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Abstract: Purpose : The primary objective of this research is to present the Slime 

Mould Algorithm with Foraging Risk (SMAFR), an enhanced version of the Slime 

Mould Algorithm (SMA). This development aims to address the inherent limitations of 

many metaheuristic algorithms, such as slow convergence and susceptibility to local 

optima. Design/methodology/approach : Drawing inspiration from the risk-related 

foraging behaviour observed in natural slime moulds, the SMAFR incorporates these 

behaviours into the algorithm's search mechanics. Through environmental parameters 

and mechanisms that mimic the slime mould's response to risk when seeking food, the 

algorithm is designed to balance exploration and exploitation. Findings: The SMAFR 

demonstrated improved efficiency over the original SMA. When rigorously assessed 

against three constrained real-world engineering problems, SMAFR exhibited superior 

performance in comparison to six other well-established metaheuristic algorithms. 

Statistical analyses of the results validated the effectiveness and robustness of the 

SMAFR in a variety of optimization scenarios.  Research limitations/implications : 

While SMAFR exhibited strong performance in the tested scenarios, it's crucial to 

recognize the No Free Lunch (NFL) theorem's implications, suggesting that no single 

optimization technique is universally superior. The performance of the SMAFR, like all 

algorithms, may vary based on the specific optimization problem. Practical 

implications : The SMAFR offers an advanced solution for a range of optimization 

problems, especially those that require a balance between exploration and exploitation. 

Its design, influenced by real-world biological behaviours, lends it an edge in certain 

optimization scenarios, making it a viable option for professionals and researchers in 

relevant fields. Originality/value: The incorporation of foraging risk behaviour, 

inspired by actual slime mould behaviour, into a metaheuristic algorithm is the 

cornerstone of the SMAFR's originality. This unique approach not only enhances the 

algorithm's efficiency but also brings it closer to mimicking real-world adaptive 

behaviours. The presented work thus offers significant value by providing an innovative 

solution to tackle prevalent challenges in optimization algorithms. 

Keywords: Slime Mould Algorithm, Foraging Risk, Metaheuristic Algorithm, Bio-

Inspired Algorithm 
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1.  Introduction  

Optimisation algorithms are significant computational tools for solving 

complex problems, particularly when traditional mathematical methods prove 

inadequate. Among the wide variety of optimisation algorithms, metaheuristic 

algorithms (Yang, 2010, Kaveh, A., &IlchiGhazaan, M., 2017, Kaveh, A., &Dadras, A., 

2017, Kaveh, A., &Zolghadr, A., 2017, Kaveh, A., Akbari, H., &Hosseini, S. M., 2020 and 

Kaveh, A., &Khayatazad, M., 2013) have gained substantial recognition due to their 

ability to operate without prior knowledge of the problem's structure. Utilising 

heuristic strategies, they efficiently search the solution space for optimal or near-

optimal solutions. Consequently, they find extensive applications across diverse fields, 

such as engineering (Bozorg-Haddad et al., 2017), computer science (Yang, 2010), 

finance (Soler-Dominguez et al., 2017), and logistics (Zäpfel et al., 2010), offering 

valuable solutions when conventional methods fall short.Metaheuristic algorithms can 

be broadly classified into two categories: population-based metaheuristics (Beheshti 

and Shamsuddin, 2013) and single-solution-based metaheuristics (Abdel-Basset et al., 

2018). Population-based metaheuristics (Beheshti and Shamsuddin, 2013) operate 

simultaneouslyon multiple potential solutions, making them especially effective for 

optimisation problems with extensive search space and multiple local optima. Two 

prominent types include Evolutionary Algorithms (EAs) (Yu and Gen, 2010) and 

Swarm Intelligence Algorithms (SIAs) (Chakraborty and Kar, 2017). EAs, inspired by 

natural selection and genetic recombination(Mirjalili and Mirjalili, 2019, Beyer and 

Schwefel, 2002, Koza, 1994), evolve a population of potential solutions to improve 

quality, thereby demonstrating an impressive capability in handling large search 

spaces and multiple local optimisations. However, they often require substantial 

computational resources and precise parameter optimisation. On the other hand, SIAs 

imitate the collective behaviour of self-organised systems, where simple behavioural 

rules allow for efficient search space exploration. Despite their advantages, SIAs also 

demand careful parameter tuning and significant computational resources. 

