelism and asynchrony.
  

In the sight of biological analysis, to interpret gene regulatory mechanisms by using only gene expression 
data is hard to perform. Gene regulators information has the ability to control the gene expression value 
such as transcription factor binding site into the promoter region. So, in order to incorporate the gene 
regulator information with the gene expression data, Regulated Expression Values (REV) is introduced (Li 
& Tuck 2009). REV score indicates how a gene can be regulated by a factor. After assigning the REV 
scores, it directs the TriCluster algorithm to find the triclusters from the data with an addition feature such 
as Automatic Boundary Searching (ABS). It is added for determining the boundary threshold. It constructs 
the Transcription regulatory factor and Gene (T-G) matrix and Transcription factor and Conditions (T-C) 
matrix representing the regulatory information with genes and conditions. It extracts triclusters with each 
gene controlled by at least one regulator. But, constructing the REV score in high dimensional data is a very 
much complicated process. 

LagMiner (Xu et al.  2009) is a 3D clustering algorithm with a cluster model S2D3 in which S2 gives the 
scaling-shifting correlation and D3 reflects three dimensions in the data genes, samples and time points. It 
aims at finding clusters in the gene-sample plane, time-gene plane and an order-preserving gene-time plane 
for each sample where it finds the time lag coefficient and time lag order. It achieves time-lag correlation, 
continuity of correlated time periods and general shifting and scaling patterns.  

3D-TDAR-Mine (Liu et al. 2010) is proposed for mining the temporal dependency association rules in 
three-dimensional microarray data. The association rules that are mined using this algorithm provide the 
information on regulation of gene reactions. TS3 similarity measurement is introduced for finding the 
coherent pattern with shifting, scaling trends. TS3 uses the min-max normalization for normalizing the 
series which are in the same range for handling scaling and shifting. This algorithm undergoes two phases 
such as the coherent pattern phase for finding the coherent gene patterns and generating temporal 
association rules phase. 

Versatile temporal subspace patterns (Hu &Bhatnagar 2011) discovery is proposed for analyzing the 
biological importance of three-dimensional data. A clear temporal pattern is extracted as a tricluster in 
searching for multiple contiguous subintervals. A prefix-based search algorithm is proposed with Pearson 
correlation method for finding the maximal triclusters from closed temporal patterns which may contain 
high meaningful biological hypotheses. 

Intersected coexpressedsubcube miner (Ahmed et al.  2011) is proposed for mining both the inter-
temporal and intra-temporal gene coherence in a dataset. It also eliminates the time-dominated, sample-
dominated datasets and also detects the triclusters which are time latent. A method is proposed based on the 
order-preserving sub-matrices for mining the triclusters from three-dimensional data. From an unordered 
pair of gene-sample planes, a set of modules are generated which can be extended to form a tricluster. 
PMRS, Planar Similarity measure is also introduced for evaluating the triclusters.  

Order Preserving Triclustering (OPT) (Tchagang et al.  2012) is a subspace clustering algorithm which is 
proposed for clustering only the three-dimensional short time series dataset. It uses the combinatorial 
approach on the sample dimension and applies the order preserving concept to the time dimension. These 
two approaches combinatorial and order-preserving allow finding the similarities and differences between 
samples in terms of temporal expression profiles. For the restriction of short time series data, the expression 
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profiles may vary from 2-5 samples and 3-8 time points. In the case of datasets that contain more time 
points and samples, the algorithm will work but it has a large computational complexity that increases with 
an increase in a number of time points or samples. 

Three Way Clustering (TriWClustering) (Dede&Oğul 2013) algorithm is proposed for cross-species gene 
regulation analysis for mining then δ-triclusters from the dataset. This algorithm initiates with the entire 
dataset as a tricluster and then iteratively it removes rows, columns and sources of the tricluster until a 
residual score becomes less than or equal to δ. Next, it starts inserting rows, columns and sources until a 
stopping condition is met. Once a first tricluster is obtained, it starts the process again with the complete 
dataset. 
δ-TRIMAX(Bhar et al.  2012) triclustering algorithm is proposed for extracting triclusters with a new 

fitness function MSR for the three-dimensional dataset. It is the extension of Cheng and Church biclustering 
algorithm that uses the MSR value for two-dimensional datasets. It follows a greedy heuristic technique for 
finding the triclusters but with a threshold δ. After extracting the triclusters, each one of the triclusters is 
represented by an Eigen value. Then, it finds whether the eigenvalue is expressed differentially at the early, 
middle or later Estrogen responsiveness stage. It also finds the hub genes which represent the triclusters, and 
binding site analysis is done for finding the transcription factor binding to a promoter region of the Estrogen 
receptor.  

