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1. Introduction 

In chemical research, molecular modeling plays an essential role in the accurate 

representation, analysis, and prediction of molecular structures and behaviors. Initially 

developed as a tool to represent the geometric configuration of molecules, molecular 

modeling has progressively evolved to include computational methods for predicting 

the interactions, reactivity, and properties of molecular systems [1]. Early efforts 

focused on molecular mechanics, where atoms are treated as rigid spheres, and bonds 

as elastic springs, forming the foundation for further development. Over time, 

advancements in computer technology have enabled the inclusion of quantum 

mechanics, which takes into account the electronic structure of molecules, thereby 

offering more precise predictions of chemical reactions and molecular behavior [2]. 

Abstract: An Advanced mathematical modeling of chemical fuzzy graphs, which 

focuses on results that provide insights into molecular stability, reaction pathways, 

interaction potential, and energy stability. The results predict chemical stability by 

analyzing the spectral properties of fuzzy adjacency matrices, and optimal reaction 

paths are identified by minimizing interaction uncertainty within the graph. These 

contributions establish a robust framework for understanding and predicting 

molecular behavior, offering significant implications for research in chemistry and 

related fields. 
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The development of molecular modeling began with classical mechanical models in the 

1940s and 1950s, which aimed at predicting basic molecular properties using simple 

mathematical approaches. In the 1960s, quantum mechanical models such as the 

Hartree-Fock method emerged, marking a significant shift towards more accurate 

electronic structure calculations. By the 1970s, computational power allowed for the 

expansion of molecular simulations through methods like molecular dynamics and 

Monte Carlo simulations, providing insight into molecular motions and the behavior of 

systems over time [3]. 

The 1980s and 1990s saw the growth of software tools designed for molecular modeling, 

enabling researchers to simulate larger and more complex molecules. Techniques such 

as Density Functional Theory (DFT) became widely used for optimizing molecular 

structures and calculating properties like bond energies and reaction pathways. This 

period also introduced hybrid methods that combine quantum mechanics and 

molecular mechanics (QM/MM), further enhancing the scope of molecular modeling 

for biochemical and large molecular systems[4]. 

In the 21st century, the integration of machine learning and artificial intelligence into 

molecular modeling has accelerated the development of predictive models, allowing for 

faster and more accurate predictions of molecular interactions and properties. These 

advancements have facilitated breakthroughs in fields such as drug discovery, material 

science, and nanotechnology [5, 6]. 

Conventional graph theory has been a key tool for depicting molecular structures, 

enabling the exploration of relationships and interactions among molecular 

elements[7].Nonetheless, the complexities and uncertainties in molecular data often 

surpass the limitations of traditional graph theory. Fuzzy graph theory provides a 

promising approach to addressing these uncertainties by incorporating imprecision 

and ambiguity into the models [8, 9]. 

Fuzzy graph theory builds upon classical graph theory by integrating the concept of 

fuzziness, which allows for the representation of vague and uncertain information [8]. 

This method is particularly beneficial in chemistry, where molecular structures and 

interactions frequently involve various degrees of uncertainty. By applying fuzzy sets 

and relations, this theory offers a more detailed framework for modeling intricate 

systems, particularly in the realm of molecular interactions and reactions [10]. 

Recent advancements in this field have underscored the potential of fuzzy graph theory 

in chemical applications. Researchers have proposed the concept of chemical fuzzy 

graphs to accommodate uncertainty in molecular structures, offering innovative 

approaches to visualize and predict molecular behavior [11].These developments have 

emphasized the value of fuzzy graph theory in structural analysis and its advantages in 

managing complex chemical data [12]. Theoretical and practical aspects of fuzzy graphs 

in chemistry have been examined, emphasizing their values in structural analysis. 

Additionally, the application of fuzzy graph theory in chemical engineering has been 
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explored, demonstrating its effectiveness in optimizing processes and modeling 

systems [13]. 

The aim of this research is to merge fuzzy graph theory with chemical graph theory to 

develop a comprehensive framework for modeling molecular structures amidst 

uncertainty. By combining these approaches, we intend to create mathematical models 

that accurately reflect both the structure of chemical compounds and the uncertainty 

inherent in molecular data. This integration is anticipated to improve the precision and 

dependability of molecular modeling, offering new perspectives and opportunities in 

chemical research. 