Single solution-based metaheuristics(Abdel-Basset et al., 2018) are optimization 

methods that iteratively refine a single solution to achieve satisfactory results. 

Examples include Hill Climbing(Greiner, 1996), which makes small, iterative 

improvements; Simulated Annealing(Bertsimas and Tsitsiklis, 1993), inspired by 

metallurgical annealing, combining new solution exploration with refinement; and 

Tabu Search (Glover and Laguna, 1998), using memory structures to avoid revisiting 

solutions. Other emerging techniques like Variable Neighborhood Search (VNS) alter 

local search neighborhoods (Mladenović& Hansen, 1997), Iterated Local Search (ILS) 

applies local searches with intermittent perturbations (Lourenço, Martin, &Stützle, 

2003), Guided Local Search (GLS) uses penalties to direct the search (Voudouris, 

Tsang, &Alsheddy, 2010), Greedy Randomized Adaptive Search Procedure (GRASP) 

constructs and iteratively refines randomized solutions (Feo&Resende, 1995), and 
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Harmony Search (HS) improves solutions based on a harmony memory consideration 

rate (Geem, Kim, &Loganathan, 2001). Each method offers distinct strengths, making 

them suitable for various optimization challenges, ranging from well-established 

approaches like Hill Climbing(Greiner, 1996) to innovative strategies like Harmony 

Search (Geem, Kim, &Loganathan, 2001). 

The main objective of metaheuristic algorithms (Rajalakshmi and Kanmani, 

2022, Rajalakshmi et al., 2021, Dhanya et al., 2018, Rajalakshmi et al., 2021, Rajalakshmi 

et al., 2021) is to find optimal or near-optimal solutions for given optimisation 

problems by deploying heuristic strategies for effective search space exploration. In 

this paper, anovel nature-inspired metaheuristic algorithm called the Slime Mould 

Algorithm with Foraging Risk (SMAFR) is introduced. It employs the foraging 

behaviour of slime moulds and considers the associated risks, aiming to address the 

drawbacks of the existing metaheuristics. To validate the efficiency of the proposed 

SMAFR, it was rigorously test it against a set of three constrained engineering 

problems. 

2. Literature Study 

The field of nature-inspired metaheuristic algorithms (Zhang, Y., et al., 2015, 

Zhang & Chen, 2023) continues to experience significant developments. The literature 

reveals numerous algorithms inspired by various species' behaviours, exhibiting 

remarkable problem-solving abilities, particularly in optimization tasks 

(Sakthivel&Selvadurai, 2024). The Fennec Fox Optimization (FFA) algorithm is an 

important example of a nature-inspired algorithm. It models the behaviours of the 

Fennec Fox's to balance exploration and exploitation in the optimization process 

(Trojovská et al., 2022). Similarly, the Reptile Search Algorithm (RSA) takes its 

inspiration from the hunting strategies of crocodiles. It distinguishes itself from other 

algorithms by incorporating both encircling and foraging behaviours into its 

framework (Abualigah et al., 2022).The Aquila Optimizer (AO) is inspired by the 

hunting techniques of the Aquila, or eagle. This algorithm mimics the eagle's diverse 

predatory strategies, including the high-altitude soaring followed by a vertical stoop, 

and the low-altitude contour flight that culminates in a short glide to attack. By 

emulating these varied flight patterns and attack strategies, AO effectively navigates 

through complex optimization landscapes, adapting its search methodology to suit 

different problem scenarios. This unique approach has demonstrated effectiveness in 

solving a wide range of complex optimization problems (Abualigah et al., 2022).Also 

noteworthy is the Jellyfish Search (JS) optimizer, which encapsulates the behaviour of 

jellyfish, proving effective especially in solving mathematical benchmark functions of 

various dimensions (Chou and Truong, 2021). 
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A novel development is the Cat and Mouse-Based Optimizer (CMBO) that 

mimics the interactions between cats and mice. The CMBO's strength lies in its ability 

to provide quasi-optimal solutions closer to the global optimum, proving itself as an 

efficient tool in the optimization landscape (Dehghani et al., 2021). The Cheetah 

Optimizer (CO) (Akbari et al., 2022) is a novel algorithm inspired by cheetahs' hunting 

behaviour, known for its rapid convergence and dynamic adaptation strategy, 

effectively balancing exploration and exploitation in large, complex search spaces. 