The triclustering plaid model 3D-Plaid (Mankad&Michailidis 2014) is introduced which is very similar 
to the existing plaid models but with an extension for the third dimension in the dataset. This algorithm 
finds subspaces which have strong deviations and finds their dependence with an iterative procedure aiming 
to minimize the sum of squares of the 3D data values. Initially, a background layer is fit and then the 
triclusters are then added one at a time until no more statistically significant triclusters can be found under a 
given permutation test. 

TriGen algorithm (Aviles et al.  2014) is proposed for mining triclusters from temporal gene expression 
data by applying the optimization technique Genetic algorithm. An initial population representing genes, 
samples and time is generated. Then the quality of each individual is measured by a fitness function. Next, 
the individuals which would survive to the next generation are selected. Then, the genetic algorithm 
properties such as crossover and mutation are applied to each individual in the population.  It is repeated 
until the stopping criterion is met. This algorithm is evaluated in terms of two measures namely, MSR and 
correlation measure. 

Least Square Line (LSL) (Aviles&Escudero, 2014) measure is proposed for evaluating the quality of the 
tricluster. Three graphical views are considered such as one panel with X-axis as genes, Y-axis as samples, 
second panel with X-axis as genes and Y-axis as time points and third panel with X-axis as samples and Y-
axis as time points. For evaluating the measure, Trigen algorithm is applied for extracting the triclusters. 
The results are also validated using two correlation measures such as Pearson and spearman correlation 
coefficients. 

EMOA-δ-TRIMAX (Bharet al.  2015) is the Evolutionary Multi-Objective Optimization added to the δ-
TRIMAX algorithm for retrieving the overlapping clusters by incorporating the features of the evolutionary 
algorithm. Genetic algorithm is applied for optimization by mutation for producing new offspring. Then, 
the population is ranked using dominance criteria and crowding distance as it replaces the worst 
population. Three objective functions are used for evaluating each individual in the population.  The first 
objective function is MSR value divided by δ which is to be minimized; the second is the volume of the 
tricluster divided by the volume of the dataset which is to be maximized; the third is the non-parametric 
spearman correlation coefficient of the triclusters. It is also used for detecting the Eigen gene in δ-TRIMAX, 
singular valued decomposition on the expression data of each tricluster.     

Three Way module Inference via Gibbs Sampling (TWIGS) (Amar et al.  2015) algorithm is proposed 
for finding the coherent and flexible modules in three-way data. It is based on the hierarchical Bayesian data 
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model and Gibbs sampling. It produces two modules in which the first module contains a set of rows that 
are active across a set of times and the second module contains a set of time points in each covered subject. 
It allows heterogeneity and asynchrony in different subjects in the first module and the second module 
discovers the specific regulatory information based on the dataset. 

SSSimTri (Ahmed et al.  2014) is a Shifting and Scaling Similarity Triclustering algorithm for finding 
coexpressed patterns by shifting and scaling in gene-sample-time expression data. It uses a seed-growth 
algorithm in parallel for extracting biclusters from each time point’s slice. A fast shared memory biclustering 
and shared nothing triclustering architecture is also proposed for identifying coexpressed patterns with 
higher biological significance over the gene-sample-time plane. This algorithm is also able to identify 
shifting, scalable and shifted-scalable patterns. 

TimesVector (Jung et al.  2017) is a clustering algorithm for three-dimensional time series data for 
extracting clusters with distinctive gene expression patterns between more samples. Initially, dimension 
reduction and clustering of time-condition concatenated vectors are performed. Then, detecting similar and 
distinct gene expression patterns includes post-processing clusters. Finally, genes are rescued from 
unclassified clusters. 

