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Abstract. This paper discusses about significance of object grasping research and its potential to bridge the gap 

between perception and ac- tion, enabling machines to perceive and understand their surroundings and perform 

physical interactions with objects. By advancing the state- of-the-art in object grasping, researchers aim to 

overcome challenges such as occlusions, cluttered environments, object variability, and uncertain sensory data. 

Effective object grasping algorithms and systems have the potential to revolutionize automation, robotics, and 

human-robot inter- action, leading to improved productivity, safety, and efficiency in various sectors. 
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1 Introduction 

Object grasping is of significant importance in computer vision and robotics, en- abling machines to interact with 

and manipulate objects in the physical world. Through the development of accurate grasp prediction algorithms, 

researchers aim to enhance automation, robotic manipulation, and human-robot collabo- ration, leading to 

advancements in various industries and domains. GraspNet serves as a valuable resource in this pursuit, 

providing a standardized bench- mark to evaluate and improve object grasping capabilities. Object grasping plays a 

crucial role in the fields of computer vision and robotics, addressing the fun- damental challenge of enabling 

machines to interact with and manipulate the physical world. Grasping involves the ability to perceive objects, 

plan appro- priate hand movements, and execute precise control to achieve a stable and effective grip. In 

computer vision, object grasping aims to develop algorithms and techniques that enable machines to understand 

and interpret the 3D ge- ometry, shape, and appearance of objects in a scene. By accurately estimating the pose 

and location of objects, computer vision systems can facilitate object recognition, scene understanding, and robotic 

manipulation tasks. Grasping is a fundamental step toward achieving more complex tasks such as object manipu- 

lation, assembly, and pick-and-place operations.[1] In the field of robotics, object grasping is essential for robots to 

interact with the physical world, perform tasks autonomously, and assist humans in various domains. Robots 

equipped with grasping capabilities can handle objects, manipulate tools, and perform intricate operations in 

industrial automation, household chores, healthcare, agriculture, 
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and other areas. Grasping enables robots to exhibit dexterity, adaptability, and efficiency, revolutionizing 

industries and improving quality of life.[2] GraspNet provides researchers with a standardized evaluation platform, 

enabling the com- parison of different approaches and fostering collaboration and innovation in the field. The 

availability of large-scale, diverse, and annotated datasets like Grasp- Net facilitates the training and evaluation of 

grasp prediction models, promoting advancements in perception, learning-based techniques, and real-world robotic 

applications.[3] 

 

2 Working Principles of Grasp Net 

Grasp Net offers a rich and comprehensive resource for studying object grasping in diverse scenarios. The inclusion 

of object models, scenes, and detailed grasp annotations enables researchers to explore different grasp planning 

algorithms, evaluate grasp stability, and develop learning-based approaches. The dataset’s structure promotes 

standardized evaluation and fosters innovation in the field of object grasping research[4] The data-set structure 

and contents of GraspNet are essential aspects that contribute to its comprehensiveness and effectiveness as a part 

of object grasping research. GraspNet provides researcher’s with a diverse collection of 3D object models, scenes, 

and associated grasp annotations. This section provides a detailed overview of the dataset’s structure and its key 

components. 

 

 Object Models 

GraspNet includes a wide range of object models representing various categories, such as household items, tools, 

and industrial objects. These object models are represented in 3D format, typically in mesh or point cloud 

representations. Each object model is accompanied by metadata, including category labels, object di- mensions, 

and other relevant information which are useful for getting accurate results.[5][6] 

 

 Scenes 

GraspNet comprises a large number of scenes that simulate real-world environ- ments for object grasping. These 

scenes consist of the object models placed in different configurations, orientations, and cluttered scenarios and were 

captured with variations in lighting conditions, background settings, and object place- ments to enhance the 

dataset’s diversity and realism.[4] 

 

 Grasp Annotations 

One of the primary components of GraspNet is the grasp annotations that pro- vide ground truth information 

about object grasping. Grasp annotations include the position and orientation of the gripper relative to the object, 

known as the 
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grasp pose. Annotations are present for both stable and force-closed grasps, allowing researchers to study 

different types of grasping strategies. The anno- tations may also include additional information such as contact 

points, grasp quality metrics, and stability evaluations. 