Integrating both stochastic and deterministic elements, it mimics the cheetah’s 

strategic movements, aiding in avoiding local optima and ensuring thorough solution 

space exploration.  

The Artificial Gorilla Troops Optimizer (GTO) simulates the social intelligence 

of gorilla troops. The GTO has demonstrated superior performance, particularlyfor 

high-dimensional problems; thereby expanding the capabilities of existing 

metaheuristic optimization algorithms (Abdollahzadeh et al., 2021). Now focusing on 

the Slime Mould Algorithm (SMA)(Li et al., 2020), it has undergone multiple 

enhancements. The Chaotic Slime Mold Algorithm (CSMA) was proposed to improve 

the basic SMA's exploitation phase, resultingin superior performance in terms of 

solution accuracy (Altay, 2022). In another study, the enhanced version of SMA, 

named MSMA, enhanced the standard SMA by incorporating a chaotic opposition-

based learning strategy and two adaptive parameter control strategies (Tang et al., 

2021). Similarly, the Chaotic Slime Mould Optimization Algorithm (CSMOA) was 

developed to speed up SMA's global convergence and avoid local solutions (Dhawale 

et al., 2021). 

Despite these improvements, it is essential to note that such enhancements 

often compromise the biological authenticity of the original algorithms. Therefore, 

proposed work focuses on developing an enhanced version of the SMA, ensuring that 

its essence - derived from the biological behaviour of slime moulds - remains intact. 

This approach is expected to balance the need for optimization efficiency and the 

preservation of natural principles at the core of these nature-inspired algorithms. The 

rest of this paper is structured as follows: Section 3 provides a detailed description of 

the SMA. Section 4 presents the proposed SMAFR. The comparison of SMAFR with six 

other metaheuristic algorithms across three engineering design problem is presented 

in Section 5. Finally, Section 6 concludes the study and discusses the potential 

implications of findings. 

3.  Slime Mould Algorithm (Li et al., 2020) 

The Slime Mould Algorithm (SMA), a novel optimisation strategy, was first 

proposed by Li et al. (2020). The fundamental principle of SMA is inspired by the 

behaviour of a eukaryotic organism, slime mould, during in its plasmodium stage. 
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During this phase, the slime mould grows slowly in colder temperatures and focuses 

predominantly on the search and digestion of food. The organic component of the 

slime mould navigates towards food sources, secretes digestive enzymes, and 

effectively breaks down food particles.Li et al. (2020) provided a mathematical model 

encapsulating this foraging behaviour of slime mould. According to this model, the 

movement of the slime mould is triggered by the scent of the food source present in 

the environment. The model can be represented mathematically as follows: 

X⃗⃗ = {Xb(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + vb⃗⃗⃗⃗ . (W. XA(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − XB(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) , r < pvc⃗⃗  ⃗. X(t)⃗⃗⃗⃗⃗⃗⃗⃗ , r ≥ p       (3.1) 

In this equation, Xb(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represents the current state of the slime mould, while XA(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and XB(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   are random selections of slime mould. The variable (vc⃗⃗  ⃗) gradually 

decreases from 1 to 0, and (vb⃗⃗⃗⃗ ) ranges between [-a, a]. The parameter 'a' is calculated 

as: a = arctanh (−( tmax_t) + 1)                 (3.2) 

The parameter 'p' is defined by:        p = tanh|S(i) − DF|         (3.3) 

Where,S(i) represents the fitness of the slime mould and DF is the overall best 

fitness. The weight (W) of the slime is represented as: W(smellIndex(i))⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {1 + r. log (bF−S(i)bF−wF + 1) ,Firsthalfin S(i)1 − r. log (bF−S(i)bF−wF + 1) ,  others            (3.4) 