TriGen algorithm uses three fitness functions such as MSR, Least Square Lines(LSL) and Multi Slope 
Measure(MSL). In order to asses these results, a new evaluation measure is introduced called TRIQ (Avilés 
et al.  2018) is introduced. TRIQ acquires the information from three different sources such as correlation 
among gene, sample and times, graphical validation of the extracted patterns and function annotation of the 
extracted genes. BIOQ measures the biologically significant gene in the tricluster, GRQ gives the 
quantitative representation of the triclusters. PEQ and SPQ gives the pearson and spearman correlation of 
the genes in the triclusters respectively. 

THD-Triclustering algorithm (Kakati et al. 2018) is developed for handling co-occurring shifting and 
scaling patterns from a dataset. This algorithm has two parts such as “generate biclusters” which extracts a 
set of biclusters that have high biological significance and “generate triclusters” which gives a set of 
triclusters having high biological significance and inter temporal coherence. This algorithm is validated 
using the coverage measure and biological significance analysis is done and thus key genes are identified. 

Mean Correlation Value (MCV) (Narmadha&Rathipriya 2018) measure is introduced for identifying the 
correlation for the triclusters and also the triclusters are extracted from the dataset using this MCV. Its value 
ranges from 0 to 1 in which a value closer to 1 indicates highly correlated cluster. It extracts triclusters with 
additive pattern, multiplicative pattern, coherent pattern and coherent evolution pattern. The correlation 
based measure MCV is able to evaluate all types of the trilcusters since it can handle transformations like 
translation and scaling. 

Particle Swarm Optimization technique is applied to extract the triclusters from the high dimensional 
data with objective function as Mean Square Residue (Swathypriyadharsin P & K Premalatha, 2019). The 
algorithm is applied to three real life microarray gene expression data which groups the coexpressed genes 
over a subset of samples under a subset of time points which imposes huge computational burden. The 
biological significances of the extracted triclusters from all the three datasets are also analyzed. 

A novel rough fuzzy cuckoo search algorithm (Swathypriyadharsin P & K Premalatha, 2019) is proposed 
for triclustering genes across samples and time points simultaneously. By applying the upper and lower 
approximation of rough set theory and the objective function of fuzzy k-means, rough fuzzy k-means was 
incorporated into a cuckoo search to handle the uncertainty of the data. It was applied to three real-life time 
series gene expression datasets. This work was evaluated using four validation indices and correlation 
analysis was performed to indicate the cluster quality. 

TriRNSC (BhawaniSankarBiswal et al., 2020) is a novel triclustering algorithm which is designed for the 
identification of significant triclusters within gene expression profiles. TriRNSC builds upon the restricted 
neighborhood search clustering (RNSC) method, a widely utilized graph-based clustering approach that 



Scope 

Volume 14 Number 1 March 2024 
 

337 www.scope-journal.com 

 

takes into account genes, experimental conditions, and time points simultaneously. TriRNSC framework 
initially employs a basic cost function before transitioning to a scaled cost function for the analysis of gene 
expression. Furthermore, TriRNSC gets impressive results by incorporating gene size as an evaluative 
parameter for the generated triclusters. 𝛿-Trimax (Siswantining et al., 2021) method is employed for triclustering analysis on microarray gene 
expression data which aims to identify triclusters with a mean square residual smaller than 𝛿 and maximum 
volume. The triclusters are derived by selectively removing nodes from 3D data using both multiple node 
deletion and single node deletion algorithms. To refine the obtained tricluster candidates, a node addition 
algorithm is employed, reintroducing previously deleted nodes for further evaluation. Improvements to the 𝛿-Trimax method are implemented, and the evaluation of the resulting triclusters is also calculated. The 
method is applied to two microarray gene expression datasets. The first dataset involves gene expression 
data from the differentiation process of human-induced pluripotent stem cells (HiPSCs) from patients with 
heart disease. The best simulation is achieved when 𝛿=0.0068, 𝜆=1.2, resulting in five triclusters considered 
characteristic of heart disease. The second implementation is on HIV-1 data, with the optimal simulation 
parameters being 𝛿=0.0046 and 𝜆=1.25. This yields three genes, namely AGFG1, EGR1, and HLA-C, 
identified as biomarkers. This gene set holds potential for medical experts in guiding further treatment 
strategies. The best five tricluster based on the smallest TQI for HiPSC data provides group of gene 
expression within the five tricluster is supposed to be a feature of heart disease. Therefore, this gene group 
can be used by medical experts in providing further treatment, such as making the genes in this tricluster a 
therapeutic target or as a drug development. Three biomarkers for HIV-1 disease were obtained from the 10 
selected tricluster. Biomarkers consist of genes AGFG1, EGR1, and HLA-C. 