 

 Grasp Stability Evaluation 

GraspNet incorporates techniques to evaluate the stability of grasps within the dataset. Stability evaluations 

assess the likelihood of a grasp being successful in terms of maintaining a stable grip on the object. Various factors 

such as contact forces, friction coefficients, and object geometry may be considered in evaluating grasp stability. 

Dataset can be altered for including custom values pertaining to the tools being used. 

 

 Grasp Quality Metrics 

GraspNet defines evaluation metrics to quantify the quality and effectiveness of grasps. These metrics provide a 

standardized way to measure the success of different grasping algorithms and techniques. Grasp quality metrics can 

include measures of stability, force closure, contact quality, or a combination of these factors. 

 

3 Grasp prediction algorithms 

Grasp prediction algorithms play a crucial role in the field of robotic grasping, enabling robots to plan and 

execute effective grasps on objects in various sce- narios. These algorithms aim to determine the optimal grasp 

configuration that ensures stable and successful grasping. This section explores some of the promi- nent grasp 

prediction algorithms that have been developed and utilized in the research community. These algorithms utilize 

different approaches, including an- alytical methods, learning-based techniques, and optimization strategies.Grasp 

prediction algorithms continue to evolve, driven by advancements in machine learning, computer vision, and 

robotics. Further future research aims to address challenges such as generalization to unseen objects and 

environments, incorpo- rating tactile feedback, and improving real-time grasp planning and execution. By 

developing more accurate and robust grasp prediction algorithms the capa- bilities of robotic systems in tasks 

requiring object manipulation and interaction with the physical world can be enhanced. [7][8] 

 

 Analytical Grasp Prediction 

Analytical methods formulate grasp prediction as an optimization problem, aim- ing to find the optimal grasp 

parameters that maximize stability and force clo- sure. One such popular approach is the Grasp Quality 

Measures (GQM), which 
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defines analytical metrics to evaluate grasp quality based on contact forces, fric- tion, and stability criteria. 

Another commonly used analytical method is the Grasp Wrench Space (GWS) analysis, which characterizes 

the set of wrenches that a grasp can resist without slipping or losing stability. Analytical methods provide 

insights into grasp stability and can be computationally efficient, but they often rely on simplified assumptions 

and may struggle with complex object geometries and uncertain environments.[9][10] 

 

 Learning-Based Grasp Prediction 

Learning-based approaches leverage machine learning techniques to predict grasps based on training data. 

Convolutional Neural Networks (CNNs) have been widely used for learning-based grasp prediction, where the 

network learns to map visual input (e.g., RGB or depth images) to grasp parameters. Point cloud-based ap- 

proaches use PointNet or PointNet++ architectures to process 3D point cloud data and predict grasp 

configurations. Reinforcement Learning (RL) methods have also been employed for grasp prediction, where an 

agent learns to interact with the environment and optimize grasping actions through trial and error. Learning-

based approaches have shown promising results, especially in complex and unstructured environments, but they 

typically require large amounts of la- beled training data and may suffer from generalization issues.[11][12] 

 

 Hybrid Approaches 

Hybrid approaches combine multiple techniques, such as analytical methods, learning-based models, and 

optimization strategies, to benefit from their respec- tive strengths. For instance, a hybrid approach may use 

learning-based models to provide initial grasp candidates and then apply optimization techniques to re- fine and 

optimize the grasps. These approaches aim to leverage the advantages of different methods to improve grasp 

prediction accuracy and robustness.[13] 

 

4 Grasp quality assessment 

Grasp quality assessment is a critical aspect of robotic grasping that aims to evaluate the effectiveness and 

reliability of a grasp configuration. Assessing grasp quality allows robotic systems to select and execute grasps that 

are stable, force- closed, and capable of performing the desired manipulation tasks. This section explores various 

approaches and metrics used for grasp quality assessment. As- sessing the quality of a grasp is a challenging 

undertaking that entails taking into account various elements such as stability, force closure, robustness, and the spe- 

cific requirements of the task at hand. The selection of evaluation metrics and approaches relies on the particular 

application and the desired characteristics of the grasp. Precise evaluation of grasp quality enables robotic systems 

to choose dependable grasps, enhance their manipulation capabilities, and improve overall performance across a 

range of tasks. 
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 Grasp Stability Metrics 

