The Ecosystem of the Gomti River in Lucknow is Influenced by Water Chemistry and Soil Contamination: A Review

Dr. Ritu Jain

Assistant Professor, Department of Geography, National P. G. College, Lucknow, Uttar Pradesh, India ORCID: 0009-0007-3943-5908

Corresponding Author: Ritu Jain

Abstract: There is a significant amount of religious importance for Hindus, and the Gomti River, which is a holy watercourse in Lucknow, Uttar Pradesh, is a key pilgrimage destination. However, in recent years, the ecology of the river has been badly harmed by activities that are caused by humans. This has resulted in serious issues such as the pollution of water, the erosion of soil, and the general deterioration of the environment. As a result of contamination caused by untreated sewage, industrial waste, and chemical effluents, the waters of the river have become contaminated, which has upset the delicate balance that exists within its ecosystem. As a result of the erosion of riverbanks, the situation is made even worse, which has a negative impact on the local populations who are reliant on the river for water, agriculture, and fishing. There are now efforts being made to restore the river, but in order to guarantee that it will be preserved, continuous community work is required.

Keywords: water pollution, soil erosion, ecosystem degradation, pilgrimage

Introduction 1.0

There is a considerable deal of religious, cultural, and historical importance associated with the Gomti River, which flows through the centre of Uttar Pradesh, namely through the city of Lucknow. The Gomti River, which is revered by Hindus as one of the holiest rivers of India, has been a symbol of spiritual purity and a centre for religious rites for millennia. A large number of pilgrims from all over the nation go to its banks in order to take part in the practice of holy bathing, to pray, and to seek favours.[1-5]

A special position in Hindu mythology is reserved for the Gomti River, which is connected to the goddess Ganga, who is revered as the one who brings redemption to those who seek it. In the narrative, the river is said to have sprung from the foot of the wise man Vashistha, and it subsequently became an essential source of spiritual purity. The banks of the river are home to a significant number of holy ghats, which are stairs that go down to the river, as well as several prominent temples, making it a centre of religious activity. Devotees conduct the Gomti Aarti, which is a ceremonial worship of the river, with devotion. Additionally, the river provides as a background for a variety of cultural celebrations that take place throughout the year.[6-10] As a result of its unprecedented historical and religious importance in the area, the preservation of this site is a vital responsibility for the communities that are located there.

Nevertheless, during the course of the last several decades, the river has been confronted with significant ecological issues, mostly as a result of activities carried out by humans. The pollutants in the water, the erosion of the soil, and the destruction of the environment are not only hurting the beauty and purity of this precious river, but they are also impacting the lives of millions of people who rely on it for their nutrition and for their spiritual consolation.[11-12]

Within the Indian state of Uttar Pradesh, the Gomti River serves as an important supply of water for the city of Lucknow. According to Hinduism, the river is regarded as a holy river, and it is thought that taking a plunge in the river during the Kumbh Mela event may cleanse one of their sins. On the other hand, the river is in danger of being severely harmed as a result of a variety of human activities, including as urbanization, industrialization, and agricultural practices, which are contaminating the water of the river.[13-14]

One of the most important sources of contribution for the generation of energy and power is water, regardless of whether we are talking about the age of hydropower, the age of nuclear energy, or the age of atomic power. In light of this, the enhancement of water resources plays an important role in the energy sector, particularly in the hydropower era, which does not involve the simultaneous utilization of water and does not include any natural pollution.