The upcoming sections will delve into the theoretical foundations of fuzzy graph 

theory, highlighting its significance in chemical systems. They will also outline the 

methods for constructing chemical fuzzy graphs, present detailed mathematical 

models, and demonstrate their practical applications through insightful case studies. 

 

2. Fundamental concepts of chemical fuzzy graph theory 

Definition 1 

A fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇𝐸) is defined on a set of vertices V where 𝜎: 𝑉 → [0, 1] is a 

vertex membership function, and 𝜇𝐸: 𝑉 × 𝑉 → [0, 1] is an edge membership function. 

The function 𝜎(𝑣) represents the degree of membership of vertex v in the graph, while 𝜇𝐸(𝑢, 𝑣) represents the degree of membership of the edge between vertices u and v, 

thereby generalizing the concept of connectivity in classical graphs by allowing partial 

or fuzzy connections [14]. 

 

Definition 2 

A chemical fuzzy graph is a specialized type of fuzzy graph used to model chemical 

structures, where the vertices represent atoms or molecular fragments, and the edges 

represent chemical bonds. In this context, the graph 𝐺 = (𝑉, 𝜎, 𝜇𝐸  ) [15] is defined on a 

set of vertices V corresponding to atoms, with 𝜎: 𝑉 → [0, 1]representing the degree of 

presence or significance of each atom, and 𝜇𝐸: 𝑉 × 𝑉 → [0, 1]describing the strength or 

fuzziness of the bond between any two atoms. The chemical fuzzy graph thus captures 

both the presence of atoms and the varying strengths of the bonds between them, 

providing a nuanced representation of chemical compounds. 

 

Definition 3 

The fuzzy adjacency matrix of a fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇𝐸)[16] is a matrix 𝐴𝑓(𝐺) = [𝑎𝑖𝑗] 
where each entry indicates the membership value of the edge between the vertices 𝑣𝑖 
and 𝑣𝑗. Mathematically, it is stated as: 𝐴𝑓(𝐺) = [𝑎𝑖𝑗] = [𝜇𝐸(𝑣𝑖, 𝑣𝑗)]  ∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉, 𝑎𝑛𝑑 𝑎𝑖𝑗 ∈ [0,1]. 
This matrix encodes the fuzzy relationships between vertex pairs in the graph, where 

each element signifies the intensity or degree of the connection between the 

corresponding vertices. 
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Definition 4 

The spectral radius of a fuzzy graph is defined as the largest eigenvalue of its fuzzy 

adjacency matrix 𝐴𝑓(𝐺), for a fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇𝐸) [17]. If the eigenvalues of 𝐴𝑓(𝐺) 

are 𝜆1, 𝜆2, … , 𝜆𝑛, where n is the no. of vertices, the spectral radius 𝜌(𝐴𝑓) is given 

as:𝜌(𝐴𝑓) = max{|𝜆1|, |𝜆2|, … , |𝜆𝑛|} 
This value reflects the maximum magnitude of the eigenvalues of the fuzzy adjacency 

matrix, providing insight into the connectivity and overall structure of the fuzzy graph. 

 

Definition 5 

The fuzzy centrality of a vertex in a fuzzy graph measures the relative importance or 

influence of that vertex within the graph, taking into account the fuzzy nature of 

connections [17]. For a vertex 𝑣𝑖 in a fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇𝐸), the fuzzy centrality 𝐶𝑓(𝑣𝑖) is typically calculated as: 𝐶𝑓(𝑣) = ∑ 𝜇𝐸(𝑢, 𝑣)𝑑(𝑢, 𝑣)𝑢∈𝑉  

Where 𝑑(𝑢, 𝑣) is the fuzzy distance between the vertices u and v, which reflects the 

proximity of these vertices within the graphs. 

 

Definition 6 

The entropy of a chemical fuzzy graph quantifies the degree of uncertainty or disorder 

in the fuzzy representation of a chemical structure. It reflects how dispersed or 

concentrated the fuzzy memberships of the edges and vertices are in the graph. For a 

chemical fuzzy graph 𝐺 = (𝑉, 𝜎, 𝜇𝐸) [18], the entropy is defined as: 𝐻𝑓(𝐺) =−∑ 𝜇𝐸(𝑢, 𝑣) log(𝜇𝐸(𝑢, 𝑣))(𝑢,𝑣)∈𝐸 . This entropy measures the extent of unpredictability 

or variability in the strength of the bonds within the chemical fuzzy graph. 