Grasp stability metrics are which evaluate the ability of a grasp to resist ex- ternal perturbations and maintain a 

stable grip on the object. One commonly used metric is the center of mass (CoM) wrench, which measures the 

maximum wrench that can be applied to the object before the grasp loses stability. The robustness index 

quantifies the magnitude of disturbances that a grasp can tol- erate while remaining stable. Other stability metrics 

include the wrench space volume, which measures the space of external wrenches that the grasp can resist without 

slipping or losing contact. 

 

 Force-Closure Metrics 

Force-closure metrics assess the ability of a grasp to achieve force closure, where the contact forces applied by the 

gripper result in a net closing force on the ob- ject.The wrench-based force-closure measure quantifies the magnitude 

of forces that can be applied without inducing object motion. Other force-closure metrics include the grasp wrench 

space volume, which evaluates the space of contact forces that can maintain force closure. 

 

 Grasp Robustness 

Grasp robustness metrics evaluate the ability of a grasp to tolerate uncertainties and variations in object pose, 

shape, and other factors. The robustness metric quantifies how sensitive a grasp is to changes in the object’s 

position and orien- tation.Monte Carlo simulations and perturbation-based analysis are often used to assess grasp 

robustness by sampling various object poses and measuring the grasp’s success rate. 

 

 Grasp Quality Measures 

Grasp quality measures aim to provide a single scalar value that represents the overall quality of a grasp 

configuration. This quality measures combine multiple factors, such as stability, force closure, and robustness, 

into a unified metric. Examples of grasp quality measures include the Grasp Quality Measures (GQM) framework, 

which combines stability, force closure, and other criteria into a single value. Other measures, such as the Power 

Grasp Quality Measure (PGQM), incorporate physical properties and geometric features of the object to assess 

grasp quality. 

 

 Learning-Based Grasp Quality Assessment 

Learning-based approaches utilize machine learning techniques to predict grasp quality based on training data. 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been employed to learn 

grasp quality directly from visual input or grasp configurations. These approaches leverage large datasets with 

labeled grasp quality information to train models that can predict grasp quality for new grasp configurations. 
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5 Task-oriented grasp evaluation 

 

Task-oriented grasp evaluation is a crucial aspect of robotic grasping that fo- cuses on assessing the suitability of 

a grasp configuration for specific manipu- lation tasks. It goes beyond traditional grasp quality assessment by 

considering the grasp’s effectiveness in achieving task-related objectives. Learning-based ap- proaches have 

revolutionized the field of robotic grasping by leveraging the power of machine learning algorithms to improve grasp 

planning and execution. These approaches utilize large datasets of labeled grasp examples to train models that can 

predict and generate effective grasps for a wide range of objects and sce- narios. This section explores various 

learning-based approaches used in robotic grasping. 

 

 Convolutional Neural Networks 

 

Convolutional Neural Networks have been widely used in learning-based grasp planning and prediction.CNNs 

are capable of processing visual input, such as RGB or depth images, and learning complex patterns and 

features relevant to grasping. These networks are trained on large datasets of labeled grasp examples, where the input 

images are associated with corresponding grasp configurations. The trained CNN models can then be used to 

predict grasp poses or generate grasp proposals for new objects based on their visual representations. 

 

 Point Cloud-Based Approaches 

 

Point cloud data, obtained from depth sensors or 3D scanners, provides rich ge- ometric information about objects, 

which is crucial for grasp planning. PointNet and PointNet++ architectures have been widely adopted for 

processing point cloud data in learning-based grasp prediction tasks. These architectures can capture local and 

global geometric features of objects, allowing the model to learn grasp-relevant patterns from the point cloud 

data. By training on labeled point cloud data with associated grasp configurations, these models can predict grasp 

poses or generate grasp proposals directly from point cloud inputs. 

