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1. Introduction 

Glaucoma, considered one of the major reasons for blindness, results in an estimated 12% 

of total blindness cases and is anticipated to affect almost 11 million people with bilateral 

blindness. The most common type of glaucoma globally is Primary Open-Angle 

Abstract: Various retinal disorders, commonly diabetic and hypertensive 

retinopathy, can damage the optic nerve, potentially leading to permanent vision 

loss. Clinical observations often detect these conditions, such as abnormalities in 

retinal blood vessel diameter and the optic cup-to-disc ratio. High blood pressure 

can cause retinal vessel thinning and optic cup dilation, disrupting the normal 

arterio-venous ratio (AVR) and cup-to-disc ratio (CDR). This disruption may result 

in nerve fiber damage, hemorrhages, and cotton wool spots. This study proposes an 

automated retinal optic disk and vessel segmentation from pre-processed retinal 

images. The segmentation was done using a ring mask created by superimposing 

two circles with the optic disk center and radii of 3D/2 and 1.5D/2, where D denotes 

the diameter of the optic disk. The maximum AV crossing was avoided within the 

retinal mask to simplify the process. Validations were performed by comparing the 

results with a predefined manually segmented dataset, achieving accuracies of 

98.6% and 97.8% for retinal optic disk and optic cup, respectively, and 98.73% for 

retinal vessels. This algorithm could aid ophthalmologists in identifying retinal 

disorders accurately and automatically. 

Keywords: Active Contour, Contrast Limited Adaptive Histogram Equalization, 

Blind Deconvolution, Region-based classification, Cup Disc Ratio, Artery Vein Ratio 
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Glaucoma (POAG), which impacts 74% of individuals diagnosed with the condition. 

Based on stratified estimates derived from population studies, it is expected that almost 

11.2 million people in India, accounting for nearly 4.6% of the people over the age of 40, 

are affected by glaucoma [4]. Detecting and treating this disease, which can potentially 

lead to blindness, presents significant challenges since the majority of those affected 

remain undiagnosed. 

Hypertension can narrow the vessels inside the eye, reducing blood flow to the optical 

nerve and potentially resulting in blindness. Likewise, elevated pressure within the eye in 

cases of glaucoma can harm the optic nerves and affect vision. Research has suggested 

that individuals with hypertension may be at an increased likelihood of developing open-

angle glaucoma, a group of eye conditions that damage the optic nerve. The possibility of 

this risk seems to surge among people with severe or poorly managed hypertension over a 

prolonged period. 

Unfortunately, most associated instances do not exhibit symptoms, although they can be 

detected using retinal Fundus imaging. Appropriate diagnosis and managing the disease 

in a clinical setting require careful valuation of variations in the optical nerve head 

(ONH), measurement of intraocular pressure (IOP), and identification of defects in the 

visual field. Diagnosing typical ONH alterations in the donor's eyes may be more difficult 

to assess because of the optic disk's pallor and swelling. Additionally, early vascular 

changes associated with high blood pressure can cause a narrowing of the retinal 

arterioles, changes at the arteriolar junction, such as arteriovenous nicking, and arteriolar 

light reflexes.[5]. Additionally, vessel bending is acknowledged as a likely cause of 

hypertension and coronary disorders [6]. It is crucial to measure heart rate, as studies 

have demonstrated a strong link to an elevated long-term likelihood of stroke [7]. As 

such, this effort seeks to develop a way to detect probable cases of glaucoma and 

hypertension in donor eyes by examining the optic disc cupping ratio and micro vascular 

ratio. 

 

2. CDR Measurement  

Fig. 1 provides an organizational chart of the CDR measurement. In the RGB color model, 

each color composed of 3 primary additive color elements—red, green, and blue—which 

are represented by the following intensity function: 

ImgRGB = [FnR(x, y), FnG(x, y), FnB(x, y)]    (1) 

WhereFnR(x, y), FnG(x, y) and FnB(x, y) represent the intensities of the pixel (x, y) in the 

red, the green, and the blue channels correspondingly. In the standard RGB color space, 

these are as follows: 

red = (
0.64
0.33

) , green = (
0.30
0.60

) , blue = (
0.15
0.06

)   (2) 
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Fig.1: Block diagram explaining the CDR Evaluation 

 

If only brightness information is required, color images may be converted to grayscale 

images using the proposed transformation equation (3). 

IG = 0.333FR + 0.600FG + 0.060FB     (3) 

HereIGrepresents the gray equivalent intensity of the RGB image. The red and the green 

elements of the imageImgRGBcan be quantified using equation (3). The red and green 

components of the color image are employed to categorize OD and OC, respectively, as 

mentioned in Fig. 2. 

 
Fig. 2: Random image of HRF dataset represents (a) cropped OD and OC, (b) red channel 

marking OD, and (c) green channel marking OC. 

 

The advanced technique of CLAHE has been employed to reduce noise through median 

filtration and enhance the image. Secondly, the use of the regional classification made it 

possible to detect OD and OC. The operations based on morphology such as dilation, 

erosion, opening, and closing are used to isolate the OD and OC features. 

 

3.  AVR Measurement 

The vessel’s segmentation and AVR calculation have been made in two steps mentioned 

in Fig. 3(a) and Fig. 3(b). In the first step, vessels of the overall RGB retinal image have 
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been segmented by fusioning Blind Deconvolution and advanced CLAHE technique 

followed by Active Contour-based vessel segmentation skills. In the second step, firstly 

the optic disk (OD) and its average diameter (D) and then the overlapping area 

between𝜋(3𝐷/2)2 and 𝜋(1.5𝐷/2)2 has been measured. 

 

 
Fig. 3a: Block diagram representing vessels Detection  

 

 
Fig. 3b: Block diagram representing AVR Calculation. 

 

Then the segmented vessels within that masked area have been mapped. The reason 

behind this mask is that within this range the maximum vessels that are mostly affected 

by hypertension are found and also complexity is reduced. In the final stage of the second 

step, arteries and veins are separated to measure the area of the artery and vein 

separately. Arteries and veins are identified using the following parameters [8]. 

 The color of the arteries is brighter than that of the veins. 
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 Arteries are generally narrower than the adjacent veins. 

 The central reflex (luminous reflex from within the vessels) is more pronounced 

within the blood arteries and less pronounced in the blood veins. 

 Blood vessels typically alternate near the optic disc before branching out. 

Fig. 4(a) and fig. 4(b) shows the marking arteries and veins and the proposed region of 

interest. Finally, AVR concerning the area has been calculated. The measured AVR helps 

the Ophthalmologist to detect the stages of hypertensive retinopathy. 

 

 
Fig. 4: Random Image cropped from HRF datasets represents (a) marking arteries and 

veins, and (b) proposed area of interest. 

 

The final step is the validation step where the binary parts of automatic segmented and 

manual segmented images are considered to identify the true positive and false negative 

parameters. From here TP, FP, TN, and FN values have been calculated to validate the 

proposed result set. These steps are depicted in Fig. 5. 

 

 
Fig. 5: Functional diagram representing the validation of vessel structure. 

 

Table 1 explains the AVR for normal to accelerated hypertensive retinopathy cases with 

different risk factors [2] and CDR ranges for normal and affected retina [1]. 
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Table 1: AVR [2]and CDR [1] for different stages of Hypertensive Retinopathy. 

Grading of 

HR 
AVR Indications 

Systematic 

Association 
CDR 

Normal 
0.66-0.75 

(Approx.) 
Normal Normal 

0.00-

0.60 

(Appro

x.) 

Grade 1 

(Mild) 

0.5 

(Approx.) 

Constricted arterioles, 

arterial and venous 

nicking, and 

thickening of the 

arteriolar wall. 

Loosely linked to 

cardiovascular 

disorders 

>0.60 

(Appro

x.) 

Grade 2 

(Moderate) 

0.33 

(Approx.) 

Hemorrhages, along 

with both hard and 

soft exudates. 

Heart attacks, 

strokes, and even 

deaths from 

cardiovascular 

diseases. 

>0.60 

(Appro

x.) 

Grade 3 

(Combined) 

0.25 

(Approx.) 

Hemorrhages, along 

with both hard and 

soft exudates. 

Heart attacks, 

strokes, and even 

deaths from 

cardiovascular 

diseases. 

>0.60 

(Appro

x.) 

Grade 4 

(Accelerated 

HR) 

Fine 

Cords 

<0.2 

(Approx.) 

Swelling of the optic 

disc and loss of vision. 

Kidney failure and 

death 

>0.60 

(Appro

x.) 

 

4.  Literature Review: 

The retinal vessels are essential for carrying blood from the heart to the retina, and 

evaluating their caliber can offer valuable information in identifying diseases like 

hypertension, diabetes, and stroke at an early stage. The AVR and CDR are two frequently 

used metrics for assessing retinal vessels. This literature review will explore the different 

techniques employed for calculating AVR and CDR. 

The CDR serves as a metric for evaluating the severity of glaucoma by measuring the 

proportion of the perpendicular depth of the cup relative to that of the optic disc. A 

greater CDR value is suggestive of a larger optic cup, which has been linked to a 

heightened risk of glaucoma. Ophthalmologists or optometrists usually calculate the CDR 
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during a comprehensive eye examination using a specialized device known as a fundus 

camera to take images of the optic disc. The images are subsequently analyzed to measure 

the perpendicular dimensions of the ocular cup and the optic nerve head. Some recent 

studies related to CDR measurement have been mentioned below. 