Explosive mining waste, agricultural runoff, sewage, and excavating are all examples of common sources of water pollution. The manner in which contaminants are introduced into the atmosphere is used to categories the sources of contamination. Crude sewage draining from a line straightforwardly into a stream is an instance of a point-source water pollution. It is not possible to trace contaminations that originate from non-point sources to a specific and unique source. It is necessary to determine the extent of these contaminations throughout a whole region. Spillover from terraces, parking garages, ranches, mines, construction destinations, and other different types of locations are examples of non-point sources of pollution. [15-17]

Toxins in water are defined as any material that alters the natural characteristics of water. Water pollution is a challenging problem to deal with. The linking piece on the hydrosphere makes reference to the fact that just a small portion of the water on Earth is considered to be new water. We want to drink water like this so that we can maintain our endurance. There is a decrease in the amount of freshwater that may be used as the level of pollution in freshwater increases. [18-21]

The availability of river life forms and their ability to fill a stream, supply, or waterway may be significantly impacted by the quality of the water. Among the elements that play a key role in living life forms, water is very perhaps the most important one. The contribution of matter that contains minerals has an effect on the scientific study of water. The nature of water is completely altered as a result of their solvency and the

substance balance that prevails for the fluid arrangement. Because it is endowed with components that are capable of self-cleaning and weakening, each body of water is capable of adjusting to precise levels of pollution without experiencing any significant adverse effects.[22-24]

Two important elements that have a considerable impact on the ecology of the Gomti River are the chemistry of the water and the pollution of the soil. The flora and fauna of the river are profoundly affected by these elements, and if the issue is not handled in a timely manner, it may eventually result in the extinction of these species. [25]

Discussions 2.0

Water Chemistry of Gomti River 2.1

The chemistry of the water is a crucial component of the ecology of the Gomti River, and any change to this state may have substantial implications. All of these changes could have a significant impact on the ecosystem. The chemical composition of water is influenced not only by the environment that surrounds it but also by the sources of pollution that surround it. The effluents that are discharged into the river by industries that are located in close proximity to the river have not been cleaned out. These effluents contain a wide range of potentially harmful substances, such as pesticides, heavy metals, and fertilisers. Fish and other aquatic organisms have the ability to perish as a consequence of the presence of these compounds in the water, which has the potential to cause their deaths.

In addition to this, the polluted water has the potential to have an effect on the food chain, which could ultimately have an effect on the health of humans. accumulation of chemicals in water may lead to bioaccumulation, which is the process by which harmful chemicals accumulate in the bodies of animals, ultimately leading to the death of the animals or the development of medical disorders. Bioaccumulation can be caused by the accumulation of chemicals in water. When there are many different chemical components in a river, the water chemistry of the river is determined by the chemical components that are present in the river. The Gomti River gets the majority of its water supply from precipitation, and the water chemistry connected with the river is influenced by a wide variety of natural and human effects.

The largest contributor to the river's water supply is precipitation. The principal factors that have an effect on the water chemistry of the Gomti River are the effluents that are produced by industrial activities, the runoff that is produced by agricultural land, and the sewage that is produced by municipal systems. It is possible for the quality of the water to have a considerable impact on the capacity of river life forms to continue existing and to fill up a stream, supply, or waterway. This is something that ought to be carefully considered. There is a strong possibility that water is the most essential component that plays a significant part in the ways in which live life forms perform their functions. Because of the contribution that minerals provide to the study of water, materials that include minerals have an impact on the scientific investigation of water.

The features of water are entirely transformed as a result of their capacity to solve issues

and the material equilibrium that they attain in the fluid arrangement. The presence of components that are capable of self-cleaning and weakening allows each body of water to handle specific amounts of pollution without incurring substantial adverse impacts. This is because these components are able to self-clean and weaken with time. In the bodies of water, there exist particles of both natural and inorganic materials that have been broken down into smaller pieces. The anions that are responsible for the formation of inorganic solids consist of compounds such as carbonates, chlorides, sulphate, nitrate, and other substances that are analogous to these.

