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1. Introduction

In chemical research, molecular modeling plays an essential role in the accurate
representation, analysis, and prediction of molecular structures and behaviors. Initially
developed as a tool to represent the geometric configuration of molecules, molecular
modeling has progressively evolved to include computational methods for predicting
the interactions, reactivity, and properties of molecular systems [1]. Early efforts
focused on molecular mechanics, where atoms are treated as rigid spheres, and bonds
as elastic springs, forming the foundation for further development. Over time,
advancements in computer technology have enabled the inclusion of quantum
mechanics, which takes into account the electronic structure of molecules, thereby
offering more precise predictions of chemical reactions and molecular behavior [2].
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The development of molecular modeling began with classical mechanical models in the
1940s and 1950s, which aimed at predicting basic molecular properties using simple
mathematical approaches. In the 1960s, quantum mechanical models such as the
Hartree-Fock method emerged, marking a significant shift towards more accurate
electronic structure calculations. By the 1970s, computational power allowed for the
expansion of molecular simulations through methods like molecular dynamics and
Monte Carlo simulations, providing insight into molecular motions and the behavior of
systems over time [3].

The 1980s and 1990s saw the growth of software tools designed for molecular modeling,
enabling researchers to simulate larger and more complex molecules. Techniques such
as Density Functional Theory (DFT) became widely used for optimizing molecular
structures and calculating properties like bond energies and reaction pathways. This
period also introduced hybrid methods that combine quantum mechanics and
molecular mechanics (QM/MM), further enhancing the scope of molecular modeling
for biochemical and large molecular systems[4].

In the 21st century, the integration of machine learning and artificial intelligence into
molecular modeling has accelerated the development of predictive models, allowing for
faster and more accurate predictions of molecular interactions and properties. These
advancements have facilitated breakthroughs in fields such as drug discovery, material
science, and nanotechnology |5, 6].

Conventional graph theory has been a key tool for depicting molecular structures,
enabling the exploration of relationships and interactions among molecular
elements[7].Nonetheless, the complexities and uncertainties in molecular data often
surpass the limitations of traditional graph theory. Fuzzy graph theory provides a
promising approach to addressing these uncertainties by incorporating imprecision
and ambiguity into the models [8, 9].

Fuzzy graph theory builds upon classical graph theory by integrating the concept of
fuzziness, which allows for the representation of vague and uncertain information [8].
This method is particularly beneficial in chemistry, where molecular structures and
interactions frequently involve various degrees of uncertainty. By applying fuzzy sets
and relations, this theory offers a more detailed framework for modeling intricate
systems, particularly in the realm of molecular interactions and reactions [10].

Recent advancements in this field have underscored the potential of fuzzy graph theory
in chemical applications. Researchers have proposed the concept of chemical fuzzy
graphs to accommodate uncertainty in molecular structures, offering innovative
approaches to visualize and predict molecular behavior [11].These developments have
emphasized the value of fuzzy graph theory in structural analysis and its advantages in
managing complex chemical data [12]. Theoretical and practical aspects of fuzzy graphs
in chemistry have been examined, emphasizing their values in structural analysis.
Additionally, the application of fuzzy graph theory in chemical engineering has been
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explored, demonstrating its effectiveness in optimizing processes and modeling
systems [13].

The aim of this research is to merge fuzzy graph theory with chemical graph theory to
develop a comprehensive framework for modeling molecular structures amidst
uncertainty. By combining these approaches, we intend to create mathematical models
that accurately reflect both the structure of chemical compounds and the uncertainty
inherent in molecular data. This integration is anticipated to improve the precision and
dependability of molecular modeling, offering new perspectives and opportunities in
chemical research.

The upcoming sections will delve into the theoretical foundations of fuzzy graph
theory, highlighting its significance in chemical systems. They will also outline the
methods for constructing chemical fuzzy graphs, present detailed mathematical
models, and demonstrate their practical applications through insightful case studies.

2. Fundamental concepts of chemical fuzzy graph theory

Definition 1

A fuzzy graph G = (V, 0, ug) is defined on a set of vertices V where o:V — [0,1] is a
vertex membership function, and pg:V XV —= [0, 1] is an edge membership function.
The function o(v) represents the degree of membership of vertex v in the graph, while
ug(u, v) represents the degree of membership of the edge between vertices u and v,
thereby generalizing the concept of connectivity in classical graphs by allowing partial
or fuzzy connections [14].