The authors of a study, Al Shalchi, et al. [44], introduced a Grasshopper optimization 

algorithm as an automated approach for identifying the optic nerve head in retinal 

images The algorithm is inspired by the social behavior of grasshoppers and is known as 

the intelligent Grasshopper algorithm. The results highlight the algorithm's exceptional 

capability and accuracy in detecting the optic disc. 

In their study, Buket Toptas and colleagues (Toptas et al., [45]) recommended a method 

for recognizing the optical disc in retinal fundus images. They accomplished this by 

applying an optimized color space to the images, which involved converting them from 

RGB to an innovative color model by applying an artificial bee colony system. The results 

indicated that in this newly defined color space; the optic disc was more distinctly 

localized compared to the original RGB color space. 

The objective of Mahum R. and colleagues in their study [46] was to utilize deep learning-

based feature extraction to detect early-stage glaucoma. They used retinal scan images for 

training and validation of their proposed model. The first step involved pre-processing 

the images, followed by segmenting and selecting the focused region. Next, the hybrid 

feature descriptors were used to extract the features of the optic disc (OD) from images 

that include the optical cup region. 

A new technique for detecting glaucoma called Densenet-77-based Mask-RCNN has been 

introduced by Nazir T. and colleagues in their study [47]. To address the challenges 

associated with glaucoma detection, they initially applied data augmentation and added 

blurriness to samples to increase data diversity. Ground-truth (GT) images were then 

used to generate annotations, and The Densenet-77 framework was leveraged for feature 

extraction at the Mask-RCNN stage to calculate deep key features. Finally, the customized 

Mask-RCNN model used the calculated structures to identify and segment the OD and 

OC. 

An improved version of the Harris corner location algorithm was suggested by Deng L., et 

al. [48]. The proposed algorithm takes into account the thick vessels and prominent gray 

variations in the retinal photograph, with the optic disc area containing the highest 

number of corners. The main approach includes extracting the region of interest using a 

matching filter, followed by vascular detection, image optimization, and additional 

methods. The Harris corner detection algorithm is subsequently enhanced using 

similarity to identify the corner of the region of interest. 
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Vascular segmentation is a key component of medical image analysis that has been 

extensively researched in academic work. This document offers a concise review of some 

commonly employed methods to segment the retinal vessel’s structure. 

In their study, Rehman A. et al. [49] propose a trained method for extracting retinal blood 

vessels. The algorithm comprises two refinement stages that perform filtering and relative 

histogram analysis following image refinement and quality improvement. Data attributes, 

including vessel monitoring, peak curvature, and wavelet coefficients, are subsequently 

retrieved for each pixel. These attributes are then separated through a support vector 

machine and the k-nearest neighbors’. 

In their study, Arsalan M and colleagues [50] present two innovative shallow deep 

learning models, referred to as DSF-Net and DSA-Net that can effectively identify retinal 

vasculature. The authors utilize semantic segmentation to analyze raw color fundus 

images and screen for diabetic and hypertensive retinopathies with high precision.  

In their work, Pal M and colleagues [51] suggest an automated technique for segmenting 

the retinal vasculature. This technique utilizes a Gabor filter bank that has been 

optimized using a lattice search across the entire constraint space. Additionally, the 

author employed a novel strip-wise classification method and also incorporated Tophat 

attributes and ridge data, based on the Eigenvalue spectrum of the Hessian matrix, to 

improve the accuracy of vessel capture, in addition to the optimized Gabor features.  

Boudegga H et al. [52] introduce an innovative DL method for retinal vessel structure 

segmentation in their study. The key innovation of their work lies in the suggestion of a 

U-shaped deep learning model that uses efficient convolution layers to improve 

segmentation accuracy while minimizing computational complexity. Additionally, the 

authors currently use Data preparation and enhancement methods tailored to the 

characteristics of retinal images and blood vessels, which constitutes their second major 

contribution.  

In their study, Ooi A et al. [53] recommend a way for segmenting vessel structure from 

retinal images employing interactive methods grounded in Canny edge detection. The 

pre-processing phase involves removing the green components, CLAHE, and removing 

the retinal skeleton. Subsequently, the Canny algorithm-based edge recognition 

techniques is employed. 

The literature review highlights the effectiveness and promise of the image-processing 

methods examined in these studies for measuring significant parameters like the AVR 

and CDR. However, it is crucial to recognize that there are still specific constraints and 

opportunities for improvement. 

Some retinal image processing techniques are sensitive to image quality factors such as 

low resolution, noise, uneven illumination, and motion artifacts. In real-world clinical 
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settings, where image quality may vary, these techniques may yield suboptimal results or 

require pre-processing steps.  

Certain retinal image processing techniques may be computationally demanding, 

requiring substantial computational resources or long processing times. This can limit 

their practical application in real-time or resource-constrained environments. 

Obtaining accurate and comprehensive ground truth annotations for retinal images can 

be challenging and time-consuming. This limitation can affect the expansion and 

evaluation of image-processing algorithms, making it difficult to establish their true 

efficacy. 

The processing algorithm lacks compact techniques that can effectively handle multiple 

target features, such as optic disks, retinal vessels, hemorrhages, and others. 

 

 

5.  Motivation and Contribution 

Motivation: 

Due to the potential cases of diabetes, glaucoma, and hypertension, examination of the 

CDR and AVR is an imperative aspect. One possible approach for the early detection of 

these diseases is retinal image analysis. Retinal image processing is fueled by the desire to 

improve diagnostic precision and gain valuable knowledge about different eye conditions 

and diseases. Retinal image analysis focuses on analyzing and obtaining meaningful data 

derived from retinal scans, such as identifying key features like the optic disc, retinal 

vessels, and hemorrhages, along with detecting abnormalities and signs of eye diseases. 

The motivation lies in the enhancement of the early detection, monitoring, and treatment 

of eye disorders, thereby improving patient outcomes and overall eye health. 

 

Contribution: 

The contribution to developing the proposed retinal AVR and CDR detection involves 

several key aspects.  

 The contribution encompasses the utilization of multiple algorithms for tasks such as 

enhancing, segmenting, extracting features, and classifying to derive significant and 

valuable information from the retinal images. 

 We need to gather a comprehensive and heterogeneous dataset of retinal images to 

support the development and evaluation of the Active-BDCLF algorithm. Our role is 

to compile and tag these datasets to verify they comprehensively represent retinal 

conditions and their variations. 

 Lastly, the developed algorithms are refined and enhanced through comprehensive 

testing, thorough evaluation, and meticulous validation. This includes comparing the 
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algorithms to existing ones, evaluating performance metrics like accuracy, sensitivity, 

and specificity, and performing Clinical trials to validate their efficacy and 

dependability in practical settings. The development of algorithms for retinal image 

processing involves designing algorithms, curating datasets, fostering 

interdisciplinary collaboration, and conducting rigorous evaluations, all to enhance 

the precision and medical relevance of retinal image evaluation. 

 

6. Dataset: 

The Active-BDCLF algorithm was estimated by freely accessible datasets like DRIVE, 

HRF, STARE, CHASEDB1, INSPIRE-AVR, and others to develop a fully automated 

monitoring system.  

 

The DRIVE dataset was created as part of a diabetic testing campaign in The Netherlands. 

The trial involved 400 diabetic individuals ranging in age from 25 to 90 years. Out of this 

collection, 40 images were selected at random: 33 exhibiting no signs of diabetic 

retinopathy and 7 showing early-stage, mild diabetic retinopathy. These visuals were 

obtained with a Canon CR5 non-mydriatic 3CCD camera featuring a 45-degree field of 

view (FOV). Each image was confirmed at a resolution of 768 ×  584 pixels, using an 8-

bit color model, with a circular field of view covering approximately 540 pixels. The 

photos were reaped around the FOV, and every photo was accompanied by a ‘mask’ 

delineating the FOV. 

The collection of 40 images was divided into a training set and a test set, each containing 

20 images. The training collection comprises a solitary manual segmentation of the 

vascular structure. In relation to the test set, two manual delineations are included: one 

acts as the standard, and the other facilitates a comparison between the computer-

generated segmentation and an independent human observer. Each retinal image also 

comes with a mask defining the region of interest. The human observers responsible for 

manual segmentations were trained by an experienced ophthalmologist and instructed to 

label pixels as vessels only if they were at least 70% confident in their assessment. 

The INSPIRE-AVR dataset is publicly available and consists of 40 annotated retinal 

images with significant vascular abnormalities, optic disc region, and artery-vein ratio. It 

is specifically used for classifying and grading various hypertension-related complications. 

The annotations were made by two specialists using a hybrid automated tool developed 

by the University of Wisconsin, Madison, WI, USA [32]. 

The HRF imaging dataset, created by a collaborative research group, is designed to aid in 

the formulation of clinical decision-support tools for diagnosing different retinal 

irregularities. It covers 45 retinal images from participants, with 15 from healthy 
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individuals, 15 from glaucomatous cases, and 15 from diabetic retinopathy (DR) cases [33]. 

These pictures are recorded at 3504 ×  2336 pixels resolution, 24 bits per pixel, utilizing 

a CANON CF-60 UVI camera with a 60-degree viewing angle. 