 

Definition 7 

The fuzzy degree centrality 𝐶𝑑(𝑣) of a vertex 𝑣 ∈ 𝑉 in a fuzzy graph 𝐺 =(𝑉, 𝐸, 𝜇𝐸)measures the total strength of connections or interactions of 𝑣 with other 

vertices in the graph [17]. Formally, 𝐶𝑑(𝑣) = ∑ 𝜇𝐸(𝑢, 𝑣)𝑢∈𝑉 . 

This measure captures the aggregate influence or connectivity of 𝑣 in the fuzzy graph. 

 

Definition 8 

The fuzzy energy of a fuzzy graph 𝐺 = (𝑉, 𝐸, 𝜇𝐸) denoted as 𝐸𝑓(𝐺), is a spectral 

invariant derived from the eigenvalues of its fuzzy adjacency matrix 𝐴𝑓 [18]. It 

quantifies the overall interaction strength among the vertices within the fuzzy graph. 

Formally, 𝐸𝑓(𝐺) = ∑ |𝜆𝑖|𝑛𝑖=1 , where 𝜆𝑖 are the eigenvalues of 𝐴𝑓. 

This measure generalizes the classical graph energy to the fuzzy domain, incorporating 

the imprecise or uncertain connections encoded by the membership function 𝜇 for each 

edge in 𝐸.  
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3. Results and Discussions 

This section elucidates the mathematical findings that reveal key aspects of molecular 

structures within the framework of fuzzy graph theory. By focusing on spectral 

properties, centrality measures, and entropy calculations, these results offer deeper 

insights into the stability, reactivity, and complexity of chemical compounds. The 

following results present a precise analytical approach to understanding these chemical 

behaviors. 

 

3.1 Prediction of Stability of Molecule 

Let 𝐺 = (𝑉, 𝐸, 𝜇𝐸) be a chemical fuzzy graph with a fuzzy adjacency matrix 𝐴𝑓. If the 

spectral radius 𝜌(𝐴𝑓), the largest absolute value of its eigenvalues satisfies 𝜌(𝐴𝑓) < 𝜆, 

where 𝜆is a stability threshold, the chemical compound is predicted to be stable. 

Proof: Consider the fuzzy adjacency matrix 𝐴𝑓 = [𝜇𝐸(𝑣𝑖 , 𝑣𝑗)] 
So, the corresponding characteristic polynomial be, det(𝐴𝑓 − 𝜆𝐼) = 0 and 𝜆1, 𝜆2, … , 𝜆𝑛 

be the eigenvalues. 

In the context of graph theory and especially in fuzzy graph theory, the spectral radius 𝜌(𝐴𝑓) often correlates with certain structural properties of the graph, such as 

connectivity and stability. 

For chemical fuzzy graphs, the spectral radius indicates how tightly connected the 

vertices (atoms) are, which in turn reflects the overall stability of the chemical 

compound. 

Now, the spectral radius 𝜌(𝐴𝑓) = max{|𝜆1|, |𝜆2|, … , |𝜆𝑛|}. 
The stability threshold λ is a predefined value based on empirical data or theoretical 

models. It represents a boundary that separates stable from unstable structures. The 

choice of λ is based on the type of chemical compounds and their known behaviors. 

A smaller spectral radius 𝜌(𝐴𝑓) suggests that the interactions within the chemical 

structure are not too strong or volatile, implying a stable compound. 

If 𝜌(𝐴𝑓) < 𝜆, the eigenvalues are all inside a circle of radius λ in the complex plane, 

which indicates that the strength of interactions within the chemical structure is below 

the critical threshold λ. This implies that the compound does not possess highly 

reactive or unstable bonds. The matrix 𝐴𝑓 thus represents a stable structure where all 

potential instabilities (as suggested by large eigenvalues) are ruled out. 

Conversely, if 𝜌(𝐴𝑓) ≥ 𝜆, the structure might be unstable due to excessively strong or 

weak bonds, which could lead to the breaking of bonds or unwanted chemical 

reactions. 