WheresmellIndex represents the sorting of S, bF stands for best fitness and wF 

for worst fitness, and 'r' is a random value between [0, 1]. The food attraction of the 

slime mould is given by: 

X⃗⃗ = { 
 rand.  (UB − LB) + LB,  rand < zXb(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + vb⃗⃗⃗⃗ . (W. XA(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − XB(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) ,r < pvc⃗⃗  ⃗. X(t)⃗⃗⃗⃗⃗⃗⃗⃗ ,r ≥ p    (3.5) 

The variable z is set at 0.3, where LB and UB denote the lower and upper 

bounds, respectively, and both 'rand' and 'r' fall within the range of [0, 1]. This 

mathematical representation characterises the slime mould's food foraging behaviour 

can be effectively used for optimisation problems (Molga and Smutnicki, 2005, Yang, 

2010). Despite the noteworthy performance exhibited by the Slime Mould Algorithm 

across various scenarios, it's not without its limitations. The algorithm frequently faces 

issues such as suboptimal convergence and susceptibility to entrapment in local 

optima. Numerous algorithms (Altay, 2022, Tang et al., 2021, Dhawale et al., 2021) have 

been proposed to rectify these problems, but these algorithms often fail to preserve 
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the inherent biological functionality of the original algorithm. A novel enhanced 

proposed algorithm is the Slime Mould Algorithm with Foraging Risk, which is 

designed to address these issues while ensuring the preservation of biologically-

inspired functionality. 

4. Slime Mould Algorithm with Foraging Risk 

This section introduces the Slime Mould Algorithm with Foraging Risk 

(SMAFR), a novel evolution of the original Slime Mould Algorithm (SMA) (Li et al., 

2020). In its natural environment, the behaviour of slime mould (Vallverdú et al., 2018) 

a unicellular organism prevalent in a variety of conditions is significantly influenced 

by factors like temperature, humidity, light, and food supply (Takamatsu et al., 2009). 

This behavioural adaptation, intrinsic to slime mould's food-seeking process, serves as 

the inspiration for the SMAFR.One of the primary adaptive mechanisms of slime 

mould is its ability to assess risks when foraging for food. This behaviour not only 

retains the algorithm's biological functionality but also enhances its efficiency. Slime 

mould prefers humid environments and stays inactive during unsuitable 

environmental situations, waiting for optimal conditions before expanding. These 

characteristics of slime mould provide us with the opportunity to overcome the slow 

convergence and local optima adherence issues faced by the original SMA. 

 The environmental condition is represented by a parameter called 'C' in 

SMAFR is defined as: 

 C = √∑ (X(t)i − XGB(t))2di=1        (4.1) 

WhereX(t) denotes the current slime, and XG𝐵(t) stands for the best slime. The 

minimum climatic conditions required for the growth of slime mould are represented 

byCmin, which is given by: Cmin = 10E−6
(365) iterMax−iter2.5          (4.2) 

In nature, slime moulds exhibit a foraging behaviour that is sensitive to 

environmental conditions like nutrient availability. The SMAFR algorithm mimics this 

by using 'C' to determine if the conditions are right for the slime mould to actively 

forage.In SMAFR, 'C' helps assess the 'risk' associated with continuing to explore the 

current region of the search space. A high 'C' value might indicate a higher 'risk', 

prompting the algorithm to explore new areas, while a low 'C' value indicates a lower 

'risk' and hence, a preference to exploit the current area. 'C' reflects the environmental 

suitability or the favourability of conditions for the slime mould. A smaller value of 'C' 

suggests that the slime mould is closer to the optimal position, indicating a more 
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favourable environment. Conversely, a larger value of 'C' implies that the slime mould 

is further from the optimal position, suggesting less favourable conditions. 