Definition 2

A chemical fuzzy graph is a specialized type of fuzzy graph used to model chemical
structures, where the vertices represent atoms or molecular fragments, and the edges
represent chemical bonds. In this context, the graph G = (V, 0, ug ) [15] is defined on a
set of vertices V corresponding to atoms, with o:V — [0, 1]representing the degree of
presence or significance of each atom, and uz:V X V - [0, 1]describing the strength or
fuzziness of the bond between any two atoms. The chemical fuzzy graph thus captures
both the presence of atoms and the varying strengths of the bonds between them,
providing a nuanced representation of chemical compounds.

Definition 3
The fuzzy adjacency matrix of a fuzzy graph G = (V, 0, ug)[16] is a matrix A(G) = [a;;]
where each entry indicates the membership value of the edge between the vertices v;
and v;. Mathematically, it is stated as:

Ar(G) = [al-j] = [,uE(vi, vj)] Vv, v; € V,and a;; € [0,1].
This matrix encodes the fuzzy relationships between vertex pairs in the graph, where
each element signifies the intensity or degree of the connection between the
corresponding vertices.
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Definition 4

The spectral radius of a fuzzy graph is defined as the largest eigenvalue of its fuzzy
adjacency matrix A¢(G), for a fuzzy graph G = (V, o, ug) [17]. If the eigenvalues of A¢(G)
are Ay, 4,...,4,, where n is the no. of vertices, the spectral radius p(4;) is given
asip(4y) = max{|4,], [22], ..., |2, }

This value reflects the maximum magnitude of the eigenvalues of the fuzzy adjacency
matrix, providing insight into the connectivity and overall structure of the fuzzy graph.

Definition 5

The fuzzy centrality of a vertex in a fuzzy graph measures the relative importance or
influence of that vertex within the graph, taking into account the fuzzy nature of
connections [17]. For a vertex v; in a fuzzy graph G = (V, 0, ug), the fuzzy centrality
Cr(v;) is typically calculated as:

ng(u, v)

d(u,v)

uev
Where d(u,v) is the fuzzy distance between the vertices u and v, which reflects the

Cf(v) =

proximity of these vertices within the graphs.

Definition 6

The entropy of a chemical fuzzy graph quantifies the degree of uncertainty or disorder
in the fuzzy representation of a chemical structure. It reflects how dispersed or
concentrated the fuzzy memberships of the edges and vertices are in the graph. For a
chemical fuzzy graph G = (V,o,ug) [18], the entropy is defined as: H((G) =
— Y uner g, v) log(ug(u, v)). This entropy measures the extent of unpredictability
or variability in the strength of the bonds within the chemical fuzzy graph.

Definition 7

The fuzzy degree centrality C;(v) of a vertex v€V in a fuzzy graph G =
(V,E, ug)measures the total strength of connections or interactions of v with other
vertices in the graph [17]. Formally, C;(v) = Y ev tg (w, v).

This measure captures the aggregate influence or connectivity of v in the fuzzy graph.

Definition 8

The fuzzy energy of a fuzzy graph G = (V,E,ug) denoted as Ef(G), is a spectral
invariant derived from the eigenvalues of its fuzzy adjacency matrix A [18]. It
quantifies the overall interaction strength among the vertices within the fuzzy graph.
Formally, E;(G) = X.i_; |4;|, where 4; are the eigenvalues of A.

This measure generalizes the classical graph energy to the fuzzy domain, incorporating
the imprecise or uncertain connections encoded by the membership function u for each
edgein E.
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3. Results and Discussions

This section elucidates the mathematical findings that reveal key aspects of molecular
structures within the framework of fuzzy graph theory. By focusing on spectral
properties, centrality measures, and entropy calculations, these results offer deeper
insights into the stability, reactivity, and complexity of chemical compounds. The
following results present a precise analytical approach to understanding these chemical
behaviors.

3.1 Prediction of Stability of Molecule

Let G = (V,E, ug) be a chemical fuzzy graph with a fuzzy adjacency matrix Af. If the
spectral radius p(Af), the largest absolute value of its eigenvalues satisfies p(Af) <A,
where Ais a stability threshold, the chemical compound is predicted to be stable.