The STARE dataset comprises approximately 400 images, with 50 images depicting 

vascular patterns and 80 featuring Reference standards for optic nerve localization [34]. 

These pictures were taken at a resolution of 605 ×  700 pixels with a 24-bit color depth 

using a TOPCON TRV-50 fundus camera, offering a 35-degree field of view. 

 

7.  Methodology: 

The Active-BDCLF can measure the CDR and AVR of an ophthalmoscope image. In the 

beginning, the Active-BDCLF approach utilizes median filtering and Gaussian filtering. 

Subsequently, the subsections elaborate on the primary contributions, including Blind 

Deconvolution, CLAHE, and morphological operations. 

 

7.1 Median Filtering: 

The median filter is a statistical-based, non-linear approach to signal processing that 

replaces noisy values in a numerical image or sequence with the median of surrounding 

values. The outcome of applying the median filter can be determined using equation (4). 

𝐼𝑔(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝐼𝑓(𝑥 − 𝑖, 𝑦 − 𝑗), 𝑖, 𝑗 ∈ 𝑊2𝑑}     (4) 

Here 𝐼𝑓(𝑥, 𝑦), 𝐼𝑔(𝑥, 𝑦)is the input and the resulting images accordingly, 𝑊2𝑑is the 2D 

mask: the size of the mask is 𝑁 × 𝑁 where 𝑁 is commonly odd such as 3 × 3,5 × 5etc. 

The mathematical analysis of a non-linear median filter is comparatively complicated for 

randomized noise images. For the image where the average noise is zero in a normal 

distribution, the median filter noise variance is approximate. 

𝜎𝑚𝑖𝑑 =
1

4𝑛𝑓2(𝑛̄)
≈

𝜎𝑖
2

𝑛+
𝜋

2
−1

.
𝜋

2
       (5) 

Where 𝜎𝑖
2the power of noise, the variance, is 𝑁is the size of the mask of the filter, 𝑓2(𝑛̄) is 

the function representing noise density. The variance of the filtering can be determined 

using equation (6). 

𝜎0
2 =

1

𝑛
𝜎𝑖

2        (6) 

 

7.2 Gaussian Filtering: 

Gaussian filter, a linear class windowed filter, is typically used for image blurring or noise 

reduction. The unshaped masking that is the edge can be detected simply by subtracting 

two filtered results from each other. The Gaussian or normal distribution is a probability 

function that is referred to as a bell function due to its shape. The most common function 

formula is shown in equation (7). 
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𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒{−(𝑥2+𝑦2)/2𝜎2} = 𝐺(𝑥). 𝐺(𝑦)    (7) 

Equation (7) explains that the 2D Gaussian filter is separable. To obtain the Gaussian 

filtering of the 2D image, the following algorithm is employed. 

 Measure the weights of the 1D window, denoted as 𝐺𝑛
∕
. 

 Process each image line as a one-dimensional signal. 

 Process each column of the filtered image as a 1D signal. 

Two-dimensional filtering with window [2𝑛 + 1] × [2𝑛 + 1] is condensed to a few one-

dimensional filters with a window [2𝑛 + 1]. This signifies a substantial acceleration, 

particularly for large datasets resulting from the reduction in the number of operators, 

from O(N²) to O(N). 

 

7.3  Blind Deconvolution 

Blind Deconvolution is an approach in image analysis used to improve image quality by 

fixing image smudges caused by stemming from problems like lens misalignment or 

imaging system blur. This system assesses both the original image and the blur kernel at 

the same time, without any previous information about either. Usually, unsupervised 

Deconvolution modalities operate by repetitively reducing an objective function that 

calculates the discrepancy between the evaluated deblurred image and the actual blurred 

image. Unsupervised Deconvolution helps restore images affected by convolution—such 

as those with motion blur or caused by an image response function—back to their 

original quality. 

The first step in the blind deconvolution algorithm is to estimate the point-spread 

function (PSF) that causes the visual deterioration. A commonly employed technique for 

this is the Richardson-Lucy algorithm, which progressively refines the PSF by comparing 

the degraded image with an estimated version of the restored image. The Richardson-

Lucy algorithm is mathematically expressed in equation (8). 

𝑃𝑘+1(𝑥, 𝑦) =  𝑃𝑘(𝑥, 𝑦)
∑

𝐼(𝑥−𝑖,𝑦−𝑗)

(𝑃𝑘∗𝐼)(𝑥−𝑖,𝑦−𝑗)𝑖,𝑗

∑
𝑃𝑘(𝑥−𝑖,𝑦−𝑗)

(𝑃𝑘∗𝐼)(𝑥−𝑖,𝑦−𝑗)𝑖,𝑗

     (8) 

The appearance includes the projected PSF at repetition k signified as𝑃𝑘, the tainted 

image signified as I, and the convolution kernel symbolized by ∗. Primarily, the approach 

approximations the PSF as 𝑃0 and then constantly upgrades this approximation until 

merging. The dividend in appearance specifies recovering the degraded image with the 

estimated PSF, while the divisor specifies the smearing of the revalidated image by the 

PSF. The procedure apprises the PSF estimation by conveying pixel proximity weights in 

the tainted image based on their resemblance to the present PSF estimation. 
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Hessian Blind Deconvolution is an image rebuilding method that concurrently estimates 

the point-spread function (PSF) and reinstates the image. Below is a high-level process 

exactness the Hessian Blind Deconvolution process: 

Inputs: degraded image I, regularization parameter λ, maximum number of iterations T. 

Outputs: estimated PSF P and restored image R. 

1. Set the initial values of P and R by randomly assigning values. 

2. For t = 1 to T: 

a. Calculate the gradient and Hessian of the cost function concerning P and R. 

b. To obtain the updates ΔP and ΔR for P and R respectively, solve the linear 

system 𝐻𝛥𝑋 =  −𝛻𝑓. 

c. Update 𝑃 and 𝑅 using ∆𝑃 and ∆𝑅separately: 𝑃 ← 𝑃 + ∆𝑃 and 𝑅 ← 𝑅 + ∆𝑅. 

3. Return P and R as the estimated PSF and restored image, respectively. 

Typically, a mixture of an information fidelity period and a regulation period is used as 

the cost function 𝑓 in the above algorithm. The data fidelity term evaluates the degree of 

resemblance between the estimated image and the observed degraded image. In contrast, 

the regularization term discourages solutions that lack smoothness or do not meet other 

desired criteria. 

To approximate the point-spread function (PSF) and the restored image simultaneously 

using the Hessian Blind Deconvolution algorithm, the Hessian matrix is calculated as the 

2nd-order derivative of the cost function. Are iterative method, such as conjugate 

gradient, is then used to resolve the linear system HΔX = -∇f. The regularization 

parameter λ is used to balance the trade-off between data fidelity and regulation, while 

the iteration ceiling T sets the number of times the process will run before returning the 

estimated PSF and restored image. The improvement of the retinal dataset using 

proposed blind Deconvolution is illustrated in Fig. (6). 

 

7.4  Modified CLAHE 

Histogram equalization enhances the contrast ratio by redistributing the brightness levels 

across the frequency distribution. In this research, CLAHE, with specific adjustments, was 

applied to strengthen retinal grayscale images. Initially, the contrast of the grayscale 

image was enhanced using the formula outlined in the equation (9). 

𝐼𝑚(𝑥, 𝑦) =
𝑓𝑛(𝑥,𝑦)−𝑓𝑛(𝑚𝑖𝑛)

𝑓𝑛(𝑚𝑎𝑥)−𝑓𝑛(𝑚𝑖𝑛)
∗ 2𝑏𝑝𝑝      (9) 

Here 𝐼𝑚(𝑥, 𝑦)signifies the input data,𝑓𝑛(𝑥, 𝑦), 𝑓𝑛(𝑚𝑖𝑛), and 𝑓𝑛(𝑚𝑎𝑥)represent the pixel 

intensity values, and the least and greatest pixel intensities, respectively. The generated 

contrast-adjusted image is subsequently used as the input for CLAHE. In CLAHE, the 

source image is divided into non-overlapping contextual areas, or tiles, each with its local 

histogram. Before determining the total probability distribution, and amplifying contrast 



Scope 
Volume 14 Number 04 December 2024 

 

1949 www.scope-journal.com 

 

intensity, the histogram of each segment is truncated using a user-defined clipping 

threshold. The clipping threshold corresponds to a multiple of the average histogram 

peak within the surrounding region, as shown in equation (10). 

[𝐻𝑖𝑠𝑡 _ 𝐻 𝑖𝑔ℎ𝑡]𝐴𝑣𝑔 =
[𝑃𝑖𝑥𝑒𝑙(𝑡𝑜𝑡𝑎𝑙)]𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙

[𝑃𝑖𝑥𝑒𝑙(𝑡𝑜𝑡𝑎𝑙)]𝑔𝑟𝑎𝑦
     (10) 

For contextual scale say 𝑀 × 𝑁 and 𝑃be the number of histogram bins, the clip limit is 

assumed by the equation (11). 

𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡 =  {
1    𝑖𝑓    

𝛼𝑐𝑓𝑀𝑁

[𝑃𝑛]ℎ𝑖𝑠𝑡
< 1    𝑓𝑜𝑟   0 < 𝛼 ≤ 1

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
    (11) 

In this situation, 𝛼𝑐𝑓does the user define a contextual aspect. The precise elevation of the 

histogram in the contextual area 𝑛𝑘is being trimmed using the 𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡as specified in 

equation (12) where [𝐻𝑖𝑠𝑡]𝑘is the histogram of the specified area. 