This behaviour can be mathematically represented as follows: X(t) = LB + Levy(n) × (UB − LB), C >  Cmin     (4.3) 

In this equation, the Levy flight is calculated as: 𝐿𝑒𝑣𝑦(𝑛) = 0.01 × 𝑟1×𝜎|𝑟2|1𝛽        (4.4) 

and 

𝜎 = ( 𝛤(1+𝛽)×𝑠𝑖𝑛(𝜋𝛽2 )𝛤(1+𝛽2 )×𝛽×2(𝛽−12 ))
1𝛽
        (4.5) 

Where,𝛤(𝑛) = (𝑛 − 1)!,𝑟1&𝑟2 are random numbers in the range [0,1], 𝛽 is set to 

1.4. The pseudo-code of the proposed Slime Mould Algorithm with Foraging Risk 

(SMAFR) is detailed as follows. 

Algorithm: Slime Mould Algorithm with Foraging Risk (SMAFR) 

Input: Population of slime, Algorithm parameters, Maximum iterations 

Output: Best_fitness 

 

1: SMAFR(Population, Parameters, Max_iter) 

2:     Initialize slime population X = {𝑋1, 𝑋2, ..., 𝑋𝑁}; 

3:     Initialize iteration counter t = 0; 

4:     while t <= Max_iter do 

5:         for each slime i in population do 

6:             Compute fitness F(i); 

7:             Compute weight W(i); 

8:         end for 

9:         for each search agent i in population do 

10:            Update p, 𝑣𝑏, and 𝑣𝑐for agent i; 

11:            Update the position of agent i, X(i, t+1); 

12:       end for 

13:       Compute environmental condition C for each agent; 

14:       if C satisfies the environmental monitoring condition, then 

15:           Update X(t) for each agent; 

16:       end if 

17:       Update minimum environmental condition𝐶𝑚𝑖𝑛; 

18:       Increment iteration counter t = t + 1; 

19:    end while 
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20:    best_fitness = minimum fitness in the population; 

21:    return best_fitness; 

22: end 

 

This pseudo-code outlines the main steps of the SMAFR, beginning with the 

initialization of the slime population and algorithm parameters. Subsequently enters a 

loop, which lasts for a predetermined maximum number of iterations. Within this 

loop, the algorithm computes the fitness and weight of slime, updates various 

parameters, and checks the environmental condition. If the condition is met,the 

algorithm will updatethe slime’s position. In the SMAFR algorithm, the process 

iterates through slime mould populations and updates their positions until a 

predefined maximum number of iterations, Max_iter, is reached. An iteration counter, 

starting at zero, increments after each cycle of operations, including fitness evaluation 

and position updates. The algorithm concludes once this counter equals Max_iter, 

ensuring a finite and controlled execution, after which the optimal solution found is 

returned.The proposed modifications to the SMAFR enhance its resemblance to the 

biological behaviours of slime mould and improve its performance by addressing 

issues present in the original SMA. As a result, the SMAFR shows potential as a 

valuable tool for resolving complex optimisation problems. 

5. Constrained Engineering Optimization using SMAFR Algorithm 

Constraint management is a critical process in the optimization process, 

playing a vital role in distinguishing between feasible and infeasible solutions 

produced by heuristic algorithms. There are numerous strategies available for 

constraint management, including but not limited to penalty functions, special 

operators, repair algorithms, separation of objectives and constraints, and hybrid 

techniques (Coello, 2002, Sakthivel&Selvadurai, 2024). The penalty function is one of 

the simplest and most commonly used strategies. This method focuses on penalizing 

solutions that fall outside the feasible solution space, effectively transforming the 

constrained optimization problem into an unconstrained optimization problem. 

Constraints are efficiently managed within the context of the SMAFR algorithm 

through the implementation of a penalty function. To illustrate the proficiency of the 

SMAFR algorithm in managing constraints, this section investigates its performance 

using three typical constrained engineering optimization problems: gear train design, 

three-bar truss design, and the welded beam design problem. The comprehensive 

analysis and results of these application-based evaluations provide additional 

perspectives on the practical efficiency and versatility of the SMAFR 

algorithm(Sakthivel&Selvadurai, 2024). 
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5.1 Gear Train Design Problem 