3. Triclustering for other Social Three Dimensional Datasets 

Mining 3D Subspace Clusters (MIC) (Sim et al.  2010) is proposed for extracting triclusters from 3D 
datasets with constant coherence. The triclusters extracted are called Correlated 3D Subspace Clusters. It 
has a high correlation within the context slices and between each pair of contiguous slices. Initially, it 
generates seeds that are correlated objects and later extends it by merging the seeds that maximize 
correlation score. 

Triclustering is also applied for frame induction problem that involves the generalization of clustering for 
triadic data. The process of frame net construction is automatically done through unsupervised learning 
techniques. Triframes (Ustalov et al. 2010), a graph-based approach is proposed as it provides state-of-the-
art results on frame net derived datasets and also performs the verb class clustering task. Here, the focus is 
on the subject-verb object triples and two frame roles that are expressed by subjects and objects which gives 
the extracted semantic structures with high coverage.  

Tribox cluster (Mirkin&Kramarenko 2011) is a disjunctive model for clustering the binary data using 
least squares locally optimal method. It involves choosing the right parameter, scale shift and produces a 
contrast box of triclusters. It selects triples from the data and modifies its extent, intent and modus by 
maintaining high density. TriBox extracts triclusters by maximizing an objective function. Hash functions 
of the corresponding triclusters may also be used for optimizations. 

The incorporation of domain knowledge in the clustering process is not done by most of the existing 
algorithms and many such algorithms are dependent on the parameters in which setting the wrong 
threshold may reduce the quality of the clusters. To address these issues, a centroid-based actionable 3D 
subspace clustering algorithm called CATSeeker (Sim et al.  2013) is introduced which allows the inclusion 
of the domain knowledge information and becomes parameter insensitive. This algorithm contains a unique 
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combination of singular value decomposition, numerical optimization and three-dimensional frequent 
itemset mining.    

One pass algorithm (Gnatyshak et al.  2014) is the extension of OAC triclustering which is designed for 
binary data having linear time and memory complexities. Next, this algorithm is parallelised using the map-
reduce framework for big data. There exist two stages M/R approach. In the first stage, M/R calculates all 
the existing pairs of primes efficiently. The second stage of M/R permits for assembling of the found primes 
into triclusters. The number of map keys is equal to a number of reducers.   

Two approaches are developed for triclustering the binary data. The first approach citation considers 
tricluster as a subset of ternary relation Y that contains objects, attributes and conditions. The second 
approach citation is to find a dense sub-matrix of the adjacency matrix of ternary relation Y. Hierarchical 
spectral triclustering (Ignato vet al. 2014) is proposed for extracting the dense submatrices of the adjacency 
matrix of the initial ternary relation Y. Traditional spectral partitioning is the reduction of bipartite graph 
and this method is extended to the tripartite graphs. It has good scalability on real-world data and is the 
other alternative for conceptual triclustering. 

Triadic formal concept analysis (Ignatovet al. 2015) is done for optimal patterns in which a dense 
maximal cuboids called triadic pattern is constructed. Triclusters that are optimal with respect to the least-
square criterion and graph partitions are obtained with the help of spectral clustering. Finding an optimal 
tricluster is a NP complete problem which needs extensive computational experiments that are done 
applying pareto-optimality principle. The evaluation of the algorithm is based on five criteria such as 
density, coverage, diversity, noise tolerance and cardinality. Choosing the right number of clusters is an 
issue which needs to be addressed. 

A single pass triclustering algorithm (Gnatyshak 2015) for extracting the clusters is proposed for the big 
data that clusters the Object, Attributes and Conditions (OAC). It is an OAC triclustering method but it is 
based on the three prime attributes such as prime object attribute, prime object condition and prime 
attribute condition. Thereby it enumerates all the triples of three relationships and a tricluster is generated 
for each set. Then for each tricluster, the hash value is computed and the corresponding tricluster is added 
to the hash table. If any conflicts occur, the tricluster should not be added to the hash table. 