[𝐻𝑖𝑠𝑡]𝑘 = {
𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡  𝑖𝑓 𝑛𝑘 = 𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡  𝑓𝑜𝑟 𝑘 = 1,2, … , [𝑃𝑛]ℎ𝑖𝑠𝑡 − 1
𝑛𝑘                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                          

  (12) 

Note that, 

∑ 𝑛𝑘 = 𝑀𝑁
[𝑃𝑛]𝐻𝑖𝑠𝑡−1
𝑘=0        (13) 

Total clipped pixels, 

𝐶𝑙𝑖𝑝𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑁 − ∑ [𝐻𝑖𝑠𝑡]𝑘
[𝑃𝑛]𝐻𝑖𝑠𝑡−1
𝑘=0      (14) 

By adjusting the histogram again, the area beneath the curve is reestablished to its 

original range, redistributing the clipped pixel values across the histogram. The 

reordering can be uniform; however, if not, the clipped pixel standards may be unevenly 

spread across histogram plots for pixel parameters below the clip limit. The pixels 

assigned to each histogram bin are determined as described in Equation (15). 

[𝑃𝑖𝑥𝑒𝑙]𝜇 =
𝐶𝑙𝑖𝑝𝑡𝑜𝑡𝑎𝑙

[𝑃𝑛]𝐻𝑖𝑠𝑡
=

𝑀𝑁−∑ [𝐻𝑖𝑠𝑡]𝑘
[𝑃𝑛]𝐻𝑖𝑠𝑡−1

𝑘=0

[𝑃𝑛]𝐻𝑖𝑠𝑡
     (15) 

The histogram, once clipped, is being re-scaled by applying equation (16). 

[𝐻𝑖𝑠𝑡]𝑘 = {
𝐶𝐿𝑖𝑝𝐿𝑖𝑚𝑖𝑡      𝑖𝑓    𝑛𝑘 + [𝑃𝑖𝑥𝑒𝑙]𝜇 ≥ 𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡

𝑛𝑘 + [𝑃𝑖𝑥𝑒𝑙]𝜇                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
   (17) 

 

7.5  Morphological Operations: 

Morphological filters are derived from various combinations of two primary operations—

dilation and erosion—along with a kernel known as a structural component, a bit mask 

characterized by precise contour and focal point. The structural component's shape 

determines the filter's impact on the image. Correspondingly, the retinal input image I, 

the structural component, SE, and the two elementary operators, erosion and dilation, is 

considered to be in equations (18) and (19). 

𝐼 ⊝ 𝑆𝐸 = {𝑥  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡    𝑆𝐸𝑥 ⊆ 𝐼}     (18) 
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𝐼 ⊕ 𝑆𝐸 = {𝑥   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡    𝑆𝐸𝑥
𝑠 ∩ 𝐼 ≠ 𝛷}     (19) 

Where 𝑆𝐸𝑥signifies the structural component𝑆𝐸 with the standard parameters located 

in 𝑥, while 𝑆𝐸𝑥
𝑠signifies the symmetric rotation of the structural component located in𝑥. 

Multiple merged morphological filters can then be distinctly characterized as a mix of the 

superior components. The basic complex operators are the 'open' and 'close' operators, 

marked as the erosion-dilation and dilation-erosion operations, respectively, in Equation 

(20) and Equation (21). 

𝐼 ⊚ 𝑆𝐸 = 𝐼 ⊖ 𝑆𝐸 ⊕ 𝑆𝐸       (20) 

𝐼 ⊙ 𝑆𝐸 = 𝐼 ⊕ 𝑆𝐸 ⊖ 𝑆𝐸       (21) 

The morphological Top-Hatoperation is very effective for individual point marks with all 

kinds of backgrounds, but it is less useful for tackling the image removal problem with 

the localized target, that is severely corrupted by noise. It is therefore necessary to supply 

an improved morphological Top-Hat filter. 

The structural component of the innovative Top-Hat filter is designed as follows: design 

an internal structural element and an external structural element as𝑆𝐸0(𝑚 × 𝑚), 

complying 𝑆𝐸𝑖 ⊂ 𝑆𝐸0. Define Edge Structuring Element as𝑆𝐸𝐸𝑑𝑔𝑒 = 𝑆𝐸0 − 𝑆𝐸𝑖. Thus, the 

improved Top-Hat operation can be demarcated as in equation (22). 

𝑇𝑜𝑝 _ 𝐻 𝑎𝑡𝐼,𝑆𝐸(𝑥) = [{𝐼 − (𝐼𝛩𝑆𝐸𝐸𝑑𝑔𝑒 ) ⊕ 𝑆𝐸𝑖}. 𝑥]    (22) 

 

 

7.6  Modified active contour 

This method leverages the joint capabilities of the gradient force snake model and the 

balloon model to detect blood vessels in fundus images effectively. An image-based 

contour model is a deformable spline curve guided by an internal force that resists 

deformation, allowing it to move toward objects in the image [59].This behavior is 

comparable to the way a snake moves through a hollow space. A snake typically avoids 

the center of a hollow space, instead moving along the walls and corners, constantly 

searching for openings. Upon finding a hole, it enters, explores, and retreats if the path is 

blocked. Similarly, when applied to retinal blood vessels, the snake follows the vessel 

boundaries, where the vessel walls act as the boundaries and the openings or cracks 

represent potential entry points. 

To ensure the snake adheres to the vessel boundaries without deforming them, its energy 

must remain lower than the internal energy of the vessels. The Gradient Vector Flow 

(GVF) technique limits the snake's energy [60]. The total energy function of the snake, 

calculated at a point𝑣𝑞 , where 𝑞  =  0, . . . , 𝑛  −  1 is the addition of its inner energy (𝐸𝑖𝑛𝑡), 

image energy (𝐸𝑖𝑚𝑔), and user-defined constraint force 𝐸𝐶𝑛𝑠 . This relationship is 

expressed through the equation (23): 
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𝐸𝑠
∗ = ∫ 𝐸𝑠(𝑣𝑞

′ )𝑑𝑞 = ∫ [𝐸𝑖𝑛𝑡(𝑣𝑞
′ ) + 𝐸𝑖𝑚𝑔(𝑣𝑞

′ ) + 𝐸𝑐𝑛𝑠(𝑣𝑞
′ )]𝑑𝑞

1

0

1

0
   (23) 

 

7.6.1 Internal energy of snake: 

The stored power of the snake is influenced by the fluidity of the curve 𝐸𝑠𝑚𝑡ℎ and 

continuity of contour𝐸𝑐𝑜𝑛. 

𝐸𝑖𝑛𝑡
𝑠𝑛𝑎𝑘𝑒 = 𝐸𝑐𝑜𝑛 + 𝐸𝑠𝑚𝑡ℎ        (24) 

Moreover the aforementioned equation can be articulated as in an expanded form as: 

𝐸𝑖𝑛𝑡
𝑠𝑛𝑎𝑘𝑒 =

1

2
(𝛼′(𝑞)|𝑣𝑞

′ |
2
) +

1

2
(𝛽′(𝑞)|𝑣𝑞

′ |
2
)  

=
1

2
(𝛼′(𝑞) ‖

𝜕𝑣′

𝜕𝑞
(𝑞)

̅̅ ̅̅ ̅̅ ̅̅
‖

2

+ 𝛽′(𝑞) ‖
𝜕2𝑣′

𝜕𝑞2
(𝑞)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
‖

2

)    (25) 

To regulate the sensitivity of the snake's length, user-controlled weights 𝛼′(𝑞) and 

𝛽′(𝑞)are introduced. 

 

7.6.2  Energy of Image: 

Consider an image, 𝐼𝑚𝑔(𝑚, 𝑛), with attributes like boundaries, closures, and lines. The 

vitality of the image can then be expressed as: 

𝐸̈𝑖𝑚𝑔 = 𝑊𝑙𝑖𝑛𝑒𝐸𝑙𝑖𝑛𝑒 + 𝑊𝑒𝑑𝑔𝑒𝐸𝑒𝑑𝑔𝑒 + 𝑊𝑐𝑙𝑠𝐸𝑐𝑙𝑠     (26) 

The proportions of attributes such as line, edge, and closure are displayed by 

𝑊𝑙𝑖𝑛𝑒 , 𝑊𝑒𝑑𝑔𝑒 , 𝑊𝑐𝑙𝑠  while their corresponding energies are denoted as 𝐸𝑙𝑖𝑛𝑒 , 𝐸𝑒𝑑𝑔𝑒 , 𝐸𝑐𝑙𝑠 . The 

various energies associated with these features are illustrated below. 

Line functional: This refers to the intensity of the image, which can be expressed using 

the following equation: 

𝐸𝑙𝑖𝑛𝑒 = 𝑋(𝑚, 𝑛)        (27) 

The scale and sign of 𝑊𝑙𝑖𝑛𝑒  dictate whether the snake gravitates towards dark or light 

vessels. In this study, a Gaussian filter is employed on the image to shield the snake from 

being disturbed by inaccessible noisy pixels. After applying the filter, the equation 

becomes: 

𝐸𝑙𝑖𝑛𝑒 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝐹𝑖𝑙𝑡𝑒𝑟(𝑋(𝑚, 𝑛))     (28) 

Edge function: This parameter is influenced by the gradient of the image 

𝐸𝑒𝑑𝑔𝑒 = −|𝛻𝑋(𝑚, 𝑛)|2       (29) 

A snake preliminary beyond the target item may sometimes congregate to a localized 

noise artifact or minimum. To tackle this problem, a distorting filter is first used and the 

level of blurriness is gradually reduced to refine the snake-fitting process. 