To a certain extent, the composition of anions such as chloride and the grouping of elements such as magnesium, sodium, and potassium are subject to modest fluctuations within the bounds of a body of freshwater. It is the list of efficiency that plays a significant part in the digestion of various organic entities that are engaged in amphibian digestion. The ionic synthesis of water plays a critical function in the digestion of these organic entities. Microbial digestion has an impact on the processes that result in the accumulation of calcium, inorganic carbon, and sulphate in the central region of the solution. There is a substantial amount of rubbish that is either not treated at all or just partially treated that is dumped into the river as a result of industrial effluents from nearby businesses such as chemical, paper, and textile firms.

This waste is discharged into the river. These effluents contain heavier metals, dyes, and other dangerous compounds, all of which contribute to the contamination of the river water when they are discharged into the river. Not only does this pollution have an impact on the biodiversity of the river's aquatic ecology, but it also presents a significant risk to the health of people. Agricultural runoff from farms in the surrounding area is another significant contributor to the contamination of the water in the Gomti River.

The excessive use of fertilisers and pesticides in agricultural production is the cause of the contamination of river water with nitrates, phosphates, and other chemicals. This contamination is a consequence of the use of these chemicals. It is not only the case that this has an effect on the quality of the water in the river, but it also makes a contribution to the environmental deterioration that is occurring in the body of water. The water in the Gomti River is also contaminated by city sewage, which is a key component that leads to the contamination of the water in the river. The city of Ujjain is not only located on the banks of the river, but it is also responsible for the discharge of a substantial amount of sewage that has not been cleaned into the river. This particular sewage contains a high concentration of organic matter, nutrients, and pathogens, all of which contribute to the deterioration of the water quality in the river and pose a serious threat to the health of humans.

Soil Contamination of Gomti River 2.2

Another significant problem that adversely affects the ecosystem of the Gomti River is the contamination of the soil. Inappropriate disposal of household trash, improper disposal of industrial waste, and the use of fertilisers and pesticides in agricultural activities are some of the causes that lead to the pollution of the soil. Other factors include the use of pesticides and fertilisers. Once they reach the river, these pollutants poison the water since they have been absorbed by the land and eventually make their way to the river. In addition, the polluted soil has an influence on the plants that are growing in close proximity to the river, which may lead to the die-off or mutation of the plants. There is a tremendous amount of importance placed on the plants in order to maintain the biological equilibrium of the river, and the loss of these plants might potentially have profoundly detrimental effects. The contamination of the soil may also have an impact on the groundwater, which is a crucial source of drinking water for the people who live in close proximity to our river. This is a possibility that should not be discounted.

The soil in the region that serves as the catchment area for the Gomti River is extremely vulnerable to pollution as a result of the widespread range of activities that are generated by human beings. The principal factors that contribute to the contamination of the soil in the basin of the Gomti River are the activities of industrial processes, agricultural practices, and urbanisation.

Industrial processes, such as construction and manufacturing, are responsible for the release of heavy metals, poisonous chemicals, and other hazardous wastes into the environment. These wastes are released into the environment. The soil may become contaminated as a result of these wastes having the capacity to do so. These kinds of contaminants have the ability to enter the food chain, which might pose a substantial threat to the ecosystem of the river as well as to the health of the people who live there.

Agricultural practices are one of the potential contributors to soil pollution in the basin of the Gomti River by contributing to the pollution of the soil. A significant amount of fertilisers, insecticides, and other chemicals are utilised in these activities to an excessive degree. Furthermore, these chemicals have the ability to seep into the earth, contaminate both the groundwater and the surface water, and ultimately contribute to the ruin of the river's ecosystem by their presence.

Furthermore, urbanisation is a substantial contributor to the pollution of the soil in the basin of the Gomti River, which is a river in Northern India. As a consequence of the enormous urbanisation that has taken place in a number of places in the region of Lucknow, substantial quantities of solid trash have been produced. This garbage is typically disposed of in open locations or in landfills rather than being buried. The river's ecology will ultimately become more deteriorated as a consequence of these wastes, which have the potential to damage the groundwater and soil nearby.