A common problem in the field of mechanical engineering is the optimization 

of gear ratios in a four-gear train set. The primary objective of this problem is to 

minimize the gear ratio for this specific set, where the number of teeth on each of the 

four gears represents the variables (Sandgren, 1990, CoelloCoello, 2000). While there 

are no explicit constraints in this problem, the range of variables, or in other words, 

the feasible number of teeth a gear can have, are implicitly considered as constraints 

that influence the gear ratio and consequently, the overall system efficiency.The 

general design of this gear system is depicted in Figure 1. The following section 

presents the mathematical formulation for the optimisation of the gear train design 

problem. This problem exemplifies the efficacy of the SMAFR algorithm in managing 

engineering constraints in a practical setting(Sakthivel&Selvadurai, 2024). 𝑀𝑖𝑛𝑓(𝑇) = ( 16.931− 𝑇2 𝑇3𝑇1 𝑇4)2 , 𝑤ℎ𝑒𝑟𝑒𝑇 = (𝑇1, 𝑇2, 𝑇3, 𝑇4)              (5.1) ∃12 ≤ 𝑇𝑖 ≤ 60, 𝑓𝑜𝑟𝑖 = 1,2,3,4.         

 

Figure 1. Gear Train Design Problem. 

Table 1 presents the most optimal results produced by the SMAFR algorithm for 

the Gear Train Design Problem. In the evaluation of the Gear Train Design Problem, 

the SMAFR algorithm demonstrated notable superiority over other algorithms like 

PSO (Clerc, 2010), SMA (Li et al., 2020), ABC (Karaboga and Basturk, 2008), DE (Price, 

2013), WOA (Mirjalili and Lewis, 2016), and GOA (Mirjalili et al., 2018) (Sakthivel 

&Selvadurai, 2024). SMAFR achieved the lowest optimum cost with a more efficient 

convergence rate, showcasing its ability to quickly identify the most effective gear 

configurations. Its performance edge is attributed to its unique foraging risk 

mechanism, inspired by slime mould behavior, which effectively balances exploration 

and exploitation in the search space. This adaptability, coupled with robustness 

against local optima and computational efficiency, makes SMAFR particularly effective 

for complex optimization tasks like the gear train design, where finding a global 

optimum is crucial amidst a landscape filled with numerous local optima. 
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Table 1. Performance Analysis of Gear Train Design Problem 

Algorithm 
Optimum values for variables 

Optimum cost 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 

SMAFR 41 12 12 20 3.2749E-18 

SMA 43 12 19 36 3.0372E-12 

PSO 46 20 17 44 2.6008E-011 

ABC 43 19 16 43 1.251E-10 

DE 44 14 18 48 2.4008E-10 

GOA 20 16 43 49 2.75E-10 

WOA 34 14 18 48 1.263E-08 

5.2 Three Bar Truss Design Problem 

The three-bar truss design problem, a prevalent structural optimization 

problem in civil engineering, requires the manipulation of two variables in order to 

achieve the lowest possible weight, under the constraints of stress, deflection, and 

buckling. The search space of this problem is severely constrained, necessitating 

extensive research. The problem's representation (Sandgren, 1990, CoelloCoello, 2000) 

is illustrated in Figure 2. The mathematical expression of the three-bar truss design 

problem can be given as follows(Sakthivel&Selvadurai, 2024): 𝑚𝑖𝑛𝑓(𝑋) = 𝐿 × (2√2𝑥1 + 𝑥2)                 (5.2) ∃ √2𝑥1+𝑥22𝑥1𝑥2+√2𝑥12 𝑃 ≤ 𝜎                   (5.3) 𝑥22𝑥1𝑥2+√2𝑥12𝑃 ≤ 𝜎                   (5.4) 1𝑥1+√2𝑥2 𝑃 ≤ 𝜎                    (5.5) 0.01 ≤ 𝑥𝑖 ≤ 1𝑓𝑜𝑟𝑖 = 1,2.          

where, L=100 cm, P=2 km/cm2 and 𝜎=2 km/cm2   

 

 

Figure 2. Three Bar Truss Design Problem. 
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Optimal solutions obtained by the SMAFR algorithm for the three-bar truss 

design problem are detailed in Table 2. In the assessment of the Three Bar Truss 

Design Problem, a critical challenge in civil engineering optimization, the SMAFR 

algorithm emerged as a particularly effective solution. This problem, focusing on 

minimizing the weight of a truss under specific stress, deflection, and buckling 

constraints, demands precise manipulation of two variables. SMAFR outperformed 

other algorithms such as PSO (Clerc, 2010), SMA (Li et al., 2020), ABC (Karaboga and 

Basturk, 2008), DE (Price, 2013), WOA (Mirjalili and Lewis, 2016), and GOA (Mirjalili 

et al., 2018), achieving the lowest optimum cost (Sakthivel &Selvadurai, 2024). 