𝐸𝑒𝑑𝑔𝑒 = −|𝐺̈𝜎 × 𝛻𝑋(𝑚, 𝑛)|
2
      (30) 

The term 𝐺̈𝜎refers to a Gaussian blur where𝜎 represents the standard deviation (SD). The 

blurry filter can be useful either in the line or the edge function. Given the Marr–Hildreth 
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philosophy of edge detection, the least values of the function occur at the zero-crossings 

of 𝐺̈𝜎 × 𝛻𝑋(𝑚, 𝑛). 

Closure function: To sense the corners and endpoints of the line, the data is blurred using 

𝐺̈𝜎. Let 𝐽(𝑚, 𝑛) represent the image after smoothing. 

𝐽(𝑚, 𝑛) = 𝐺̈𝜎 × 𝑥(𝑚, 𝑛)       (31) 

Having gradient angle 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐽𝑛

𝐽𝑚
)        (32) 

The normalized vector pointing along the gradient is 

𝑛̂ = (𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃)        (33) 

A normalized vector 𝑛̂⊥perpendicular to the gradient path 

𝑛̂⊥ = (−𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃)       (34) 

The strength of the exit function is specified by 

𝐸𝑐𝑙𝑠 =
𝜕𝜃̂

𝜕𝑛̂⊥
=

𝜕2𝐽 𝜕2⁄ 𝑛̂⊥

𝜕𝐽 𝜕𝑛̂⁄
=

𝐽𝑛𝑛𝐽𝑚
2 −2𝐽𝑚𝑛𝐽𝑚𝐽𝑛+𝐽𝑚𝑚+𝐽𝑛

2

(𝐽𝑚
2 +𝐽𝑛

2)
3 2⁄     (35) 

 

7.6.3  Constrain Energy: 

The accumulated energy managed by the snake's movement, either towards or away from 

specific objects features typically specified by the user. Using the two energy formulas 

debated earlier, the snake's concluding energy equation can be derived from equation 

(36). To prevent the snake from penetrating the vessels and to ensure it follows the wall, 

the internal energy must be minimized accordingly. Several optimization techniques can 

be employed for this, such as the gradient descent method [54], discrete approximation 

methods, and others. 

𝐸̈𝑖𝑚𝑔 = 𝑊𝑙𝑖𝑛𝑒 . 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝐹𝑖𝑙𝑡𝑒𝑟(𝑋(𝑚, 𝑛)) + 𝑊𝑒𝑑𝑔𝑒 (−|𝐺̈𝜎 × 𝛻𝑋(𝑚, 𝑛)|
2
) +

𝑊𝑐𝑙𝑠
𝐽𝑛𝑛𝐽𝑚

2 −2𝐽𝑚𝑛𝐽𝑚𝐽𝑛+𝐽𝑚𝑚+𝐽𝑛
2

(𝐽𝑚
2 +𝐽𝑛

2)
3 2⁄   (36) 

𝐸̈𝐺𝑉𝐹 = ∬ 𝜇(𝑢𝑚
2̂ + 𝑢𝑛

2̂ + 𝑣𝑚
2̂ + v𝑛

2̂) + |𝛻𝑓|
2
|𝑉̂ − 𝛻𝑓|

2
𝜕𝑚 𝜕𝑛   (37) 

The gradient vector flow method is applied in this work to mitigate the external energy 

exerted on the vessels, which is related to the snake's internal energy. 

This GVF model [60] tackles issues such as: 

i. Difficulty in achieving convergence when starting from minimum. 

ii. Inadequate fusing at concave limits. 

The bi-dimensional energy of the GVF vector field is presented in equation (37), where 𝜇 

represents the tenable smoothing factor. By applying Euler's method to equation (37), the 

resulting equations are explained: 

𝜇𝛻2𝑢̂ − (𝑢̂ −
𝜕

𝜕𝑚
𝐹𝑒𝑥𝑡
̂ ) (

𝜕

𝜕𝑚
𝐹𝑒𝑥𝑡
̂ (𝑚, 𝑛)2 +

𝜕

𝜕𝑛
𝐹𝑒𝑥𝑡
̂ (𝑚, 𝑛)2) = 0   (38) 
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𝜇𝛻2𝑣 − (𝑣 −
𝜕

𝜕𝑛
𝐹𝑒𝑥𝑡
̂ ) (

𝜕

𝜕𝑚
𝐹𝑒𝑥𝑡
̂ (𝑚, 𝑛)2 +

𝜕

𝜕𝑛
𝐹𝑒𝑥𝑡
̂ (𝑚, 𝑛)2) = 0   (39) 

Solving through iteration with a steady-state value we have 

𝑢𝑖+1̂ = 𝑢𝑖̂ + 𝜇𝛻2𝑢𝑖̂ − (𝑢𝑖̂ −
𝜕

𝜕𝑚
𝐹𝑒𝑥𝑡
̂ ) (

𝜕

𝜕𝑚
𝐹̂𝑒𝑥𝑡(𝑚, 𝑛)2 +

𝜕

𝜕𝑛
𝐹̂𝑒𝑥𝑡(𝑚, 𝑛)2) (40) 

𝑣𝑖+1̂ = 𝑣𝑖̂ + 𝜇𝛻2𝑣𝑖̂ − (𝑣𝑖̂ −
𝜕

𝜕𝑛
𝐹𝑒𝑥𝑡
̂ ) (

𝜕

𝜕𝑚
𝐹̂𝑒𝑥𝑡(𝑚, 𝑛)2 +

𝜕

𝜕𝑛
𝐹̂𝑒𝑥𝑡(𝑚, 𝑛)2)  (41) 

This result can be substituted with the default external force. 

𝐹𝑒𝑥
∗ = 𝐹̂𝐺𝑉𝐹        (42) 

 

7.7 Pseudo code  

Below is a sample pseudo code that demonstrates how to perform a Top Hat 

Transformation on an image by utilizing the opening morphological operation. 

 

1. Algorithm for Blind Deconvoluted CLAHE: 

Input: Color retinal image 

Output: Colorenhanced image` 

Begin 

blurredImage = imread('blurred_image.jpg');   /* Read the blurred image*/ 

numIterations = 100; /*Number of iterations for the algorithm*/   /*Set parameters 

for blind deconvolution*/ 

lambda = 0.01; /* Regularization parameter*/ 

psfSize = [15, 15];  /* Size of the point spread function (PSF) */ 

psfInitial = fspecial('gaussian', psfSize, 2); /* Initial estimate of PSF */ 

estimatedImage = deconvblind(blurredImage, psfInitial, numIterations, lambda);  

/* Perform blind deconvolution */ 

ifsize(estimatedImage, 3) == 3  /* Convert estimatedImage to grayscale if 

needed */ 

img = rgb2gray(estimatedImage); 

end 

[row, column] = size(img);  /* Calculate the image size */ 

numBlocksRows = floor(rows / blockSize); /* Divide the image into non-

overlapping blocks */ 

numBlocksCols = floor(cols / blockSize); 

enhancedImg = zeros(rows, cols);  /* Initialize the output enhanced image */ 

/* Loop through each block */ 

fori = 1 :numBlocksRows 

for j = 1 :numBlocksCols 

/* Extract the current block */ 
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block = img((i-1)*blockSize+1:i*blockSize, (j-

1)*blockSize+1:j*blockSize);   

equalizedBlock = histeq(block);  /* Perform histogram 

equalization on the block */ 

/* Clip the block's histogram to the specified limit */ 

clippedBlock = min(max(equalizedBlock, 0), limit);   

/* Assign the enhanced block to the corresponding region in the 

output image */ 

enhancedImg((i-1)*blockSize+1:i*blockSize, (j-

1)*blockSize+1:j*blockSize) clippedBlock; 

end 

end 

/* Convert the output enhanced image to the original color space if needed */ 

If size(estimatedImage, 3) == 3 

enhancedImg = repmat(enhancedImg, [1, 1, 3]); 

end 

End 

 

2. Algorithm for Morphological operation and TOP-HAT transform 

Input: Enhanced gray image 

Output: Segmented binary image 

Begin 

Image(input) =Image(enhanced);   /* Scan the input image */ 

/* Employ morphological transformations to clean noise or smooth out the data.*/ 

Structuring Element = strel('disk', size);  /* Develop a circular structuring element 

with a specified size*/ 

Image(morph) = imopen(Image_gray, SE);  Execute opening function*/ 

Image(tophat) = imtophat(Image(morph), SE);  Implement TOP-HAT technique 

for image sharpening*/ 

threshold = graythresh(Image(tophat));  /* Implement thresholding to segment the 

target regions in the image*/ 

Image_binary = imbinarize(Image(tophat), threshold); 