Environmental Challenges 2.3

In spite of the fact that it holds a significant spiritual importance, the Gomti River is currently facing a significant number of environmental challenges. Contamination of water is one of the most pressing problems that needs to be addressed as soon as possible. A further factor that has contributed to the problem is the fact that the river's water quality has worsened as a consequence of the increasing urbanisation and population in the region surrounding Lucknow. The discharge of sewage that has not

been treated, trash from industrial processes, and chemical effluents have all contributed to the river's excessive levels of pollution. Also contributing to the pollution are chemical effluents. The river, which was formerly unspoiled and unpolluted, is now contaminated with extremely high concentrations of hazardous chemicals, which renders the water unsafe for ingestion by humans as well as by aquatic life.

The contamination of the water chemistry of the Gomti River is causing an imbalance in the ecosystem of the river, which is causing the river to experience an ecological imbalance. The accumulation of toxic chemicals and heavy metals in the water is having a detrimental effect on the biodiversity of aquatic environments, particularly fish and other aquatic organisms. Mercury, arsenic, and lead are a few examples of the toxins that fall within this category. There have been observations made that dangerous algae has been growing in certain areas of the river, which has further contributed to the ecological imbalance that has been taking place. The effects of these adjustments are not only detrimental to the spiritual significance of the river, but they are also detrimental to the biodiversity that used to thrive in its waters. This is because the river's waters used to be extremely rich in species.

Besides the contamination of the water, the Gomti River is also facing the challenge of soil erosion. This is in addition to the water pollution. As a result of activities such as excessive sand mining, deforestation, and building operations that have affected the natural path of the river, the riverbanks have been susceptible to a greater amount of erosion. This issue has been brought about by the river's natural path being disturbed. It is detrimental to the living conditions of communities that are dependent on agriculture and fisheries because the loss of rich soil that occurs as a result of this erosion has a negative impact on the living conditions of these groups. In addition to this, it causes the regular flow of the river to be interrupted, which ultimately results in the river being more prone to flooding during the monsoon season.

Impact on the Ecosystem of Gomti River 2.4

As a consequence of the chemistry of the water and the contamination of the soil in the Gomti River, the ecology of the river has been dramatically impacted as a result of these two factors." As a result of water pollution, the aquatic flora and animals in the river are deteriorating, which is the most significant effect that water pollution has on the ecosystem of the river. All of the oxygen levels, pH levels, and temperature levels of the water are affected as a consequence of the presence of toxins in the water. This ultimately leads to the death of fish and other animals that dwell in the water.

The chemical composition of the water in the Gomti River has a profound impact on the ecology that the river provides. The river water contains a considerable quantity of pollutants, such as organic waste, heavy metals, and pesticides. A significant number of these pollutants are present. These pollutants are harmful to the aquatic life that resides in the river and causes them to suffer. It is possible that the presence of these pollutants may lead to a reduction in the amount of oxygen that is present in the water. This would

make it significantly more difficult for fish and other aquatic animals to flourish. Additionally, the high concentration of pollutants in the water may have an effect on the quality of the soil and the crops that are planted in close proximity to the riverbanks. This is because the water contains a lot of contaminants.

The contamination of the soil is yet another serious issue that is having an effect on the ecosystem of the Gomti River. Over the course of time, trash from industrial processes, chemicals used in agriculture, and other pollutants have made their way into the soil of the river, which has led to the soil becoming contaminated with these substances. The animals and plants that live in this area are experiencing horrible effects as a direct result of the pollution that is occurring. In the event that the soil is contaminated, it is possible that the fertility of the soil will drop, which in turn may result in a reduction in the amount of agricultural produce that is harvested. In addition to this, it has the ability to have an impact on the microorganisms that are present in the soil, which are particularly important for the maintenance of the soil's health.