Stability threshold 𝜆 > 0 ⟹  |𝜆𝑖| < 𝜆, also 𝜌(𝐴𝑓) = lim𝑘→∞
(||𝐴𝑓𝑘||)1𝑓   ⟹ ||𝐴𝑓𝑘|| < 𝜆𝑘, 

when k is sufficiently large. 

This suggests that the powers of 𝐴𝑓 do not grow too rapidly, indicating bounded and 

stable behavior of the system represented by G. 
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Example 3.1.1: Benzene (C6H6) 

Vertices: 𝑉 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6} [19]. 

 

𝐴𝑓 = [  
   0 0.9 0 0 0 0.70.9 0 0.7 0 0 00 0.7 0 0.9 0 00 0 0.9 0 0.7 00 0 0 0.7 0 0.90.7 0 0 0 0.9 0 ]  

    
 

The eigenvalues of 𝐴𝑓 might be {1.758, 0.958, 0.516,−0.516,−0.958,−1.758} 
Now, 𝜆𝑚𝑎𝑥 = 1.758 & 𝜆 = 2 

So, benzene is predicted to be stable since 𝜆𝑚𝑎𝑥 < 𝜆. 

 

Example 3.1.2: Water (H2O) 

Vertices: {O, H1, H2} [19] 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑏𝑜𝑛𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐵𝑜𝑛𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑂 − 𝐻𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑜𝑛𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑡ℎ𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = 463514 ≈ 0.9 𝐵𝑜𝑛𝑑 𝑜𝑟𝑑𝑒𝑟 = 1, 𝜇𝑂𝐻 = 1 × 0.9 = 0.9 

 𝐴𝑓 = [ 0 0.9 0.90.9 0 00.9 0 0 ] 
 𝜆1 = 0, 𝜆2 = 0.9 𝑎𝑛𝑑 𝜆3 = −0.9 

 

Now, 𝜆𝑚𝑎𝑥 = 0.9 & 𝜆 = 1. 
So, water is predicted to be stable. 

 

Example 3.1.3: Ammonia (NH3) 𝜇𝑁𝐻 = 0.85: This value represents the strength of the N-H bond in ammonia, 

normalized and slightly adjusted to reflect empirical data on bond dissociation energy 

and bond order. 

λ=2.5: This threshold reflects the balance between stability and potential reactivity, 

appropriate for a molecule like ammonia that is generally stable but can become 

reactive under specific conditions [20]. 𝐴𝑓 = [ 0 0.85 0.850.85 0 00.85 0 0 ] 𝜆1 = 2.27, 𝜆2 = −0.85, 𝜆3 = −0.21, 𝜆4 = −1.21 

Now, 𝜌(𝐴𝑓) = 2.27 & 𝜆 = 2.5 

So, Ammonia is a stable compound. 
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Example 3.1.4: Nitroglycerin (C3H5N3O9) 𝜇𝐶𝐻 = 0.9, 𝜇𝐶𝐶 = 0.8, 𝜇𝐶𝑁 = 0.7, 𝜇𝑁𝑂 = 0.6 [20] 

𝐴𝑓 = [   
 0 0.8 0.7 0.7 0.9 0.9 0 … 00.8 0 0 0.8 0.9 0 0.6 … 00.7 0 0 0.7 0 0 0.6 … 0.6⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮0 0 0 0 0 0 0 0 0 ]   

 
 

 

Largest approximate eigenvalue:𝜌(𝐴𝑓) ≈ 3.5.  
Stability threshold: 𝜆 = 2.5 

As, 𝜌(𝐴𝑓) = 𝜆𝑚𝑎𝑥 > 𝜆, the molecule is predicted to be unstable. 

 

Example 3.1.5: Methyl isocyanate (CH3NCO) 𝜇𝐶𝐻 = 0.9, 𝜇𝐶𝑁 = 0.7, 𝜇𝑁𝐶 = 0.6, 𝜇𝐶𝑂 = 0.8 [20] 

𝐴𝑓 = [   
 0 0.9 0.7 0 00.9 0 0 0 0.80.7 0 0 0.6 00 0 0.6 0 0.80 0.8 0 0.8 0 ]   

 
 

𝜌(𝐴𝑓) = 𝜆𝑚𝑎𝑥 = 3.0 & 𝜆 = 2.5 

As, 𝜌(𝐴𝑓) > 𝜆, the molecule is predicted to be unstable. 