/*If applicable, apply additional steps to the binary image to achieve more 

precision*/ 

/* (e.g., block holes, eliminate small objects) */ 

End 

3. Algorithm for Active Contour Model for Vessels Segmentation 
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Input: Image I, Initial contour 𝐶0, Smoothing parameter 𝜇, Number of iterations 𝑁 

Output: Final contour 𝐶 

Begin 

1. Initialize the starting contour of the snake𝐶0. 

2. For each iteration i from 1 to N: 

 a. Compute internal forces: 

  - Curvature force (based on second derivatives of the contour) 

  - Elastic force (based on first derivatives of the contour) 

 b. Compute external forces (based on the image gradient or desired edges): 

  - Image gradient or edge information (e.g., from a gradient map or energy 

function) 

 c. Combine internal and external forces to compute the new contour: 

  - Update contour points by minimizing the energy function: 

  𝐶𝑛𝑒𝑤 = 𝐶𝑜𝑙𝑑 + (𝐹𝑜𝑟𝑐𝑒𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐹𝑜𝑟𝑐𝑒𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙) 

d. Apply smoothing term μ to adjust the contour's smoothness (optional) 

e. If the change in contour position is below a threshold, exit the loop early 

3. Return the final contour C 

End 

 

7.  Result 

To assess the performance of the Active-BDCLF, a set of 40 fundus retinal images from 

the DRIVE database was selected. Of these, 33 images are from healthy patients with no 

clinical disorders, while 7 images are from patients with clinical abnormalities. For all 40 

images, the optic cups, optic discs, and vessel structures were segmented, and 

measurements for the optic cup diameter, optic disc diameter, and vessel width were 

obtained using the described automatic process. The Cup-Disc Ratio (CDR) and Artery-

Vein Ratio (AVR) were then calculated and compared with the manual data. Fig. 6 

illustrates the image enhancement achieved using the advanced CLAHE and Blind 

Deconvolution fusion techniques. 
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Fig. 6: Result shows the image enhancement techniques using CLAHE and Blind 

Deconvolution fusion: (a) Input RGB Fundus Image, (b) Enhancement by Blind 

Deconvolution, and (d) Enhancement by CLAHE after Blind Deconvolution. 

 

Table 2 presents a comparison of the quality measures between images that have been 

enhanced using CLAHE and the Active-BDCLF techniques. The Active-BDCLF achieves a 

higher PSNR, indicating superior image quality. Additionally, the proposed technique 

exhibits a lower MSE than CLAHE, leading to enhanced image fidelity, improved visual 

quality, and increased accuracy. Furthermore, the higher SSIM measure of the proposed 

technique compared to CLAHE ensures minimal distortion in the image structure. The 

results demonstrate that the mentioned technique surpasses CLAHE in terms of image 

enhancement. 

 

Table 2: Quality measures of PROPOSED and CLAHE 

Image 

MSE (𝑷𝒊𝒙𝒆𝒍𝟐) PSNR(𝒅𝑩) SSIM 

Active-

BDCLF  
CLAHE 

Active-

BDCLF  
CLAHE 

Active-

BDCLF  
CLAHE 

6(a1) 3151.30 4273.50 15.85 11.82 0.4428 0.3390 

6(a2) 5316.20 6322.50 16.63 10.12 0.2760 0.1752 

6(a3) 3992.91 5161.00 14.89 11.01 0.3379 0.2365 

6(a4) 1953.30 2737.30 17.43 13.75 0.6469 0.5456 

6(a5) 3162.4 4058.3 18.93 12.05 0.4582 0.3480 
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Fig. 7 represents the input RGB fundus images of the macula with segmented results of 

the optic disk and optic cup using the mentioned morphological techniques. 

 

 
 

Fig. 7: In this figure, (a) represents the input RGB fundus image, (b), (c), (d) and (e) 

represent the PROPOSED Enhancement, segmented Optic Disk, green components of 

the input image, and segmented Optic Cup respectively. 

 

Table 3 provides a comparison between the automatic and manual Cup-to-Disc Ratio 

(CDR) measurements. The automatic diameter measurements of the Optic Disc (OD) and 

Optic Cup (OC) in terms of pixels are performed by Active-BDCLF, while the manual 

diameters are obtained from the specified dataset. The CDR values are computed for both 

automatic and manual measurements by taking the ratio of their respective areas. The 

CDR errors are calculated by finding the difference between the manually and 

automatically determined CDR values. 

 

Table 3: Result shows the comparison of automatic CDR and manual CDR 

Sl. 

No. 

𝑫𝒊𝒂𝑶𝑫(𝑷𝒊𝒙𝒆𝒍) 𝑫𝒊𝒂𝑶𝑪(𝑷𝒊𝒙𝒆𝒍) CDR (𝑷𝒊𝒙𝒆𝒍𝟐) 
𝑬𝒓𝒓𝒐𝒓𝑪𝑫𝑹 

Auto Manual Auto Manual Auto Manual 

1 230 234 186 190 0.65 0.66 0.01 

2 226 224 194 190 0.74 0.72 -0.02 

3 218 223 184 186 0.71 0.70 -0.01 

4 226 232 178 184 0.62 0.63 0.01 

5 228 224 182 178 0.64 0.63 -0.01 

6 203 194 179 175 0.78 0.81 0.04 

7 216 230 175 178 0.66 0.60 -0.06 
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8 224 218 184 175 0.67 0.64 -0.03 

9 226 225 128 130 0.32 0.33 -0.01 

10 224 225 128 125 0.33 0.31 -0.02 

 

The average diameter error for both the optic disc and cup is approximately ±4%. Graphs 

depicting the correlation between the automatically detected diameter and manually 

measured diameter for the optic disc and cup can be observed in Fig. 8a and Fig. 8b 

respectively. 

 
Fig. 8a: This figure represents the comparison of the diameter of the Optic Disk 

segmented by using manual and automated processes. 

 
Fig. 8b: This figure represents the comparison of the diameter of the Optic Cup 

segmented by using manual and automated processes. 

 

The calculation of the CDR, an essential pointer in the detection of glaucoma and 

hypertension, involves measuring the optic cup and optic disc areas and determining 

their ratio. Normal patients typically have a CDR below 0.6, while patients with 
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abnormalities tend to have a CDR above 0.6. Fig. 9 depicts the error comparison between 

the automated CDR and manual CDR, serving as an evaluation of the approach's 

performance. This figure illustrates the distribution of errors across 50 sample images. 

From the results displayed in Fig. 9, it is evident that our Active-BDCLF method achieves 

a maximum error for the CDR of approximately less than ±4%. Additionally, the average 

mean error is intended to be almost6.11%,    demonstrating the higher accuracy of the 

CDR measurement. These findings indicate that Active-BDCLF outperforms other 

methods in this context. 

 

 
Fig. 9: The result shows the error in the Cup-Disk Ratio calculated automatically and 

manually. 

Figure 10 is offered to gauge the effectiveness of the proposed method. It compares 

glaucoma detection results from our proposed method with those from the manual 

method. A CDR value greater than 0.60 is used to identify a patient as a potentially 

abnormal case. It is found that the Active-BDCLF process has average sensitivity, 

specificity, and precision are 95.83%, 98.23%, and 96.49% 
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Fig. 10: This figure represents the dataset ranging from normal to possible risk factors [1]. 

The performance quality of various classifiers is determined by computing assessment 

metrics such as accuracy, specificity, and sensitivity, which are obtained using equations 

(23), (24), and (25). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (23) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
      (24) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (25) 

Where, 𝑇𝑁 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑇𝑁 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝐹𝑃 =  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 and 𝐹𝑁 =

 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔a𝑡𝑖𝑣𝑒. 

 

Table 4 presents the computation results for various metrics in the context of optical disc 

(OD) and optic cup (OC) analysis. Specifically, it covers sensitivity, specificity, 

overlapping error (OD and OC), balanced accuracy (OD and OC), and absolute error in 

cup-to-disc ratio (CDR), denoted as𝐴𝑂𝐷 , 𝐴𝑂𝐶, 𝐸𝑂𝐷 , 𝐸𝑂𝐶 , 𝛿𝐸, respectively. When focusing 

on OD segmentation, the Active BDCLF method accomplishes a sensitivity of 98.6%, 

specificity of 99.7%, and accuracy of 98.5%, accompanied by an absolute error of 2.8%. 

Similarly, for OC segmentation, the Active BDCLF method demonstrates a sensitivity of 

approximately 97.7%, specificity of 98.7%, accuracy of 96.8%, and a minimum error of 

2.8%. These results further establish the superiority of the PROPOSED technique over 

alternative methods. 
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Table 4: Statistical results of optic cup and optic disk 

Dataset 
Sensitivity Specificity Accuracy 

EOD EOC 𝜹𝑬 
OD OC OD OC OD OC 

CHASEDB1 0.962 0.953 0.997 0.983 0.975 0.968 0.103 0.103 0.049 

DRIVE 0.968 0.947 0.984 0.972 0.971 0.945 0.087 0.294 0.045 

HRF 0.986 0.977 0.984 0.987 0.985 0.962 0.074 0.241 0.028 

STARE 0.950 0.932 0.976 0.975 0.953 0.960 0.093 0.285 0.069 

 

In the preceding section, wavelet terms were applied for energy minimization. However, 

thin vessels can sometimes be removed when their orientations differ from those of the 

wavelet terms. Additionally, high intensity can be exhibited by non-vessel structures, 

such as pathological regions. In such scenarios, edges have struggled to be accurately 

detected by the active contour, often resulting in the misclassification of pathological 

regions as vessels. For example, as shown in Fig. 11, this issue is demonstrated in a portion 

of an image containing signs of pathology. Here, edges are not detected effectively by the 

active contour, leading to the misinterpretation of pathological regions as vessels. The 

ability of the active contour to update the evolution function in subsequent iterations can 

be further hindered by high-intensity regions. Edge detection errors are often caused by 

factors such as the presence of pathology, intensity variations within the image, or 

inconsistencies in the level set function that arise during the evolution process, 

potentially destabilizing it. 