Notably, SMAFR's success in this task can be attributed to its advanced search 

capabilities and adaptability, inspired by biological processes. It effectively navigated 

the constrained search space and balanced the competing demands of stress and 

weight minimization, demonstrating its potential as a robust tool for complex 

structural optimization problems in civil engineering. 

TABLE 2.Performance Analysis of Three Bar Truss Design Problem. 

Algorithm 
Decision variables 

Optimum cost 𝒙𝟏 𝒙𝟐 

SMAFR 0.66579 0.33476 186.6721 

SMA 0.76345 0.46321 215.6541 

PSO 0.78997 0.66579 228.6549 

DE 0.81815 0.36946 267.8173 

ABC 0.74669 0.41526 265.9358 

GOA 0.78967 0.41932 264.9815 

WOA 0.79603 0.42945 261.8754 

5.3 Welded Beam Design Problem  

The welded beam design problem, a well-established problem in structural 

optimization (Tang et al., 2021), endeavors to minimize the production costs of a 

welded beam. Figure 3 depicts the Welded Beam Design Problem (Sandgren, 

1990,CoelloCoello, 2000,Deb, 1991). Optimization constraints for this problem include 

shear stress (τ), bending stress in the beam (θ), buckling load (Pc), and beam end 
deflection (δ). The four variables considered during optimization include weld 
thickness (h), clamping bar length (l), bar height (t), and bar thickness (b). The 

mathematical formulation of the welded beam design problem can be outlined as 

follows(Sakthivel&Selvadurai, 2024): 
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Consider 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) = [ℎ𝑙𝑡𝑏], 𝑚𝑖𝑛 𝑓(𝑥) = 1.10471𝑥12𝑥2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2)    (5.6) ∃𝑔1(𝑥) = 𝜏(𝑥) − 𝜏𝑚𝑎𝑥 ≤ 0,                  (5.7) 𝑔2(𝑥) = 𝜎(𝑥) − 𝜎𝑚𝑎𝑥 ≤ 0,        (5.8) 𝑔3(𝑥) = 𝛿(𝑥) − 𝛿𝑚𝑎𝑥 ≤ 0,        (5.9) 𝑔4(𝑥) = 𝑥1 − 𝑥4 ≤ 0,                 (5.10) 𝑔5(𝑥) = 𝑃 − 𝑃𝑐(𝑥) ≤ 0,                (5.11) 𝑔6(𝑥) = 0.125 − 𝑥1 ≤ 0                (5.12) 𝑔7(𝑥) = 1.10471𝑥12 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0 ≤ 0           (5.13) 0.1 ≤ 𝑥1 ≤ 2, 0.1 ≤ 𝑥2 ≤ 10, 0.1 ≤ 𝑥3 ≤ 10, 0.1 ≤ 𝑥4 ≤ 2 

where𝜏(𝑥) = √(𝜏′)2 + 2𝜏′𝜏′′ 𝑥22𝑅 + (𝜏′′)2,         (5.14) 𝜏′ = 𝑃√2𝑥1𝑥2, 𝜏′′ = 𝑀𝑅𝐽 , 𝑀 = 𝑃 (𝐿 + 𝑥22 ),              (5.15) 𝑅 = √𝑥224 + (𝑥1+𝑥32 )2,                 (5.16) 𝐽 = 2 {√2x1x2 [x224 + (x1+x32 )2]},               (5.17) σ(x) = 6PLx4x32,                  (5.18) δ(x) = 6PL3Ex32x4,                  (5.19) 

Pc(x) = 4.013E√x32x4636L2 (1 − x32L√ E4G) ′               (5.20) P = 6000lb, L = 14in. , δmax = 0.25in. , E = 30 × 16psi, G = 12 × 106psi, τmax = 13,600psi, σmax = 30,000psi.        