 

3.2 Prediction of Highly Reactive Sites 

 In a chemical fuzzy graph 𝐺 = (𝑉, 𝐸, 𝜇𝐸), the fuzzy centrality 𝐶𝑓(𝑣) of a vertex v is 

defined as: 𝐶𝑓(𝑣) = ∑ 𝜇𝐸(𝑢,𝑣)𝑑(𝑢,𝑣)𝑢∈𝑉 . Vertices with high 𝐶𝑓(𝑣) are likely to correspond to 

highly reactive sites. 

 

Proof: The term 
𝜇𝐸(𝑢,𝑣)𝑑(𝑢,𝑣)  indicates the contribution of each neighboring vertex u to the 

centrality of vertex v, where 𝜇𝐸(𝑢, 𝑣) is weighted by the inverse of the fuzzy distance 𝑑(𝑢, 𝑣). Vertices closer to v and have a stronger connection contribute more to the 

centrality. Atoms (vertices) with high 𝐶𝑓(𝑣) are likely to be central in the molecular 

structure, making them more accessible and reactive in chemical processes. 

Therefore, a high 𝐶𝑓(𝑣) suggests that v is a crucial point in the molecular structure, 

likely to be involved in chemical reactions due to its high connectivity and central 

position. 

 

Example 3.2.1: Ethylene (C2H4) 

Vertices: {𝐶1, 𝐶2, 𝐻1, 𝐻2, 𝐻3, 𝐻4} [19] 
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𝐴𝑓 =
[  
   0 0.95 0.7 0.7 0 00.95 0 0 0 0.7 0.70.7 0 0 0 0 00.7 0 0 0 0 00 0.7 0 0 0 00 0.7 0 0 0 0 ]  

    
Fuzzy distance Matrix: 𝐷𝑓 =

[  
   0 1.053 1.429 1.429 ∞ ∞1.053 0 ∞ ∞ 1.429 1.4291.429 ∞ 0 ∞ ∞ ∞1.429 ∞ ∞ 0 ∞ ∞

∞ 1.429 ∞ ∞ 0 ∞
∞ 1.429 ∞ ∞ ∞ 0 ]  

    
𝐶𝑓(𝐶1) = 0.951.053 + 0.71.429 + 0.71.429 = 1.517 𝐶𝑓(𝐶2) = 1.517 

Similarly, 𝐶𝑓(𝐻1) = 𝐶𝑓(𝐻2) = 𝐶𝑓(𝐻3) = 𝐶𝑓(𝐻4) = 0.49 

In both cases, carbon atoms have the highest fuzzy centrality. 

 

Example 3.2.2: Pyridine (C5H5N) 𝜇𝐶𝐶 = 0.85, 𝜇𝐶𝑁 = 0.8, 𝜇𝐶𝐻 = 0.9 [20] 

𝐴𝑓 = 
[  
   0 0.85 0 0 0 0.90.85 0 0.85 0 0 00 0.85 0 0.85 0 00 0 0.85 0 0.8 00 0 0 0.85 0 0.850.9 0 0 0 0.85 0 ]  

    
 

Fuzzy distance matrix𝐷𝑓 =
[  
   ∞ 1.176 2.353 3.529 4.706 1.1111.176 ∞ 1.176 2.353 3.529 2.2222.353 1.176 ∞ 1.176 2.5 3.3333.529 2.353 1.176 ∞ 1.25 4.4444.706 3.529 2.5 1.25 ∞ 5.8821.111 2.222 3.333 4.444 5.882 ∞ ]  

    
 𝐶𝑓(𝐶1) = 2.3164, 𝐶𝑓(𝐶2) = 2.4528,𝐶𝑓(𝐶3) = 2.3965, 𝐶𝑓(𝐶4) = 2.1673, 𝐶𝑓(𝐶5) = 1.526, 𝐶𝑓(𝑁) = 1.8332 

Atoms 2 and 3 in pyridine have the highest centrality values, indicating they are likely 

to be the most reactive sites in the molecule. This insight can be useful in 

understanding the chemical reactivity of pyridine. 