Proof: Consider the fuzzy adjacency matrix 4y = [ug(v;, v;)]

So, the corresponding characteristic polynomial be, det(4; — A1) = 0 and Ay, 45, ..., 4,
be the eigenvalues.

In the context of graph theory and especially in fuzzy graph theory, the spectral radius
p(Af) often correlates with certain structural properties of the graph, such as
connectivity and stability.

For chemical fuzzy graphs, the spectral radius indicates how tightly connected the
vertices (atoms) are, which in turn reflects the overall stability of the chemical
compound.

Now, the spectral radius p(Af) = max{|A,], |12, ..., |2, ]}.

The stability threshold A is a predefined value based on empirical data or theoretical
models. It represents a boundary that separates stable from unstable structures. The
choice of A is based on the type of chemical compounds and their known behaviors.

A smaller spectral radius p(Af) suggests that the interactions within the chemical
structure are not too strong or volatile, implying a stable compound.

If p(Af) < 4, the eigenvalues are all inside a circle of radius A in the complex plane,
which indicates that the strength of interactions within the chemical structure is below
the critical threshold A. This implies that the compound does not possess highly
reactive or unstable bonds. The matrix A, thus represents a stable structure where all
potential instabilities (as suggested by large eigenvalues) are ruled out.

Conversely, if p(4;) = 2, the structure might be unstable due to excessively strong or
weak bonds, which could lead to the breaking of bonds or unwanted chemical
reactions.

1
Stability threshold 1 >0 = |4;]| <4, also p(Af) = %1_1;{)10 (||A}'f||)f = ||AI’§|| < Ak,

when k is sufficiently large.
This suggests that the powers of A¢ do not grow too rapidly, indicating bounded and
stable behavior of the system represented by G.
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Example 3.1.1: Benzene (CsHs)
Vertices: V = {Cy, C,, C5, Cy4, Cs, Ce} [19].

0 09 0 0 0 0.7
09 0 07 0 0 O
A -0 07 0 09 0 O
f 0 0 09 0 07 0
0 0 0 07 0 09
07 0 0 O 09 0/
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The eigenvalues of A might be {1.758,0.958,0.516, —0.516, —0.958, —1.758}
Now, 4,5 = 1.758 & A = 2
So, benzene is predicted to be stable since 4,4, < A.

Example 3.1.2: Water (H,O)
Vertices: {O, H,, H.} [19]

Bond Energy of O — H _ 463
Maximum Bond Energy in the Dataset 514
Bond order = 1,upy =1x0.9=09

Normalize bond energy =

~ 0.9

0 09 09
Ar=109 0 0
09 0 0

Al = O,AZ =0.9 and 13 =—-0.9

Now, 1,00 =09 &1 = 1.
So, water is predicted to be stable.

Example 3.1.3: Ammonia (NH,)

Uny = 0.85: This value represents the strength of the N-H bond in ammonia,
normalized and slightly adjusted to reflect empirical data on bond dissociation energy
bond order.
A=2.5: This threshold reflects the balance between stability and potential reactivity,
appropriate for a molecule like ammonia that is generally stable but can become
reactive under specific conditions [20].

and

A;=1085 0 0

085 0 0
A, =227,4, =—0.851; = —0.21,1, = —1.21

Now, p(4;) =2.27&21 =25
So, Ammonia is a stable compound.

0 0.85 0.85]
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Example 3.1.4: Nitroglycerin (C3HsN50,)
.U'CH = 09, .U'CC = 08, MCN = 07, I’LNO = 06 [20]

0 08 07 07 09 09 0 .. O
08 0 0 08 09 0 06 .. O
Ar =107 0 0 07 O 0 06 .. 06

l o o0 o o o0 o0 o0 o0 O J
Largest approximate eigenvalue:p (Af) ~ 3.5.

Stability threshold: A = 2.5
As, p(Af) = Amax > 4, the molecule is predicted to be unstable.

Example 3.1.5: Methyl isocyanate (CH;NCO)

ter = 0.9, uey = 0.7,y = 0.6, uco = 0.8 [20]
[0 09 07 0 0
09 0 0 0 0.8|
Ar=107 0 0 06 0
0 0 06 0 0.8J
0 08 0 08 0
p(Af) = Apax =3.0&21=25

As, p(Af) > A, the molecule is predicted to be unstable.