 

 
 

Fig. 11: Image part from DRIVE dataset (a) the input image, (b) image with applied 

enhancement, (c) active contour result after 100 iterations. 

 

Therefore, a solution for modification called ‘reinitialize’ is used, but it is difficult to 

implement. ‘Reinitialize’ is not available in the active contour. A performance 

enhancement framework is used to prevent the evolutionary equilibrium from being 

destroyed, which strives to maintain the outline along the borders of the image. An 
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equation for modifying the evolution function is developed by the proposed algorithm as 

shown below: 

𝐸𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑥, 𝑦) = 𝛼1𝐸𝑛(𝑥, 𝑦) + 𝛼2𝐼𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑥, 𝑦)𝐸𝑛(𝑥, 𝑦) + 𝛼3𝐼𝑚𝑎𝑡𝑐ℎ(𝑥, 𝑦)𝐸𝑛(𝑥, 𝑦) 

Where 𝛼1 > 0, 𝛼2 > 0, 𝑎𝑛𝑑 𝛼3 > 0 are the coefficients that regulate the importance of 

each term. 𝐸𝑛(𝑥, 𝑦) can be achieved from the following equation. 

𝐸𝑛(𝑥, 𝑦) = 𝐸𝑛−1(𝑥, 𝑦) + ∆𝑡. 𝐹(𝜙, 𝑥, 𝑦) 

 

Where 𝐹(𝜙, 𝑥, 𝑦)is the potential operator, ∆𝑡 is the time phase, and 𝑛 is the iteration 

frequency. 𝐸0 is the initial curve and its obtained as 𝐸0(𝑥, 𝑦) = 𝜙0(𝑥, 𝑦)𝜙(0, 𝑥, 𝑦). 𝐼𝐻𝑒𝑠𝑠𝑖𝑎𝑛 

and 𝐼𝑚𝑎𝑡𝑐ℎ  in equation 6 are Binary representations derived from the Hessian matrix [61] 

and matched filter [62], respectively. A matched filter is considered a framework for 

vessels. It is typified by a second-dimensional Gaussian filter and is merged with the main 

picture. The convolution matrix is utilized in various iterations. The kernel completes 

twelve rotations in 15° stages and adapts to differently oriented vessels. The peak 

performance of the filter is determined per pixel, and a boundary criterion is next utilized 

to supply a binary vessel structure. In [61], a vessel enhancement filter utilizing the 

Hessian matrix components is discussed. The Hessian is a square array that holds the 

second-order partial derivatives. These frameworks can be molded by the intricacies of 

the image and three-second derivatives 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑥𝑥 , 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑦𝑦 , 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑥𝑦 as 𝐻(𝑓) =

[
𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑥𝑦 𝑓𝑦𝑦
]. Eigenvalues 𝛾1 and 𝛾2 are measured as 𝛾1 = 1 2⁄ (𝑓𝑥𝑥 + 𝑓𝑦𝑦 + 𝑡𝑒𝑚𝑝) and 𝛾2 =

1 2⁄ (𝑓𝑥𝑥 + 𝑓𝑦𝑦 − 𝑡𝑒𝑚𝑝). The 𝑡𝑒𝑚𝑝 function is achieved as 𝑡𝑒𝑚𝑝 = √((fxx − fyy)
2

+ 4fxy
2 ). 

The hessian filter is measured as: 

Hessian = {

0 if  γ2 > 0

exp (−
Rβ

2

2β2
) (1 − exp (−

s

2c2
)) otherwise

 

Where Rβ =
γ1

γ2
 and s = √γ1

2 + γ2
2. The Hessian matrix demonstrates qualities including 

noise removal, recognition of linear structures, and spot-like appearances. 

The final step involves the extraction of the vessel tree. Different strategies for sorting are 

available. In this approach, basic thres holding with a global threshold criterion obtained 

from Otsu’s method [63] was used. Two classes of pixels are present in the vessel 

segmentation: the pixel (i, j) is assigned to either the foreground or the background. The 

optimum threshold separating these classes is calculated by the Otsu algorithm, ensuring 

that their interclass variance is maximized [63]. The optic discs or bright lesions can 

increase false positives. Additionally, some thin vessels are fragmented. Therefore, post 

processing is required to restore fragmented edges and the eliminate of noise. 
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Morphological operators were used for this work. Noise pixels, which are not part of the 

vascular network, were eliminated by considering a threshold level based on the number 

of pixels, with regions having fewer pixels than the threshold being discarded. For linking 

edges, the bridge morphologies operator was used. The bridge operator ties pixels 

together that each has two nonzero neighboring pixels. The separation of the vessel of the 

overall image by using the proposed active contour technique is shown in Fig. 12. Fig. 12 

compares the manual and automatic results of the vessel's structure with respective input 

images. Compared to other pre-existing techniques, this method offers superior accuracy 

and faster processing time. The proposed automated method for segmenting vessels 

attains an average accuracy of 98.4% and a sensitivity of 97.6%. 

 

 
 

Fig. 12: Result shows the overall vessels segmentation using active contour by fusioning 

CLAHE and Blind Deconvolution: (a) Input RGB fundus image, (b) CLAHE and Blind 

Deconvolution fusion-based Enhancement, (c) Vessels after applying Active Contour 

function, (d) Active Contour based segmentation, (e) Manual Segmentation. 
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Fig. 13 explains the vessel mapping and artery-vein separation within the mentioned 

specific ring mask. The ring mask has been chosen for complexity due to the vessel’s 

branching. 

 
Fig. 13: Result shows the separation of arteries and veins within specified ring mask: (a) 

The Input RGB Image, (b) Red components of RGB image, (c) Segmented optic disk, (d) 

(3D-1.5D) mask, (e) Segmented Vessels (f) Segmented vessels within mask, (g) Separated 

veins, (h) Separated arteries, and (I) Segmented vessel’s labeling. 

 

The evaluation metrics, accuracy, and sensitivity are calculated for various classifiers to 

assess their qualitative performance. Table 5 presents the results of compilation the 

recital of the Active-BDCLF system with previously established methods. The table 

indicates that our proposed method outperforms the other techniques in retinal vessel 

segmentation, with a sensitivity ranging from 96.58% to 98.73%. Additionally, our Active-

BDCLF method surpasses the conventional methods in terms of accuracy, achieving an 

accuracy of 98.56%. 

 

Table 5: The results show the performance analysis of the proposed technique compared 

to the previously established methods. 

 

Algorithm Dataset Samples 
Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Li 

et al [54] 

DRIVE 40 75.69 98.16 95.27 

STARE 20 77.26 98.44 96.28 

CHASEBD1 28 75.07 97.93 95.81 

Srinidhi et 

al. [55] 

DRIVE 40 86.44 96.67 95.89 

STARE 20 83.25 97.46 95.02 
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CHASEBD1 28 82.97 96.63 94.74 

Yan 

et al. [56] 

DRIVE 40 76.31 98.20 95.38 

STARE 20 77.35 98.57 96.38 

CHASEBD1 28 76.40 98.06 96.07 

Jin et al. 

[57] 

DRIVE 40 79.63 98.00 95.66 

STARE 20 75.95 98.78 96.41 

CHASEBD1 28 81.55 97.52 96.37 

Yuchen 

Yuan et al. 

[58] 

DRIVE 40 80.46 98.05 95.81 

STARE 20 79.14 98.70 96.65 

CHASEBD1 28 84.02 98.01 96.73 

Active-

BDCLF 

HRF 45 96.58 97.65 98.56 

DRIVE 40 97.23 96.69 97.39 

CHASEDB1 28 98.41 95.31 98.14 

STARE 20 98.73 96.45 98.37 

 

To measure vessel width, the center line and the edges of the first vessels are computed 

from the segmented binary vessels using thinning and canny edge detection methods. 

These images are then mapped to locate the vessel width for a pixel position on the 

specific vessel center line, fig. 14. 

 

 
 

Fig.14: Results representing: (a) vessel’s skeleton, (b) vessel’s edge, (c) mapping of (a) and 

(b). 

To measure the vessel's width, a pixel from its centerline image is taken into account, 

subsequently, a mask is applied with the center pixel at its core. This mask aims to 

identify the edge pixels near the centerline pixel. Every pixel location within the mask is 

established by advancing the pixel position incrementally until the mask's size is reached 

and rotating each position from 0° to 180° relative to the center pixel simultaneously. To 

extend the angle of rotation, the step size is considered to be less than 180° divided by the 

mask length. 
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Fig. 15: This figure represents the process (a) finding the edge pixels and (b) the vessel’s 

width or minimum distance of pair pixels. 