The ecosystem of the Gomti River will be significantly altered as a result of these adjustments, which will have far-reaching consequences. There are many different kinds of animals that call the river's environment their home. Some of these animals include fish, insects, birds, and mammals, among all other kinds of animals. The biodiversity of the region has been impacted by changes in the chemistry of the water and pollution of the soil, which has led to a reduction in the number of species and a disturbance in the food chain. These changes have had an impact on the biodiversity of the area.

Furthermore, the pollution of the water and soil that originates from the Gomti River has a direct impact on the health of persons of the population. People who live in the area are at risk of being exposed to toxic pollutants, which can lead to a range of health problems, including issues with the respiratory system, irritation of the skin, and even cancer. These health problems can be caused through exposure to toxic pollutants.

2.5 Impact on Local Communities and Ecosystem

These environmental issues have ramifications that extend beyond the river itself and have an effect on the municipalities that are located in close proximity to the river. Many people who live along the banks of the Gomti rely on the river for a variety of purposes, including fishing, irrigation, and drinking water. This is because the river provides them with all of these things. It is becoming increasingly difficult to determine whether or not these supplies can be relied upon as the quality of the water continues to deteriorate. The fact that people are compelled to rely on contaminated water for their day-to-day activities is another reason for concern for the population, which is already confronted with a growing danger of diseases that are spread through water. Agriculture, which is based on the fertility of the riverbanks, is another business that has been badly impacted by the situation. Therefore, this is due to the fact that the soil continues to deteriorate and lose its nutrients.

In addition, the river's ecosystem has been deteriorated, which has led to a decrease in the number of species that can be found in the natural environment. The river used to

be home to a wide variety of flora and fauna, which included a wide variety of fish, plants, and birds. In the past, the river was once home to a diverse and rich array of creatures. Nevertheless, as a consequence of pollution and the deterioration of ecosystems, a significant number of species have either become endangered or completely disappeared from the river. This is the case for a huge number of species.

Steps toward Restoration of the Gomti River: A Sacred Watercourse in Crisis 2.6 **Conclusion** 3.0

The ecosystem of the Gomti River is being significantly impacted by the chemistry of the water and the degradation of the soil, and this situation requires immediate action. The protection of the region's flora and fauna, the preservation of the ecosystem's equilibrium, and the protection of the health and well-being of the people who live in the area are all extremely important reasons why it is essential to address these concerns and take the right actions. The government, those who set policy, and the communities who live along the river all need to collaborate in order to reduce the harm and restore the river's health. Because the Gomti River is such an important resource for the people of Lucknow, Uttar Pradesh, it is imperative that adequate steps be taken to safeguard it from the contamination of the soil and the water.

In order to ensure that the river will continue to be sustainable for future generations, it is everyone's duty to strive towards protecting the ecological balance of the river.It is necessary to have a comprehensive strategy that includes the active engagement of the government, non-governmental organisations, and local communities in order to reduce the negative effects that water pollution has on the environment of the Gomti River. The approach ought to incorporate components such as the treatment of sewage in an appropriate manner, the disposal of industrial waste in an appropriate manner, and the promotion of organic farming techniques. The implementation of such safeguards has the potential to greatly enhance the water quality of the Gomti River and guarantee the continued existence of the aquatic environment that it contains.

Data Availability Statement The authors confirm that the data that supports the findings of this study are available within the article. Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.

Conflict Of Interest

The author declares no potential conflicts of interest concerning this article's research, authorship, and/or publication.

Ethics

There are no ethical issues with the publication of this manuscript.