 

3.3 Prediction of Molecular Structure 

The fuzzy entropy 𝐻𝑓(𝐺) of a chemical fuzzy Graph 𝐺 = (𝑉, 𝐸, 𝜇𝐸) is given by: 𝐻𝑓(𝐺) = − ∑ 𝜇𝐸(𝑢, 𝑣)log (𝜇𝐸(𝑢, 𝑣))(𝑢,𝑣)∈𝐸  

A higher value of 𝐻𝑓(𝐺) indicates a more complex molecular structure. 
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Proof: When 𝜇𝐸(𝑢, 𝑣) ≈ 1 i.e., a strong bond or highly likely interactions, the 

contribution to entropy is small. So, a little uncertainty about this edge. 

When 𝜇𝐸(𝑢, 𝑣) ≈ 0 i.e., a weak bond or unlikely interactions, the contribution to 

entropy is larger. This reflects greater uncertainty about this edge. 

So, the total entropy 𝐻𝑓(𝐺) is the sum of these contributions overall edged. A more 

complex graph with more uncertain edges will have higher entropy. Conversely, a lower 

entropy value suggests a simpler structure with more certain interactions. 

 

Example 3.3.1: Water (H2O) or H – O – H 𝜇𝑂𝐻 = 𝜇𝐻𝑂 = 0.9 [20] 

So, 𝐻𝑓(𝐻2𝑂) = −[0.9 log(0.9) + 0.9 log(0.9)] = −(−0.27) = 0.27 

This indicates a relatively simple molecular structure. 

 

Example 3.3.2: Glucose (C6H12O6) 

Membership values: 𝜇𝐶1𝐶2 = 0.8, 𝜇𝐶2𝐶3 = 0.7, 𝜇𝐶3𝐶4 = 0.8, … , 𝜇𝐶6𝑂6 = 0.9, 𝜇𝐻1𝐶1 = 0.6,  𝜇𝐻2𝐶1 = 0.6, 𝜇𝐻3𝐶2 = 0.5, 𝜇𝐻4𝐶2 = 0.5, … , 𝜇𝑂1𝐶1 = 0.8, 𝜇𝑂2𝐶2 = 0.7, … , 𝜇𝑂𝐻 = 0.8 [20] 

By applying fuzzy entropy formula: 𝐻𝑓(𝐶6𝐻12𝑂6) = 8.94, this indicates a moderately 

complex structure. 

 

Example 3.3.3: DNA (C10H12N5O13P2) 

Membership Values: 𝜇𝐶1𝐶2 = 0.9, 𝜇𝐶2𝐶3 = 0.8, … , 𝜇𝐶9𝐶10 = 0.9, 𝜇𝐻1𝐶1 = 0.7, …,  𝜇𝐻12𝐶10 = 0.7, 𝜇𝑁1𝐶1 = 0.85,… , 𝜇𝑁5𝐶10 = 0.85, 𝜇𝑂1𝑃1 = 0.9, … , 𝜇𝑂13𝑃2 = 0.9,  𝜇𝑃1𝐶1 = 0.85, 𝜇𝑃2𝐶10 = 0.85 [19] 

By applying fuzzy entropy formula: 𝐻𝑓(𝐶10𝐻12𝑁5𝑂13𝑃2) = 34.59, this indicates an 

extremely complex structure. 

 

3.4Fuzzy Degree Centrality for Molecular Interaction Analysis 

Let 𝐺 = (𝑉, 𝐸, 𝜇𝐸) be a chemical fuzzy graph. The fuzzy degree centrality 𝐶𝑑(𝑣) of a 

vertex 𝑣 ∈ 𝑉 is defined as 𝐶𝑑(𝑣) = ∑ 𝜇𝐸(𝑢, 𝑣)𝑢∈𝑉 . A vertex 𝑣 with high 𝐶𝑑(𝑣) is highly 

connected, indicating significant molecular interaction potential. 

 

Proof: In chemical fuzzy graphs, the interaction between vertices is not binary but 

varies continuously between 0 and 1, Hence, 𝐶𝑑(𝑣) accounts for the cumulative strength 

of all connection incidents to 𝑣. Since 𝜇𝐸(𝑢, 𝑣) ∈ [0,1], it follows that each term in the 

summation satisfies 0 ≤ 𝜇𝐸(𝑢, 𝑣) ≤ 1. If 𝑣 is connected to |𝑉| − 1 vertices, then 0 ≤𝐶𝑑(𝑣) ≤ |𝑉| − 1. This boundedness ensures that 𝐶𝑑(𝑣) provides a normalized measure 

of connectivity that is scalable to graphs of different sizes. The summation 𝐶𝑑(𝑣) 

represents the total interaction potential of 𝑣, combining the strength of all its bonds. 