 

 Reinforcement Learning 

 

Reinforcement Learning(RL) techniques have been applied to grasp planning, where an agent learns to interact 

with the environment and optimize grasping actions through trial and error. RL methods typically involve an 

agent, a re- ward function, and a policy network. The agent explores different grasp actions, receives feedback in 

the form of rewards based on grasp success or failure, and adjusts its policy network to maximize long-term 

cumulative rewards. RL-based grasp planning allows the agent to learn complex grasping strategies and adapt to 

varying object shapes and environments.[14] 
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 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) have been utilized for generating grasp proposals or augmenting existing 

grasp datasets. GANs consist of a generator network and a discriminator network, which compete against each 

other in a training process. The generator network generates synthetic grasp configura- tions, while the 

discriminator network distinguishes between real and synthetic grasps.By training the GAN on real grasp data, the 

generator network can learn to generate realistic and diverse grasp proposals, augmenting the training dataset for 

other learning-based approaches. 

 

 Transfer Learning and Domain Adaptation 

Transfer learning techniques have been applied to leverage pre-trained models on large-scale datasets for grasp 

planning tasks with limited labeled data. By fine-tuning pre-trained models on a smaller labeled dataset specific to 

the target task, the models can effectively generalize to new objects and scenarios. Domain adaptation techniques 

aim to adapt grasp models trained on one domain (e.g., synthetic data) to perform well in a different domain 

(e.g., real-world data) by minimizing the domain gap. 

 

 Task Specification 

Task-oriented grasp evaluation begins with specifying the manipulation task or objective that the robot needs 

to accomplish.The task can vary depending on the application, such as picking and placing objects, 

manipulating tools, or performing assembly tasks. The specification of the task provides guidance for evaluating 

grasp configurations based on their ability to achieve the desired task outcomes. 

 

 Task Relevance Metrics 

Task relevance metrics quantify the extent to which a grasp configuration aligns with the requirements of the 

manipulation task.These metrics consider factors such as object pose, object properties, contact forces, joint 

torques, and task- specific constraints. For example, a metric may evaluate how well the grasp enables a robot to 

manipulate an object into a desired configuration or complete a specific action sequence.Task relevance metrics are 

typically application-specific and designed to capture the essential aspects of the task at hand. 

 

6 Active vision-based object localization 

Active vision-based object localization is a process in computer vision and robotics that involves actively selecting 

and controlling the viewpoint of a camera or sen- sor system to improve the accuracy and efficiency of object 

localization. Unlike 
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passive vision-based methods that rely on fixed or pre-determined viewpoints, active vision systems dynamically 

adjust their viewpoint to gather more informa- tive data and reduce uncertainty in object localization.Active vision-

based object localization techniques have shown promising results in various applications, in- cluding robot 

manipulation, augmented reality, or autonomous navigation. By actively controlling the viewpoint and gathering 

informative data, these systems improve the efficiency and accuracy of object localization, particularly in chal- 

lenging scenarios with occlusions, cluttered environments, or ambiguous object appearances. As research in active 

vision continues to advance, incorporating more sophisticated algorithms and sensor technologies, the capabilities 

of active vision-based object localization are expected to further enhance, enabling robots and autonomous systems to 

interact with the environment more effectively.This section will will explore the concept of active vision-based 

object localization and discuss various techniques used in this area.[15][16] 

 

 Viewpoint Selection 

Viewpoint selection is a crucial aspect of active vision-based object localiza- tion, where the system decides on 

the optimal camera viewpoint for capturing informative images. This selection is typically guided by specific 

criteria, such as reducing uncertainty, maximizing information gain, or minimizing the ex- pected localization 

error. Different strategies can be employed for viewpoint se- lection, including heuristic-based methods, 

exploration-exploitation algorithms, or Bayesian optimization techniques. 