OAC triclustering algorithm (Zudin et al. 2015) is applicable only to the binary data, so it is extended to 
work for other data by modifying the basic OAC triclustering approach. The algorithm is parallelised using 
the map-reduce framework for adapting the algorithm for the big datasets. It has linear time and reduces 
memory complexities.   

Traditional Fuzzy clustering allows an object to be presented in multiple clusters without being restricted 
to a single cluster. Fuzzy Co-clustering extends the fuzzy clustering by calculating membership functions for 
both the objects and features. Further, it is extended for clustering the three-dimensional data by proposing 
a Fuzzy Triclustering (FTC) algorithm (Liu et al.  2015). For each dimension, a fuzzy membership function 
is assigned by the FTC algorithm and it extracts the clusters simultaneously on three dimensions such that 
the members inside a cluster have strong coherence with each other. The algorithm is evaluated using two 
measures such as precision and recall. However, determining the number of clusters is a major issue in 
FTC. 

Triclustering approach (Guigoures et al.  2012) is also applied for tracking the structures in time-evolving 
graphs in which three-dimensional coclustering of source vertices, target vertices and time is considered as 
three dimensions. It allows inferring the time segments from the evolution of edge distribution between 
vertices that does not require the user to specify a priori discretization.  

Most of the clustering methods are for either temporal or spatial data but there also exists large and 
complex spatio-temporal datasets. So, Bregman Cuboid Average Tri-Clustering (BCAT) (Milla et al. 2018) 
is proposed for analyzing the data cubes of such data. The three dimensions considered here are space, time 
and a nested temporal or spatial dimension. It identifies the triclusters with members having similar 
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temperature values along with consideration of spatial weather stations. Next, the k-means algorithm is 
used for mining the number of irregular triclusters. 

G-Tric (João Lobo et al., 2021) aims to create synthetic datasets with configurable properties and the 
possibility to plant triclusters. The generator is prepared to create datasets resembling real 3-way data from 
biomedical and social data domains including triclustering solution as output. G-Tric can replicate real-
world datasets and create new ones that match the researcher's needs across several properties, including 
data type (numeric or symbolic), dimensions, and background distribution. Users can tune the patterns and 
structures that characterize the planted triclusters (subspaces) and how they interact (overlapping). Data 
quality can also be controlled, by defining the amount of missing, noise or errors. Triclustering evaluation 
using G-Tric provides the possibility to combine both intrinsic and extrinsic metrics to compare solutions 
that produce more reliable analyses. A set of predefined datasets, mimicking widely used three-way data 
and exploring crucial properties was generated and made available, highlighting G-Tric’s potential to 
advance triclustering state-of-the-art by easing the process of evaluating the quality of new triclustering 
approaches. Besides the ability to easily generate customized three-way data with triclustering solutions, it 
also enables the possibility to perform benchmarks on existing algorithms to study their efficiency within 
certain conditions, or their effectiveness in finding different types of patterns, by allowing the creation of 
several datasets with an extensive board of characteristics. 

A bigTriGentriclustering algorithm based on evolutionary algorithms (Laura Melgar-García et al., 2022) 
is introduced to mine the three-dimensional patterns on the basis of vegetation indices from vine crops. 
Different vegetation indices have been tested to find different patterns in the crops. The bigTriGen 
algorithm has been applied to a vineyard crop in southern Portugal for finding a precision viticulture 
solution. The accuracy of the algorithm has been shown with respect to two different features: the quality 
measure of the found patterns and the scalability of the algorithm. Different vegetation indices have been 
calculated using Sentinel-2 images downloaded from QGIS software and it was found that the patterns 
using these vegetation indices have shown that the index that best fits this field is the MSI. In this way, the 
algorithm has been able to find four different areas of the vineyard crop that behave differently in terms of 
their soil moisture. The scalability of the algorithm has been studied considering the number of nodes used 
and the size of the dataset. 