A high 𝐶𝑑(𝑣) value suggests that the atom or group acts as a hub in the molecular 

structure. For instance, consider a vertex 𝑣 representing a nitrogen atom in an amino 
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acid. If 𝐶𝑑(𝑣) is significantly high, it implies that the nitrogen atom has strong and 

numerous interactions, making it a potential site for biological or chemical activity. 

 

Example 3.4.1: Methanol (𝐶𝐻3𝑂𝐻) [19] 𝜇𝐸(𝐶, 𝐻1) = 𝜇𝐸(𝐶, 𝐻2) = 𝜇𝐸(𝐶, 𝐻3) = 0.85, 𝜇𝐸(𝐶, 𝑂) = 0.9, 𝜇𝐸(𝑂,𝐻4) = 0.9 

For carbon (C): 𝐶𝑑(𝐶) = 0.85 + 0.85 + 0.85 + 0.9 = 3.45 

For Oxygen (O): 𝐶𝑑(𝑂) = 0.9 + 0.9 = 1.8 

For Hydrogen atoms (𝐻1, 𝐻2, 𝐻3, 𝐻4): 𝐶𝑑(𝐻1) = 𝐶𝑑(𝐻2) = 𝐶𝑑(𝐻3) = 0.85 and 𝐶𝑑(𝐻4) =0.9 

Thus, the carbon atom serves as the primary hub of interactions in methanol, a 

moderately high value of 𝐶𝑑(𝑂) indicates oxygen’s dual bonding roles, contributing to 

the molecule’s polarity, and lower values for H reflect their terminal bonding nature. 

 

Example 3.4.2: Acetonitrile (𝐶𝐻3𝐶𝑁) [19] 

V = {𝐶1, 𝐶2, 𝑁, 𝐻1, 𝐻2, 𝐻3} where 𝐶1 is methyl carbon and 𝐶2 is Nitrile carbon. 

Now, 𝜇𝐸(𝐶1, 𝐻𝑖) = 0.85 ∀ 𝐻1, 𝐻2, 𝐻3, 𝜇𝐸(𝐶1, 𝐶2) = 0.9 and 𝜇𝐸(𝐶2, 𝑁) = 0.95 

For Methyl Carbon (C1): 𝐶𝑑(𝐶1) = 3 × 0.85 + 0.9 = 3.45 

For Nitrile Carbon (C2): 𝐶𝑑(𝐶2) = 0.9 + 0.95 = 1.85 

For Nitrogen (N): 𝐶𝑑(𝑁) = 0.95 

For Hydrogens (H1, H2, H3): 𝐶𝑑(𝐻𝑖) = 0.85 

Thus, methyl carbon is the most connected vertex, reflecting its role as the central hub 

for interactions, a moderately high centrality value of nitrile carbon indicates a triple 

bond, a lower value for nitrogen limits its connectivity, and a lower centrality value for 

hydrogens reflects their terminal position. 

 

3.5 Fuzzy Energy of a Chemical Fuzzy Graph 

Let𝐺 = (𝑉, 𝐸, 𝜇𝐸) be a chemical fuzzy graph with a fuzzy adjacency matrix 𝐴𝑓. The fuzzy 

energy 𝐸𝑓(𝐺) is defined as: 𝐸𝑓(𝐺) = ∑ |𝜆𝑖|𝑛𝑖=1 , where 𝜆𝑖 are the eigenvalues of 𝐴𝑓. If 𝐸𝑓(𝐺) < 𝜅, where 𝜅 is the predefined threshold, the molecular structure of the chemical 

compound represented by G is considered energetically stable. 