 

 Uncertainty Reduction 

Active vision systems aim to reduce uncertainty in object localization by select- ing viewpoints that provide the 

most informative data. Uncertainty can arise due to factors such as occlusions, viewpoint limitations, or ambiguous 

object appear- ances. Methods such as uncertainty sampling, Bayesian inference, or entropy- based measures can 

be used to quantify and prioritize uncertain regions for exploration 

 

 Feature Selection 

Active vision systems can actively select and extract relevant features from the acquired data to improve object 

localization. These features can include edges, corners, keypoints, or texture descriptors that are informative for 

object recog- nition and localization. Feature selection can be performed based on factors such as saliency, 

distinctiveness, or discriminative power. 

 

 Sensor Planning 

Active vision-based object localization can involve planning the motion of the camera or sensor system to 

acquire multiple views of the object. Sensor plan- ning algorithms optimize the trajectory of the camera or sensor 

to minimize the 
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number of viewpoints required for accurate localization. Techniques such as view planning, sensor placement 

optimization, or motion planning algorithms can be employed for efficient sensor motion. 

 

 Feedback and Iteration 

 

Active vision-based object localization often involves an iterative process where the system updates its belief about 

the object’s location based on acquired data and continuously refines the estimation. Feedback mechanisms, such 

as online learning or adaptive sampling, can be incorporated to adjust the viewpoint se- lection strategy based on 

previous observations and the current estimation. 

 

 Integration with Object Recognition 

 

Active vision-based object localization is closely related to object recognition, as accurate localization requires 

the detection and identification of the object. The integration of object recognition techniques, such as deep 

learning-based ob- ject detectors or feature-based recognition algorithms, enables the active vision system to 

accurately localize the object in the acquired images. 

 

7 Limitations 

 

– Lack of Contextual Information: Isolated object grasping ignores the contex- tual information surrounding the object. 

In real-world scenarios, objects are often found in cluttered environments or in the presence of other objects. 

Ignoring this contextual information can limit the robot’s ability to plan and execute successful grasps. 

– Limited Adaptability: Isolated object grasping techniques typically rely on predefined grasping strategies or 

models trained on specific object categories. This limits the adaptability of the system to handle novel objects or 

unfore- seen scenarios. The lack of generalization can hinder the robot’s ability to grasp a wide range of objects 

effectively 

– Occlusion and Partial Visibility: Isolated object grasping assumes that the entire object is visible and not 

occluded. However, in practical scenarios, objects may be partially occluded or have obstructed views. Dealing 

with occlusion and partial visibility is a challenging problem that requires addi- tional perception and planning 

capabilities.[17] 

– Grasp Failure in Complex Shapes: Isolated object grasping techniques may struggle to grasp objects with 

complex shapes or irregular geometries. Ob- jects with concave surfaces, thin structures, or asymmetrical shapes can 

pose challenges for grasp planning and execution. Specialized grasp strategies or adaptive grasping mechanisms may 

be required to handle such objects effec- tively[18] 
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– One of the limitation in the field of computer vision and robotic grasping is the limited diversity of objects and 

scenes available in existing datasets and benchmarks. While datasets like GraspNet and Contact-GraspNet have 

contributed significantly to advancing the research in object grasping, they still have limitations in terms of the 

diversity of objects and scenes they cover. This limitation can impact the applicability and robustness of grasping 

algorithms in real-world scenarios. 

Limited diversity of objects refers to the lack of representation of various object categories, shapes, sizes, 

textures, and material properties within the dataset. Existing datasets often focus on common household objects or 

spe- cific industrial items, which may not fully represent the vast range of objects encountered in real-world 

settings. This can result in grasping algorithms that are biased towards the objects present in the dataset, leading 

to poor performance on unseen or novel objects. 