Reference

- 1. Dalal P. 2015. Impact of Water Quality on Crop Production in Ujjain District. African Journal of Agricultural Sciences and Technology, 3(9), 392-397
- 2. Umakant Butkar, "Synthesis of some (1-(2,5- dichlorophenyl) -1H-pyrazol-4yl (2hydroxyphenyl) methanone and 2-(1-(2,5- dichlrophenyl)-1H-pyrazol-4yl) benzo (d) oxazole" International Journal of Informative & Futuristic Research (IJIFR), Vol 1, Issue 12, 2014
- 3. Dalal P. 2013. Summer Water Crises of Ujjain City, Journal of Chemical, Biological and Physical Sciences 3(4) 2882-2884
- 4. Dalal P. 2013. Removal of Arsenic from Sand Filtration. International Journal of Advance Research 1(5) 379-380
- 5. Dalal P. 2013. Physico-Chemical characteristics of ground water near holy river Gomti. International Journal of Plant Animal and Environmental Sciences. 3(3) 14-19
- 6. Dalal P. 2013. Drinking Water Quality of Ujjain District. International Journal of Plant Animal and Environmental Sciences 3(2) 14-19
- 7. Dalal P. 2010. Water Quality Index of Gambhir Dam, Our Earth 6(1), 8-13.
- 8. Dalal P. 2010 Studies on Physico-Chemical parameters and development of an environment management module for purification of Holy river Gomti in Ujjain. Journal on Indian Water Works Association 42 (3) 186-194
- 9. Dalal P. 2009. Gomti river conservation by sewage treatment. Pollution Research Journal Environmedia 28(4)
- 10. Umakant Butkar, "A Fuzzy Filtering Rule Based Median Filter For Artifacts Reduction of Compressed Images", IJIFR, Vol 1, Issue 11, 2014
- 11. Malviya Niharika, Deo Sujata and Inam Farhin. 2011. Determination of Water Quality Index for drinking and agricultural purpose. International journal of Basic and Applied Chemical Sciences (JCS). 1(1): 79-88.
- 12. APHA. 2012. Standard Methods for the Examination of Water and Waste Waters, 22nd Edition, American Public Health Association, Washington, DC.
- 13. Bănăduc, Doru, Vladica Simić, Kevin Cianfaglione, Sophia Barinova, Sergey Afanasyev, Ahmet Öktener, Grant McCall, Snežana Simić, and Angela Curtean-Bănăduc. "Freshwater as a sustainable resource and generator of secondary resources in the 21st century: Stressors, threats, risks, management and protection strategies, and conservation approaches." International Journal of Environmental Research and Public Health 19, no. 24 (2022): 16570.
- 14. Mishra, Rakesh Kumar. "Fresh water availability and its global challenge." British Journal of Multidisciplinary and Advanced Studies 4, no. 3 (2023): 1-78.
- 15. Kumar, Rajesh, Chandresh Kumar Singh, Shailly Misra, Brijendra Pratap Singh, Atul Kumar Bhardwaj, and K. K. Chandra. "Water biodiversity: Ecosystem services, threats, and conservation." In Biodiversity and Bioeconomy, pp. 347-380. Elsevier, 2024.