 

Proof: Let 𝐴𝑓 be the adjacency matrix of the chemical fuzzy graph G, the eigenvalues𝜆𝑖 
are the solutions to the characteristic equation det(𝐴𝑓 − 𝜆𝐼) = 0, each eigenvalue 

reflects a fundamental property of the graph, corresponding to specific molecular 

interactions. The threshold 𝜅 is established based on empirical or computational 

criteria specific to molecular systems. It represents the upper limit of energy for which 

the molecular configuration remains stable. Larger eigenvalues |𝜆𝑖| signify more intense 

interactions, which, if excessive, may destabilize the molecule. Stability is achieved 

when all eigenvalues remain sufficiently small, ensuring 𝐸𝑓(𝐺) < 𝜅. This implies that no 

single bond or interaction exerts a destabilizing influence, and the molecular graph 

retains a balanced configuration. 
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If any eigenvalue |𝜆𝑖| is disproportionately large, it amplifies 𝐸𝑓(𝐺) beyond 𝜅, signaling 

instability. Such a scenario corresponds to high–energy bonds or interactions, 

potentially leading to molecular reactivity or breakdown. 

This reasoning establishes the fuzzy energy 𝐸𝑓(𝐺) as a comprehensive metric for 

molecular stability. The condition 𝐸𝑓(𝐺) < 𝜅 ensures that the chemical compound 

remains within energetically favorable bounds, aligning the spectral properties of G 

with its structural stability. 

 

Example 3.5.1: Acetylsalicylic acid (Aspirin, 𝐶9𝐻8𝑂4) [20] 

Membership values for single bonds 𝜇𝐸 = 0.7 and for double bonds 𝜇𝐸 = 0.9. 

Solving numerically the eigenvalues, 𝜆 = {2.3, −2.3, 1.5, −1.5, 0.9, −0.9, 0.2, −0.2, 0}. On 

computing fuzzy energy, we get 𝐸𝑓(𝐺) = 9.8 and the predefined value of 𝜅 for aspirin is 

15. Shows 𝐸𝑓(𝐺) = 9.8 < 𝜅 = 15, aspirin is energetically stable. 

 

Example 3.5.2: Cyanogen Chloride (CNCl) [20] 

Membership values for single bonds 𝜇𝐸 = 0.7 and for triple bonds 𝜇𝐸 = 0.9. 

Solving numerically the eigenvalues, 𝜆 = {3.8, −3.8, 1.2, −1.2, 0.5, −0.5}. On computing 

fuzzy energy, we get 𝐸𝑓(𝐺) = 11 and the predefined value of 𝜅 for cyanogen chloride is 

10. Shows 𝐸𝑓(𝐺) = 11 > 𝜅 = 10, cyanogen chloride is energetically unstable. 

 

4. Conclusion: 

The results presented in this study offer a comprehensive approach to understanding 

chemical compounds through the lens of chemical fuzzy graphs. The first result 

provides a criterion for predicting the stability of chemical compounds by analyzing the 

spectral radius of the fuzzy adjacency matrix. This helps identify structurally stable 

compounds, which is crucial for applications in material science and pharmaceuticals. 

The second result highlights the fuzzy centrality measure, which identifies highly 

reactive sites within a molecule. This tool is beneficial for researchers seeking to target 

specific sites in chemical reactions, facilitating the design of more efficient and 

selective reactions. The third result introduces fuzzy entropy as a measure of structural 

complexity, allowing for the analysis of intricate molecular arrangements. A higher 

entropy value corresponds to more complex structures, aiding in the classification and 

understanding of diverse molecular systems. The fourth result focuses on fuzzy degree 

centrality, providing insight into molecular connectivity. This measure helps in 

identifying key components of a molecule that may play a significant role in molecular 

interactions, important for understanding catalytic behaviors or the formation of 

molecular networks. Lastly, the fifth result, which defines fuzzy energy, serves as an 

index of energetic stability. This result is particularly valuable in evaluating the 

feasibility of chemical reactions and understanding the energetic properties of 

compounds in various conditions. Together, these results offer a robust framework for 

analyzing chemical systems, enabling better predictions of stability, reactivity, 
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complexity, connectivity, and energy, with wide-ranging applications in chemistry and 

molecular engineering. 

 

5. Future Scope: 

Building on this framework for chemical fuzzy graphs, future research can extend these 

results to more complex molecular structures, such as large biomolecules or intricate 

reaction networks, to further assess stability and reactivity. Enhancing the fuzzy 

entropy measure could reveal deeper connections between molecular complexity and 

behavior. Additionally, integrating machine learning with this approach could improve 

predictions of molecular properties. Expanding this framework to multi-layered or 

dynamic fuzzy graphs offers the potential for exploring complex processes and 

broadening its application in chemistry and related fields. 
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