3.2 Prediction of Highly Reactive Sites
In a chemical fuzzy graph G = (V,E, ug), the fuzzy centrality C;(v) of a vertex v is

defined as: Cr(v) = Yyey HEALY) ortices with high C¢(v) are likely to correspond to

d(u,v)
highly reactive sites.
Proof: The term % indicates the contribution of each neighboring vertex u to the

centrality of vertex v, where uz(u,v) is weighted by the inverse of the fuzzy distance
d(u,v). Vertices closer to v and have a stronger connection contribute more to the
centrality. Atoms (vertices) with high Cr(v) are likely to be central in the molecular
structure, making them more accessible and reactive in chemical processes.

Therefore, a high C¢(v) suggests that v is a crucial point in the molecular structure,
likely to be involved in chemical reactions due to its high connectivity and central
position.

Example 3.2.1: Ethylene (C,H,)
Vertices: {Cll CZr Hl) HZ! H3) H4} [19]
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r 0 095 0.7 07 O 07
095 0 0 0 0.7 0.7
A = 0.7 0 0 0 0 0
f~lo7z 0o o0 0o 0 0O
0 07 0 0 0 0
Lo 07 0 0 0 0
0 1.053 1.429 1.429 oo 0o
1.053 0 oo oo 1.429 1.429
. . 1.429 oo 0 oo oo oo
Fuzzy distance Matrix: Dy = 1429 oo - 0 - -
oo 1.429 oo oo 0 oo
L oo 1.429 oo oo oo 0
0.95 0.7 0.7
() = 1053 ¥ Taz0 T 1azo - OV
Cr(Cy) = 1.517
Similarly, Cr(Hy) = Cf(H;) = Cr(H3) = Cr(Hy) = 0.49
In both cases, carbon atoms have the highest fuzzy centrality.
Example 3.2.2: Pyridine (CsH;5N)
Uce = 0.85, ey = 0.8, ucy = 0.9 [20]
r 0 0.85 0 0 0 0.9 1
085 0 085 0 0 0
A = 0 0.85 0 0.85 0 0
! O 0 08 0 08 O
0 0 0 085 0 085
L 0.9 0 0 0 0.85 0
[ oo 1.176 2.353 3.529 4.706 1.1117
1.176 oo 1.176 2.353 3.529 2.222
Fuzzy distance matrixD; = 2.353 1.176 oo 1.176 2.5 3.333
3.529 2.353 1.176 oo 1.25 4.444
4.706 3.529 25 1.25 oo 5.882
11.111  2.222 3.333 4.444 5.882 0o

Cr(Cy) = 23164, C,(C,) = 2.4528,

Cr(Cs) = 2.3965, C¢(C4) = 2.1673,C¢(Cs) = 1.526, C;(N) = 1.8332
Atoms 2 and 3 in pyridine have the highest centrality values, indicating they are likely

to be the most reactive sites in the molecule. This insight can be useful in

understanding the chemical reactivity of pyridine.

3.3 Prediction of Molecular Structure

The fuzzy entropy Hy(G) of a chemical fuzzy Graph G = (V, E, ) is given by:

Hf(G) ==

(u,v)EE

pg(u, v)log (ug (u, v))

A higher value of Hf(G) indicates a more complex molecular structure.
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Proof: When pz(u,v) =1 ie., a strong bond or highly likely interactions, the
contribution to entropy is small. So, a little uncertainty about this edge.

When pg(u,v) = 0 ie., a weak bond or unlikely interactions, the contribution to
entropy is larger. This reflects greater uncertainty about this edge.

So, the total entropy H(G) is the sum of these contributions overall edged. A more
complex graph with more uncertain edges will have higher entropy. Conversely, a lower
entropy value suggests a simpler structure with more certain interactions.

Example 3.3.1: Water (H,O) or H- O - H

ton = Muo = 0.9 [20]

So, Hr(H,0) = —[0.910g(0.9) + 0.910g(0.9)] = —(—0.27) = 0.27
This indicates a relatively simple molecular structure.