TCtriCluster (Diogo F. Soares et al., 2023) is a temporally constrained triclustering algorithm that aims 
to systematically identify informative temporal patterns shared by a subgroup of patients in specific features 
(triclusters). These identified patterns serve as discriminative features in a cutting-edge classifier, ensuring 
interpretability. This methodology provides model interpretability by uncovering clinically relevant disease 
progression patterns, and elucidating features crucial for classification. To assess the prognostic boundaries 
of five significant clinical endpoints—non-invasive ventilation (NIV) requirement, auxiliary communication 
device necessity, percutaneous endoscopic gastrostomy (PEG) need, caregiver requirement, and wheelchair 
necessity—the TCtriCluster approach is applied to the Amyotrophic Lateral Sclerosis (ALS) Portuguese 
cohort (N = 1321). The results reveal that triclustering-based predictors outperform existing state-of-the-art 
alternatives. Notably, predictions for the need for an auxiliary communication device (within 180 days) and 
the requirement for PEG (within 90 days) achieve an AUC above 90%. Validated in clinical practice, this 
approach aids healthcare professionals in comprehending the intricate and varied patterns of ALS disease 
progression, thereby contributing valuable insights into prognosis. The possibility of extracting group-
specific patterns along time frames of arbitrary length offers a higher degree of feature expressiveness, which 
is generally lacking in peer approaches. 

TriSig (Leonardo Alexandre et al., 2023) is a novel triclustering methodology to rigorously assess the 
statistical significance of patterns extracted from tensor data. The methodology provides a robust set of 
statistical principles that accommodate different aspects of tensor data such as variable domains and 
dependencies, temporal dependencies and misalignments, and relevant p-value corrections. This work aims 
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at proposing a statistical frame to assess the probability of patterns in tensor data to deviate from null 
expectations, extending well-established principles for assessing the statistical significance of patterns in 
matrix data. A comprehensive discussion on binomial testing for false positive discoveries is achieved 
through variable dependencies, temporal dependencies and misalignments, and p-value corrections under 
the Benjamini-Hochberg procedure. 

4. Review Analysis 

Table 1 provides a detailed review report of all the triclustering algorithms that have been discussed so 
far. All the algorithms were compared in terms of the approach it used, the measure it followed, the dataset 
employed and the validation framework applied. It also depicts the evolution of the triclustering of three-
dimensional data over the years, starting from a simple pattern-based approach it then extended to graph-
based, greedy divide and conquer, stochastic and exhaustive and finally arrived at the applications of 
evolutionary optimization approaches in dealing with the three-dimensional data. The most commonly 
used measures are the MSR and correlation scores. The datasets applied by different algorithms are also 
provided in the table which are all three-dimensional data including the gene expression data. The 
validation framework used in most of the gene expression data is biological significance analysis of the 
extracted genes by the algorithm.  
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Table 1 Review of Triclustering Algorithms 

Algorithm Year Approach Measure Dataset Validation Framework 

Mining Coherent 
clusters from GST 

2004 Pattern based Pearson 
Correlation 

GST microarray 
data of multiple 
sclerosis 

Gene ontology and p-
value 

TriCluster 2005 Graph based  Coverage, Overlap Yeast Cell Cycle 
dataset 

Gene Ontology and p-
value 

gTricluster 2006 Pattern based Spearman rank 
correlation 

Yeast cell cycle  Precision and Recall and 
Gene ontology 

EDISA 2007 Greedy (seed growth 
and reduction) 

Pearson 
Correlation 

Homo sapiens 
and Arabidopsis 
thaliana root and 
Arabidopsis 
thaliana shoot 

Biological significance 
analysis 

ParTricluster 2008 Graph based with 
anthill environment 

 Yeast cell cycle 
regulated dataset 

Edge traversal and 
computational cost 

TRIClustering 2009 Automatic Boundary 
Searching 

Regulation 
coefficient and 
similarity score 

Yeast Sporulation 
REV data 

Regulation Profile and 
TRANSFAC 

LagMiner 2009 Greedy (seed growth 
with multi-wise intra-
plane coherence) 

Shifts/scales on X 
and Z slices; order-
preserving on Y 

One synthetic 
dataset and one 
real-life yeast 3D 
dataset 

Sensitivity, Effectiveness 
and yeast genome 
ontology 

MIC  2010 Greedy (seed 
growth) 