- 16. Zahoor, Iqra, and Ayesha Mushtaq. "Water pollution from agricultural activities: A critical global review." Int. J. Chem. Biochem. Sci 23, no. 1 (2023): 164-176.
- 17. Kolawole, Ayotunde Samuel, and Adams Ovielyiola. "Environmental pollution: threats, impact on biodiversity, and protection strategies." In Sustainable utilization and conservation of Africa's biological resources and environment, pp. 377-409. Singapore: Springer Nature Singapore, 2023.
- 18. Sharma, Krati, Shijin Rajan, and Soumya Kanta Nayak. "Water pollution: Primary sources and associated human health hazards with special emphasis on rural areas." In Water Resources Management for Rural Development, pp. 3-14. Elsevier, 2024.
- 19. Singh, Prince Kumar, Umesh Kumar, Indrajeet Kumar, Akanksha Dwivedi, Priyanka Singh, Saumya Mishra, Chandra Shekhar Seth, and Rajesh Kumar Sharma. "Critical review on toxic contaminants in surface water ecosystem: sources, monitoring, and its impact on human health." Environmental Science and Pollution Research (2024): 1-35.
- 20. Padhiary, Mrutyunjay, and Raushan Kumar. "Assessing the environmental impacts of agriculture, industrial operations, and mining on agro-ecosystems." In Smart Internet of Things for Environment and Healthcare, pp. 107-126. Cham: Springer Nature Switzerland, 2024.
- 21. Karani, Eunice. "Impact of Agricultural Practices on Freshwater Quality Rivers in Kenya." American Journal of Environment Studies 7, no. 2 (2024): 49-60.
- 22. Sani, Zouera, Raphaël Muamba Tshimanga, Oghenekaro Nelson Odume, Twaha Ali Basamba, and Haddy Mbuyi Katshiatshia. "Developing an approach for balancing water use and protecting water quality of an urban river ecosystem." Physics and Chemistry of the Earth, Parts A/B/C 136 (2024): 103687.
- 23. Jain, S., Srivastava, A., Khadke, L., Chatterjee, U. and Elbeltagi, A., 2024. Globalscale water security and desertification management amidst climate change. Environmental Science and Pollution Research, pp.1-25.
- 24. Mishra, Amit K., Jaswant Singh, and Pratyush P. Mishra. "Microplastics in Freshwater Environment: A Case Study of River Gomti, Lucknow, India." (2024).
- 25. Kumar, Ankit, Priya Saxena, and Ganesh Chandra Kisku. "Heavy metal contamination of surface water and bed-sediment quality for ecological risk assessment of Gomti River, India." Stochastic Environmental Research and Risk Assessment 37, no. 8 (2023): 3243-3260.
- 26. Naznine, Fahmi, MohdIkram Ansari, Ushba Aafreen, Katyayani Singh, RonitVerma, Mansi Dey, Yashpal Singh Malik, and MohdKhubaib. "Prevalence of antibiotic resistance genes in bacteria from Gomti and Ganga rivers: implications for water quality and public health." Environmental Monitoring and Assessment 196, no. 10 (2024): 992.
- 27. Singh, Deepika, A. K. Shukla, G. Pandey, and V. Dutta. "Effect of SARS-CoV-2 (Covid-19) on physicochemical parameters of Gomti River, Uttar Pradesh, India:

- Temporal variations and correlation." Journal of Earth System Science 132, no. 3 (2023): 138.
- 28. Upadhyay, L. Ar Poonam. "Rejuvenation of Kukrail Drain." In Ecosystem Restoration: Towards Sustainability and Resilient Development, pp. 149-171. Singapore: Springer Nature Singapore, 2023.
- 29. Kumar, Ankit, Pramod Kumar, Abhay Raj, and Ganesh Chandra Kisku. "Assessment of influence of heavy metal, organochlorine pesticide, and bacterial presence on water quality of Gomti river, India." Environment, Development and Sustainability 26, no. 1 (2024): 1879-1901.
- 30. Jain, Ritu. "Water Quality Assessment of River Gomti in Lucknow City."
- 31. Priyanshu, A. P., and ArifSiddiquie. "Assessment of Microplastics Contamination in Freshwater Ecosystems at Gomti River." (2024).
- 32. Kumar, Dinesh, ShivajiKanoujiya, Laxmi Prasad, and C. P. Singh. "Assessment of fish biodiversity in middle stretch of Gomti river with the relation of water quality parameter." Journal of Experimental Zoology India 26, no. 2 (2023).
- 33. Yadav, Meenakshi, and Esha Yadav. "THE POLLUTION STATUS OF SOME NORTH INDIAN RIVERS: A REVIEW." Journal of Experimental Zoology India 27, no. 1 (2024).
- 34. Sahoo, S., and S. Goswami. "Theoretical framework for assessing the economic and environmental impact of water pollution: A detailed study on sustainable development of India." Journal of Future Sustainability 4, no. 1 (2024): 23-34.
- 35. Ibrahim, Aminu, Azimah Ismail, Hafizan Juahir, Aisha B. Iliyasu, Balarabe T. Wailare, Mustapha Mukhtar, and Hassan Aminu. "Water quality modelling using principal component analysis and artificial neural network." Marine Pollution Bulletin 187 (2023): 114493.
- 36. Anh, Nguyen Tuan, Nguyen ThiNhan, Britta Schmalz, and Tran Le Luu. "Influences of key factors on river water quality in urban and rural areas: A review." Case Studies in Chemical and Environmental Engineering (2023): 100424.
- 37. Van Vliet, Michelle TH, Josefin Thorslund, Maryna Strokal, Nynke Hofstra, Martina Flörke, Heloisa Ehalt Macedo, Albert Nkwasa et al. "Global river water quality under climate change and hydroclimatic extremes." Nature Reviews Earth & Environment 4, no. 10 (2023): 687-702.
- 38. Mishra, Arundhatee. "Pivotal Vulnerability Facets Influencing Static Water Bodies: The Case of Peri-Urban Areas of India." (2030).
- 39. Gangwar, Druti, and Rama U. Pandey. "Assessing human health risks associated to water stress: A local approach in the Indian context." In Urban Water Ecosystems in Africa and Asia, pp. 128-152. Routledge, 2024.
- 40. Kapur, Depinder, Dhruv Pasricha, and Shivali Jainer. "Shivani and Sumita Singhal 2023." Urban Stormwater Management: Potential and Challenges. www.jstor.org.
- 41. Robinson, Guy M. "Risk and Resilience in Indian Cities: Floods, Heat Islands and the Work of Professor RB Singh." In Climate Change, Vulnerabilities and