 

Edge pixel intensity has been searched for each obtained position to determine whether it 

is border pixel or not. Once the pixel’s boundary is measured, its minor is identified by 

shifting the angle by 180 degrees and expanding the distance from one to the mask's 

maximum dimension [fig. 15]. Thus, a rotationally invariant mask is created, and all 

possible pixel pairings are picked to find the width or diameter of that cross-sectional 

area. 

x1 = x + r cos(θ)  (26) 

y1 = y + r sin(θ)  (27) 

Where,(x, y) is the vessel centerline pixel position, r = 1,2,3, . . . . . . . , (mask size/

2)and θ = 00, . . . . . . . . . ,1800. For any pixel position, if the binary parameter in the edge 

image is 1 then the pixel (x2, y2) in the opposite edge has been measured by considering 

θ = 1800 + θand by varyingr.  

After operating, a pair of pixels was discovered on the opposite edge. The minimum 

Euclidean distance, √(x1 − x2)2 + (y1 − y2)22 , was calculated from this pair of pixels to 

determine the width of the vessel's cross-section. Table 5 displays the resulting widths at 

20 distinct cross-sections of the vessel as shown in figure 15b. 

Measuring the width of the vessel is crucial because it helps determine the AVR, which 

indicates the severity of the disease based on the condition of the retinal image. Table 6 

provides a comparison of vessel widths obtained using the proposed automated 

technique and manual measurements. Two images from each dataset (HRF and DRIVE) 

were chosen for analysis.  
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Table 6: Result of Euclidean Width of 20 cross section of figure (14b) 

Cross 

Secti

ons 

Centerlin

e Pixel 

Position 

Width-Line  

End Point 

Vessel’

s 

Width 

(Eucli

dean 

Distan

ce) 

(𝐱, 𝐲) (𝐱𝟏, 𝐲𝟏) (𝐱𝟐, 𝐲𝟐) 

1 (17,27) 
(13,69

) 

(20,75

) 
9.22 

2 (45, 48) 
(41,42

) 

(50,53

) 
14.21 

3 (53,42) 
(48,37

) 

(58,4

6) 
13.45 

4 (58,38) 
(53,33

) 

(61,43

) 
12.80 

5 (41,166) 
(29,15

5) 

(55,17

7) 
34.06 

6 (50,157) 
(36,14

7) 

(62,17

0) 
34.71 

7 (65,142) 
(52,12

8) 

(79,15

2) 
36.12 

8 (74,131) 
(59,11

9) 

(88,14

3) 
37.64 

9 (69,125) 
(65,11

4) 

(92,13

7) 
35.47 

10 (108,80) 
(100,7

5) 

(116,8

7) 
20.00 

11 (116,70) 
(108,6

3) 

(123,7

8) 
21.21 

12 (125,63) 
(117,5

5) 

(133,7

0) 
21.93 

13 (136,52) 
(128,4

5) 

(144,6

0) 
21.93 

14 (124,95) 
(121,9

2) 

(129,9

8) 

10.00 
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15 (135,88) 
(133,8

5) 

(137,9

0) 

6.40 

16 (143,80) 
(140,7

6) 

(146,8

4) 

10.00 

17 (147,77) 
(143,7

4) 

(150,8

2) 
10.63 

18 (132,153) 
(135,1

50) 

(129,1

56) 
8.48 

19 (144,161) 
(147,1

58) 

(141,16

3) 
7.81 

20 (159,170) 
(162,1

68) 

(156,1

73) 
7.81 

 

Table 7 presents the automated measurements of retinal vessel width using Active-

BDCLF, along with manually collected data. It also illustrates the automatic and manual 

calculations of AVR, showcasing a marginal average error of less than ±4% as shown in 

Figure 17. A normal retinal image is characterized by an AVR range exceeding 6.6, 

whereas a range below this threshold indicates abnormalities related to glaucoma or 

hypertension [1]. Consequently, the Active-BDCLF technique proposed in this study is 

capable of effectively assessing retinal data abnormalities, rendering it highly favorable. 

 

Table 7: The outcome presents a comparison between the widths of the vessel acquired 

through the automated method proposed and those obtained through manual 

measurements. 

Sl. 

No

. 

𝐖𝐢𝐝𝐭𝐡𝐀𝐮𝐭𝐨𝐦𝐚𝐭𝐢𝐜 𝐖𝐢𝐝𝐭𝐡𝐌𝐚𝐧𝐮𝐚𝐥  AVR 
ERR

OR 
Arte

ry 

Ve

in 

Arte

ry 

Ve

in 

Aut

o 

Man

ual 

1 11.75 
21.

40 

12.2

0 

23.

40 

0.54

9 
0.521 

-

0.02

7 

2 
18.0

2 

27.

31 

17.4

6 

26.

57 

0.65

9 
0.657 

-

0.00

2 

3 
17.6

9 

38.

83 

17.8

5 

40.

02 

0.45

5 
0.446 

-

0.00

9 

4 14.8 28. 15.6 31.1 0.525 0.502 -
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7 28 5 4 0.02

3 

5 3.16 
4.4

7 
6.41 

8.9

4 

0.70

6 
0.717 

0.01

0 

6 2.76 
3.6

1 
2.81 

3.6

0 

0.76

4 
0.780 

0.01

6 

7 
10.5

0 

15.

80 
9.4 

13.

60 

0.66

4 
0.691 

0.02

6 

8 
10.6

3 

13.

45 

10.7

6 

13.

41 

0.79

0 
0.802 

0.01

2 

9 6.83 
10.

82 
5.32 

7.8

1 
0.631 0.681 

0.05

0 

10 2.03 
6.0

8 
2.06 

6.3

2 
0.333 0.325 

-

0.00

7 

 

Fig. 16 displays the assessment result of automatic and physically calculated AVR and 

error of the projected technique whereas fig. 17 represents the percentage of error in 

detection of AVR. 

 
Fig.16: Results shows the comparison of automatic measured AVR with manual AVR. 
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Fig 17: Result shows the percentage of error in the detection of automatic AVR 

 

The presentation evaluation of a binary classifier system was conducted using the receiver 

operating characteristic (ROC) curve displayed in Fig. 18. This curve portrays the 

association between the true positive rate (sensitivity) and the false positive rate (1 - 

specificity) with varying classification thresholds. By visualizing the classifier's 

performance at various thresholds, the ROC curve enables the assessment of its ability to 

distinguish between positive and negative instances. Additionally, it facilitates the 

comparison of different classifiers or models. In this particular ROC curve, the dataset 

from the drive was utilized to analyze the performance of five distinct techniques, 

including the proposed Active-BDCLF method. Results indicate that the PROPOSED 

method outperforms existing techniques in terms of ROC, as evidenced by its faster and 

more stable curve. A stable ROC curve signifies that the classifier's performance remains 

consistent and reliable across diverse datasets or conditions, thereby instilling confidence 

in its generalization capability to new and unseen data. Furthermore, these findings 

establish the superiority of the proposed Active-BDCLF method over existing approaches. 
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Fig.18: The average ROC plot for 40 DRIVE data is shown using five different methods. 

The AVR and CDR values obtained through the Active-BDCLF method, as shown in Table 

8, are applied to measure the condition of the patient in terms of diabetes, glaucoma, and 

overall health. To accomplish this, a selection of retinal images from the HRF dataset, 

encompassing diabetic, glaucoma, and healthy cases, were randomly chosen. The results 

obtained were promising, revealing an average CDR of 0.68 for diabetic patients, 0.62 for 

glaucoma patients, and 0.41 for healthy individuals. Similarly, the average AVR values 

were found to be 0.52 for diabetics, 0.43 for glaucoma patients, and 0.75 for those without 

any eye-related conditions. 

 

Table 8: Result shows the AVR and CDR for patient’s different health conditions. 

HRF 

Image 

Patent’s 

Condition 

OD 

(Avg.) 

OC 

(Avg.) 

WArtery 

(Avg.) 

WVein 

(Avg) 
CDR AVR 

01_dr 

Diabetic 

372 294 13.15 32.37 0.63 0.41 

02_dr 375 306 12.32 22.62 0.67 0.54 

03_dr 327 281 14.05 23.18 0.74 0.61 

04_dr 336 268 13.19 26.39 0.64 0.50 

01_h 

Healthy 

410 248 17.39 20.81 0.37 0.84 

02_h 408 267 16.18 23.41 0.43 0.69 

03_h 396 237 17.02 22.11 0.36 0.77 

07_h 416 278 17.36 24.79 0.45 0.70 

01_g 
Glaucoma 

338 261 12.27 26.58 0.60 0.46 

08_g 367 292 11.43 28.91 0.63 0.39 

 

8. Conclusion: 

An automated approach has been proposed to evaluate two specific target features in the 

human eye, namely CDR and AVR, to detect abnormalities associated with conditions like 

diabetes, glaucoma, and hypertension. The results obtained so far are promising, 

demonstrating high levels of accuracy: 98.6% for OD, 97.8% for OC, and 98.55% for AVR, 

with only minor errors. This technique surpasses other established methods in terms of 

speed due to its fully automated nature, and it requires minimal expertise for 

implementation, making it accessible to individuals with any level of medical knowledge. 

The positive outcomes achieved through this method allow for the measurement of 

various parameters (such as nicking, narrowing, and branching coefficients), which can 

assist in diagnosing different diseases. 

A series of clinical images acquired from publicly available datasets will be quantitatively 

evaluated in the next study to find the retinopathy of prematurity (ROP).  
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