Example 3.3.2: Glucose (CsH,.O¢)

Membership values: yi¢c,¢c, = 0.8, uc,c, = 0.7, ic,c, = 0.8, ..., tic,0, = 0.9, uy,c, = 0.6,
,qucl = 06, :uH3C2 = 0'5’#1'146‘2 = 05, ...,‘uOlcl == 0.8,#026‘2 == 07, "'HMOH = 08 [20]

By applying fuzzy entropy formula: H(C¢H;,06) = 8.94, this indicates a moderately

complex structure.

Example 3.3.3: DNA (C,oHi2N5O;3P>)
Membership Values: u¢, ¢, = 0.9, uc,c, = 0.8, ..., uc,c,, = 0.9, ttp,c, = 0.7, ...,
KHy,ci0 = 0.7, Un,c, = 0.85, ..., tinc,y = 0.85, 10,5, = 0.9, ..., 10,5, = 0.9,
tp,c, = 0.85, up,c,, = 0.85 [19]
By applying fuzzy entropy formula: Hf(C;oH;,Ns013P,) = 34.59, this indicates an

extremely complex structure.

3.4Fuzzy Degree Centrality for Molecular Interaction Analysis

Let G = (V,E,ug) be a chemical fuzzy graph. The fuzzy degree centrality C;(v) of a
vertex v € V is defined as C;(v) = Yy ev tg(w, v). A vertex v with high C;(v) is highly
connected, indicating significant molecular interaction potential.

Proof: In chemical fuzzy graphs, the interaction between vertices is not binary but
varies continuously between o and 1, Hence, C;(v) accounts for the cumulative strength
of all connection incidents to v. Since ug(u, v) € [0,1], it follows that each term in the
summation satisfies 0 < ug(u,v) < 1. If v is connected to |V| — 1 vertices, then 0 <
C;(v) < |V| — 1. This boundedness ensures that C;(v) provides a normalized measure
of connectivity that is scalable to graphs of different sizes. The summation C,;(v)
represents the total interaction potential of v, combining the strength of all its bonds.
A high C;(v) value suggests that the atom or group acts as a hub in the molecular
structure. For instance, consider a vertex v representing a nitrogen atom in an amino
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acid. If C4(v) is significantly high, it implies that the nitrogen atom has strong and
numerous interactions, making it a potential site for biological or chemical activity.

Example 3.4.1: Methanol (CH;0H) [19]

ug(C, Hy) = pug(C, Hy) = ug(C, Hs) = 0.85,u(C,0) = 0.9,uz(0,H,) = 0.9
For carbon (C): C;(C) = 0.85 + 0.85 + 0.85 + 0.9 = 3.45
For Oxygen (O): C;(0) =09+ 09 = 1.8
For Hydrogen atoms (H,, H,, H3,H,): C4(H;) = C4(H,) = C4(H3) = 0.85 and C4(H,) =
0.9
Thus, the carbon atom serves as the primary hub of interactions in methanol, a
moderately high value of C;(0) indicates oxygen’s dual bonding roles, contributing to
the molecule’s polarity, and lower values for H reflect their terminal bonding nature.

Example 3.4.2: Acetonitrile (CH;CN) [19]

V={C,,C,, N, Hy, H,, H;} where C; is methyl carbon and C, is Nitrile carbon.

Now, ug(Cy, H;) = 0.85V Hy,H,, Hs, ug(Cy,Cy) = 0.9 and ug(C,, N) = 0.95

For Methyl Carbon (C,): C;(C;) = 3 X 0.85+ 0.9 = 3.45

For Nitrile Carbon (C.): C;(C;) = 0.9 + 0.95 = 1.85

For Nitrogen (N): C4(N) = 0.95

For Hydrogens (H,, H,, Hs): C;(H;) = 0.85

Thus, methyl carbon is the most connected vertex, reflecting its role as the central hub
for interactions, a moderately high centrality value of nitrile carbon indicates a triple
bond, a lower value for nitrogen limits its connectivity, and a lower centrality value for
hydrogens reflects their terminal position.

3.5 Fuzzy Energy of a Chemical Fuzzy Graph

LetG = (V, E, ug) be a chemical fuzzy graph with a fuzzy adjacency matrix A;. The fuzzy
energy Ef(G) is defined as: Ef(G) = XiL; |A;|, where 4; are the eigenvalues of Af. If
E¢(G) < k, where k is the predefined threshold, the molecular structure of the chemical
compound represented by G is considered energetically stable.