– Lack of tactile feedback and force-based grasping: 

One significant limitation in current grasping systems is the lack of tactile feedback and reliance on vision-based 

approaches. While vision-based per- ception plays a crucial role in object recognition and pose estimation, it 

provides limited information about the physical properties of objects, such as their texture, hardness, or 

slipperiness. Tactile feedback and force-based grasping, on the other hand, involve using sensors and 

force/torque mea- surements to perceive and control the interaction between the gripper and the object.[19] 

Tactile feedback enables the system to detect and respond to subtle changes in object properties during the 

grasping process, such as detecting object slip, adjusting grip force, or ensuring a secure and stable grasp. Force-

based grasping allows the system to actively control the applied forces and adapt the grasp according to the 

object’s physical characteristics. Incorporating tactile feedback and force-based grasping can significantly 

improve the ro- bustness, stability, and dexterity of grasping systems, especially when dealing with objects with 

complex shapes, fragile materials, or uncertain properties. 

 

8 Experiments and Results 

This section discusses about the experiments which are performed in order to minimize the limitation which 

occurs due to Occlusion and Partial Visibility and cluttering. A cluttered scene is captured using Zed camera to 

provide stereo and Depth image. This image contains various indoor objects which are of interest to us and to 

which can perform Grasp prediction techniques. 

 

To select the object of interest within the scene which has multiple objects i,e. from the cluttered scene 

Segmentation was performed to single out the object of interest.[20] 

Various Segmentation Models were studied and tabulated IN Table 1 to com- pared and select appropriate 

Model which would help for segmenting out the 
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Table 1. Comparision of Segmentation models 
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Object of interest[8][21][22] Deeplabv3 ADE20k dataset was used to segment the images from clutters and single 

out the object of interest. DeepLabv3 is a deep learning architecture for semantic image segmentation developed 

by Google. It achieves state-of-the-art performance on various segmentation tasks, including the ADE20K 

dataset.[23] 

The ADE20K dataset is a large-scale scene parsing dataset that contains 150 classes for semantic 

segmentation.[24]. The combination of DeepLabv3 with the ADE20K dataset allows for accurate pixel-level 

segmentation of objects and scenes in images. The model can learn to differentiate between different classes and 

generate high-quality segmentation masks for each object present in the im- age. By this method the object of 

interest was succesfully singled out and pixel values of the objects were also obtained.[21] A mask for the object 

of interest was created and the pixel value of other objects were set to 0. Same was done for the depth image 

which was obtained from the Zed camera along with the stereo image. Few examples are shown in Fig.1. 

 

After successfully Segmenting the Color and Depth images to find area of interest the next step is to obtain 

the Grasp poses using GraspNet. GraspNet can be modified to use custom data set for which information of the 

camera intrinsic properties have to be changed. The camera intrinsic values of Zed cam were updated and used 

for predicting grasp poses. 

GraspNet takes as input a depth image of the scene,which is obtained from Zed camera. The depth image 

represents the 3D geometry of the objects in the scene.It utilizes convolutional neural network (CNN) as the 

backbone architec- ture for feature extraction from the input depth image. The features extracted from the 

backbone network are fed into a series of fully connected layers to pre- dict the grasp pose parameters. These 

parameters typically include the grasp position (3D coordinates), grasp orientation (e.g., Euler angles or 

quaternions), and other relevant information such as the grasp width.[25] 

In addition to the grasp pose parameters, GraspNet also predicts the quality or success probability of each grasp 

pose, which output a probability score indi- cating the likelihood of a successful grasp. It is trained using labeled 

data that 
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Fig. 1. Segmentation Using Deeplabv3 ade20k 
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includes depth images of scenes along with ground truth grasp poses and their associated quality labels (e.g., 

success or failure). The network is trained to min- imize a loss function that measures the discrepancy between the 

predicted grasp poses and the ground truth poses, as well as the predicted grasp quality and the ground truth labels. 

The grasp poses can be visualised using open3d after the successful prediction of grasp poses. 

 

 

 

 

Fig. 2. Grasp Prediction using GraspNet 

 

 

 

9 Conclusion & Future Scope 

 

– Experiments were performed to compare the cluttered scenes with and with- out the use of segmentation to 

improve accuracy in such situations 

– Particular Object of interest was able to be identified using the segmentation method which resulted in getting 

grasps for the said object 
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– Further study can be done to accurately find out the difference between clutter scene with different 

segmentation methods 

– Further limitations can be rectified to improve the accuracy of grasps which are obtained through graspnet 
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