3D correlation 
information 

Stock Market 
Data 

Run time and cluster 
quality 

Triframes 2010 Graph based 
approach 

SVO triples FrameNet 
derived dataset 

Fscore for SVO and 
ploysemous verb classes 

3D-TDAR-Mine  2010 Pattern-based (quasi-
exhaustive) 

Associative 
subspaces with 
shifts, scales and  
trends on X 

Yeast  
Saccharomyces  
cerevisiae 
 

Coherence Threshold 
Analysis, Rule Analysis, 
Similarity Factors 
Analysis, Rule Redundant 
Rate Analysis 

Intersected 
coexpressedsubcube 
miner  

2011 Greedy approach 
 

Intra temporal 
homogeneity and 
Inter temporal 
homogeneity 

Saccharomyces 
Cell Cycle and 
two Yeast Cell 
Cycle 

Planar Similarity measure 

Versatile temporal 
subspace patterns  

2011 Pattern-based (quasi-
exhaustive) 

LOESS-based 
Pearson on X slices 

One synthetic 
dataset and 
GSE20635 
genomic dataset 
from GEO 

Gene Ontology 

Time Evolving 2012 Stochastic approach  London cycles,   Mutual Information 
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Algorithm Year Approach Measure Dataset Validation Framework 

Graphs  optimal Image 
and Simplified 
Image 

OPTricluster 2012 Combinatorial 
approach with order 
preservation 

 Mice, 
Arabidopsisthalia
na, Brassicanapus 

Gene Ontology and p-
value 

OPT  2012 Combinatorial 
approach 

 Plasmodium 
chabaudi,  
Arabidopsis 
thaliana,  
Brassica napus 
and Brassica 
napus 

Statistical significance and 
complexity analysis 

CATSeeker 2013 Singular value 
decomposition and 
3D frequent 
itemsetmining 

 synthetic, 
proteinstructurala
ndfinancial data 

Efficiency Analysis, 
parametersensitivityanalys
is,quality analysis of 
theclusters mined by 
differentalgorithms,applic
ationon stock market, and 
applicationon protein 
structure 

δ-TRIMAX  2013 Greedy (Divide and 
Conquer) 

Mean Square 
Residue 

HomoSapiensestr
ogen induced 
breast cancer 
dataset 

GO and Kegg pathway 
enrichment analysis and 
TFBS enrichment analysis 

TriWClustering 2013 Greedy (divide and 
conquer) 

Fully-additive (3D 
MSR) 

3 GEO datasets Gene Ontology term 
enrichment analysis and 
Dunn index (DI) metric 

TriGen 2014 Optimization based MSR and LSL Synthetic dataset 
and 
Sachharomyces 
cerevisiae 

Coverage, overlapping 
and Gene ontology, p-
value 

SpecTric 2014 greedy (divide and 
conquer) 

 Bibsonomy and 
Amsterdam-
Amstelland police 
report 

Density, diversity and 
coverage 

3DPlaid  2014 Stochastic Plaid assumption T-cell data and 
World Trade data 

RunTime and 
Computational cost 

EMOA- δ-TRIMAX  2015 Optimization based MSR Two synthetic 
datasets and 
Three real 
datasets from 
GEO as 
GSE11324, 

SDB, TQI, GO and Kegg 
pathway enrichment 
analysis and TFBS 
enrichment analysis 
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Algorithm Year Approach Measure Dataset Validation Framework 

GSE35671, 
GSE46280 

Fuzzy TriCluster 2015 Fuzzy  MovieLens 
Dataset 

F-measure, entropy, 
overall 
Similarity 

TWIGS  2015 Hierarchical 
Bayesian data model 
and Gibbs sampling 

 Microarray 
datasetfortranscri
ptionalresponse 
of patientsto 
sepsis and 
fMRIdata 

p-value 

Triadic formal 
concept analysis  

2015 Exhaustive  Mobile operators, 
movies and 
bibsonomy 

Density, coverage, 
diversity, noise tolerance 
and cardinality 

Single pass 
Triclustering 
algorithm  

2015 Exhaustive   Two synthetic 
datasets and 
IMDB and 
Bibsonomy 

Density and coverage 

OAC triclustering 
wit Map Reduce  

2015 Exhaustive   Two synthetic 
datasets and 
IMDB and 
Bibsonomy 

Execution time 

SSSimTri 
 

2016 Parallelized 
biclustering-based 

Shifts and/or scales 
on Z slices 

Yeast 
Sporulation, 
Yeast Cell Cycle, 
Rat CNS and 
Homo sapiens 

Gene Ontology and p-
value 

TimesVector 2017 Pattern-based Similar and 
differential patterns 
(cosine distance) 