Proof: Let Af be the adjacency matrix of the chemical fuzzy graph G, the eigenvalues4;
are the solutions to the characteristic equation det(4; —AI) =0, each eigenvalue
reflects a fundamental property of the graph, corresponding to specific molecular
interactions. The threshold x is established based on empirical or computational
criteria specific to molecular systems. It represents the upper limit of energy for which
the molecular configuration remains stable. Larger eigenvalues |4;| signify more intense
interactions, which, if excessive, may destabilize the molecule. Stability is achieved
when all eigenvalues remain sufficiently small, ensuring E¢(G) < k. This implies that no
single bond or interaction exerts a destabilizing influence, and the molecular graph
retains a balanced configuration.
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If any eigenvalue |4;| is disproportionately large, it amplifies Er(G) beyond «, signaling
instability. Such a scenario corresponds to high-energy bonds or interactions,
potentially leading to molecular reactivity or breakdown.

This reasoning establishes the fuzzy energy E;(G) as a comprehensive metric for
molecular stability. The condition Ef(G) < k ensures that the chemical compound
remains within energetically favorable bounds, aligning the spectral properties of G
with its structural stability.

Example 3.5.1: Acetylsalicylic acid (Aspirin, CoHg0,) [20]

Membership values for single bonds pz = 0.7 and for double bonds yz = 0.9.

Solving numerically the eigenvalues, 4 = {2.3,-2.3,1.5,—-1.5,0.9,-0.9,0.2,—-0.2,0}. On
computing fuzzy energy, we get Ef(G) = 9.8 and the predefined value of k for aspirin is
15. Shows E¢(G) = 9.8 < k = 15, aspirin is energetically stable.

Example 3.5.2: Cyanogen Chloride (CNCI) [20]

Membership values for single bonds iz = 0.7 and for triple bonds u; = 0.9.

Solving numerically the eigenvalues, 4 = {3.8,—-3.8,1.2,—1.2,0.5,—0.5}. On computing
fuzzy energy, we get Er(G) = 11 and the predefined value of x for cyanogen chloride is
10. Shows Ef(G) = 11 > k = 10, cyanogen chloride is energetically unstable.

4. Conclusion:

The results presented in this study offer a comprehensive approach to understanding
chemical compounds through the lens of chemical fuzzy graphs. The first result
provides a criterion for predicting the stability of chemical compounds by analyzing the
spectral radius of the fuzzy adjacency matrix. This helps identify structurally stable
compounds, which is crucial for applications in material science and pharmaceuticals.
The second result highlights the fuzzy centrality measure, which identifies highly
reactive sites within a molecule. This tool is beneficial for researchers seeking to target
specific sites in chemical reactions, facilitating the design of more efficient and
selective reactions. The third result introduces fuzzy entropy as a measure of structural
complexity, allowing for the analysis of intricate molecular arrangements. A higher
entropy value corresponds to more complex structures, aiding in the classification and
understanding of diverse molecular systems. The fourth result focuses on fuzzy degree
centrality, providing insight into molecular connectivity. This measure helps in
identifying key components of a molecule that may play a significant role in molecular
interactions, important for understanding catalytic behaviors or the formation of
molecular networks. Lastly, the fifth result, which defines fuzzy energy, serves as an
index of energetic stability. This result is particularly valuable in evaluating the
feasibility of chemical reactions and understanding the energetic properties of
compounds in various conditions. Together, these results offer a robust framework for
analyzing chemical systems, enabling better predictions of stability, reactivity,
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complexity, connectivity, and energy, with wide-ranging applications in chemistry and
molecular engineering.

5. Future Scope:

Building on this framework for chemical fuzzy graphs, future research can extend these
results to more complex molecular structures, such as large biomolecules or intricate
reaction networks, to further assess stability and reactivity. Enhancing the fuzzy
entropy measure could reveal deeper connections between molecular complexity and
behavior. Additionally, integrating machine learning with this approach could improve
predictions of molecular properties. Expanding this framework to multi-layered or
dynamic fuzzy graphs offers the potential for exploring complex processes and
broadening its application in chemistry and related fields.
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