 

Figure 3.Welded Beam Design Problem 
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Table 3. Performance Analysis of Welded Beam Design Problem 

Algorithm 
Optimum values for variables 

Optimum cost 
h L t b 

SMAFR 0.2034 3.2651 9.0462 0.2156 1.67542 

SMA 0.2046 3.2874 9.0321 0.2086 1.69752 

PSO 0.2047 3.3702 9.0462 0.2046 1.76454 

DE 0.2035 3.4611 9.0375 0.2081 1.72997 

ABC 0.2059 3.4785 9.0158 0.2034 1.72328 

GOA 0.2028 3.3603 9.0563 0.2054 1.71492 

WOA 0.2043 3.3725 9.0453 0.2145 1.72523 

The SMAFR algorithm's performance in addressing the Welded Beam Design 

Problem, a notable challenge in structural optimization, is presented in Table 3. This 

comparison demonstrates SMAFR's superiority over other contemporary algorithms 

such as PSO (Clerc, 2010), SMA (Li et al., 2020), ABC (Karaboga and Basturk, 2008), 

DE (Price, 2013), WOA (Mirjalili and Lewis, 2016), and GOA (Mirjalili et al., 2018). This 

problem involves minimizing the production costs of a welded beam while adhering to 

constraints like shear stress, bending stress, buckling load, and beam end 

deflection(Sakthivel&Selvadurai, 2024). SMAFR achieved the most cost-effective 

design with optimal variable values (h, l, t, b) yielding the lowest cost at 1.67542. Its 

success can be attributed to its advanced search and optimization capabilities, which 

efficiently navigated the complex interplay of variables and constraints. SMAFR's 

performance in this context underscores its potential as an effective tool for intricate 

structural optimization tasks, where precise balancing of multiple factors is crucial for 

optimal design. 

6. Conclusions and Future Works 

The novel SMAFR algorithm has demonstrated exceptional efficiency in 

exploring and exploiting promising search regions, as evidenced by its performance in 

three constrained engineering problems. When compared with well-established 

algorithms like SMA, PSO, ABC, DE, GOA, and WOA, SMAFR has shown its capability 

to adeptly navigate complex problems, proving its robustness in various domains. 

However, in line with the No Free Lunch (NFL) theorem, it's important to recognize 

that no single optimization technique excels universally. SMAFR, in this respect, has 

emerged as a powerful optimizer in most explored scenarios.Looking forward, there is 

substantial potential to expand SMAFR's scope. The exploration of a binary iteration of 

the algorithm could address multi-objective issues, enhancing its applicability and 

effectiveness across diverse optimization scenarios. Additionally, its adaptability and 

efficiency position SMAFR as a prime algorithm for application in larger-scale, real-

world problems (Kaveh, 2014). 
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The future research directions and expanded applications of SMAFR are 

i. Advanced Adaptation Mechanisms: Future research could delve into more 

complex adaptation mechanisms inspired by slime mould behaviour, 

enhancing efficiency in dynamic optimization scenarios. 

ii. Hybridization and Integration: Combining SMAFR with other robust 

optimization algorithms could create synergistic effects for more complex 

problems. 

iii. Expanding to New Domains: Testing SMAFR in fields like renewable energy 

optimization, bioinformatics, and complex network analysis could demonstrate 

its versatility. 

iv. Dynamic Environmental Simulation: Incorporating simulations of dynamic 

environmental factors in future SMAFR versions could mirror the natural 

adaptability of slime mould, benefiting rapidly changing conditions like 

financial markets or logistics. 

v. Customization for Specific Constraints: Tailoring SMAFR to tackle special 

constraints, such as multi-objective or highly non-linear problems, could lead 

to more efficient solutions in fields like aerospace engineering. 

The exploration of SMAFR's applications extends its potential, contributing 

substantially to the evolution of optimization techniques in engineering and other 

fields. As SMAFR transitions from a conceptual framework to a practical tool, it 

presents ongoing opportunities for future research and application, showcasing its 

relevance and adaptability in various domains. This progression highlights the 

significance of continuous development and adaptation in optimization 

methodologies. 
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