Four Microarray 
datasets 

Biological significance 
analysis 

THD-Tricluster 2018 Similarity based Shifting-and-
Scaling Similarity 
(SSSim) 

HIV-1 
progression data 

Coverage, biological 
process and p-value 

Particle Swarm 
Optimization based 
Triclustering 

2019 Optimization Mean Square 
Residue, SDB & 
Average TQI 

Three real-life 
time series gene 
expression 
datasets of 
Homosapiens, 
Mus Musculus& 
Saccharomyces 
cerevisiae 

Biological Significance 
analysis 

Rough fuzzy cuckoo 
search algorithm  

2019 Optimization Mean Square 
Residue & 
Coverage, Average 

Three real-life 
time series gene 
expression 

Biological Significance 
analysis 
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Algorithm Year Approach Measure Dataset Validation Framework 

row variance & 
Average 
Correlation value 

datasets of 
Homosapiens& 
two Mus 
Musculus 

TriRNSC 2020 graph-based 
clustering approach 

TQI, SDB & MSR Yeast cell data set Gene ontology &Kegg 
pathway analysis 𝛿-Trimax 2021 Greedy (Divide and 

Conquer) 
Mean Square 
Residual, TQI 

HiPSCs& HIV-1 
dataset 

 

G-Tric 2021 Pattern based 
approach 

Missing, Noise & 
Errors 

Yeast cell cycle, 
Stock market 
ratios, fMRI-
Average blood-
oxygen-level-
dependent 
contrast, 
Bibsonomy, 
Georeferenced 
time-series 

 

bigTriGen 2022 Evolutionary 
algorithmic approach 

Moisture Stress 
Index (MSI) and 
the Green 
Normalized 
Difference 
Vegetation Index 
(GNDV I) 

Vineyard crop 
experimental 
dataset 

Scalability analysis 

TriSig 2023 Pattern discovery p-value Tensor data Pattern evaluation 
TCtriCluster 2023 Stochastic AUC Lisbon ALS 

clinic dataset 
 

5. Summary 

 For mining the useful information from three-dimensional datasets, many Triclustering algorithms 
were proposed. It has a computational challenge in microarray data analysis due to its three-dimensional 
characteristics. This paper provides a detailed study of the different existing triclustering approaches 
developed for microarray gene expression data, binary data and big data. Three-dimensional data have 
complexity in dealing with the third dimension of the data, so many triclustering algorithms were applied to 
extract the meaningful similar properties in all three dimensions of the data. In recent years, many new 
triclustering algorithms are proposed but there is no single best algorithm that is successful in all aspects. 
Heuristic optimization techniques are also applied for triclustering the three-dimensional time series 
datasets. Triclustering algorithms are divided into two main categories such as applying triclustering 
techniques on the microarray gene expression data and the other one is mining the useful hidden patterns 
from other kinds of three-dimensional data. The paper discusses the different types of approaches that have 
been followed in triclustering algorithms such as pattern-based, graph-based, combinatorial, stochastic, 
greedy divide and conquer, heuristic optimization and evolutionary approach. The main measure used in 
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most of the triclustering algorithms is MSR (Mean Square Residue). The most common validation 
framework used is the coverage and similarity index. In the gene expression datasets, gene ontology, 
enrichment analysis and biological significance analysis are used as the validation framework.   

The review concludes by insisting the challenges still need to addressed in the area of triclustering three-
dimensional data like (1) the scalability of the triclustering algorithm needs to be improved as the increase in 
dataset size might have an impact on the complexity overhead in dealing with three dimensions, (2) 
statistical analysis can be included in order to evaluate the significance of the triclusters, (3) developing an 
integrative framework for combining the dispersed potentialities of the existing best algorithms, (4) evolving 
with different strategies for dealing the temporal misalignments of data, (5) Enhancing the algorithms by 
including the degree of tolerance to different kinds of noise in a huge three-dimensional data. 
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