- Adaptation: Understanding and Addressing Threats with Insights for Policy and Practice, pp. 3-22. Cham: Springer Nature Switzerland, 2024.
- 42. Dubey, Divya, Kiran Toppo, Saroj Kumar, and Venkatesh Dutta. "Intensive aquaculture affects lake's trophic status and aquatic floral diversity." Environmental Science: Advances 3, no. 11 (2024): 1628-1642.
- 43. Gaur, V.K., Gupta, S.K., Pandey, S.D., Gopal, K. and Misra, V., 2005. Distribution of heavy metals in sediment and water of river Gomti. Environmental monitoring and assessment, 102, pp.419-433.
- 44. Umakant Butkar, "A Two Stage Crawler for Efficiently Harvesting Web", International Journal Of Advance Research And Innovative Ideas In Education, Vol 2, Issue 3, 2016
- 45. Saanchez, E., Colmenarejo, M. F., Vicente, J., Rubio, Garci, M. G., Travieso, L. and Borja, R. 2006. Use of water quality index and dissolved oxygen deficit as simple indicators of watershed pollution. Eco. Indic. 7: 315 –328.
- 46. Bordalo, A. A., Teixerra, R. and Wiebe, W. J. 2006. A water quality index applied to an international shared river basin: the case of Douro river. Environmental. Management. 38:910-920.
- 47. Krishan Gopal, Singh Surjeet, Kumar, C.P., Gurjar Suman and Ghosh, N.C. 2016. Assessment of Water Quality Index (WQI) of Groundwater in Rajkot District, Gujarat, India. Journal of Earth Science & Climatic Change. 7(3): 1-4.
- 48. Bhardwaj Divya and Verma Neetu. 2017. Research Paper on Analysing impact of Various Parameters on Water Quality Index. International Journal of Advanced Research in Computer Science. 8(5): 2496-2498.
- 49. Phadatare Sneha S. and Gawande Sagar. 2016. Review Paper on Development of Water Quality Index. International Journal of Engineering Research & Technology. 5(5):765-767.
- 50. Bassin, J. K. 2007. An Automated Workbook for Checking Correctness of Water Analyses. Journal of Indian Water Works Association. 39 (4):259-264.BIS,2012.
- 51. Specifications for Drinking Water, IS: 10500:2012, Bureau of Indian Standards, New Delhi.