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1. Introduction 

 

Across various scientific disciplines, there has been a growing fascination with exploring systems that 

encompass memory or delayed effects, where the impact of delay on state equations is a notable consideration. 

In numerous mathematical models, phenomena often exhibit long-range memories, potentially influenced by 

factors such as extreme weather or natural disasters. In certain instances, stochastic dynamical systems not 

only depend on present and past states but also involve derivatives with delays. In these scenarios, a category 

of stochastic differential equations driven by fractional Brownian motion emerges as a crucial tool for 

effectively describing and analysing such complex systems. 

Abstract  

The traditional Black-Scholes equation, guided by Brownian motion, lacks memory. Therefore, it is deemed 

appropriate to substitute Brownian motion with fractional Brownian motion (FBM), characterized by long-

memory dynamics attributed to the Hurst exponent. This paper focuses on deriving the option pricing 

equation modeled with fractional Brownian motion. The equation is then transformed into a one-dimensional 

heat equation through the Shehu transform, and a solution is subsequently obtained. The Black-Scholes 

Model is a widely utilized tool for option pricing, a critical application in finance. In scenarios without 

transaction costs, option value is determined using the Black-Scholes model. In the context of the Caputo 

sense, this study proposes a solution for the fractional Black-Scholes equation (FBSE) problem. The research 

revisits the direct algebraic method initially proposed by Hereman et al. (1985) and applies this methodology 

to solve both the Benjamin-Bona-Mahony (RLW) equation (PDE) into an ordinary differential equation 

(ODE). Subsequently, the ODE is solved using algebraic processes, resulting in solutions for the Benjamin-

Bona-Mahony equations and hence the solution of thefractional Black-Scholes option pricing model. Also the 

modified sine-cosine method is used to solve the non-homogeneous form of Benjamin-Bona-Mahony equation 

with time-dependent coefficients wasto solve non-homogeneous case of our problem. 

 

Keyword: Fractional Black-Scholes Equation, Shehu Transform, Homotopy Analysis Shehu Transform 

Method, Homotopy Analysis Method, option pricing. 
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Fractional Brownian motion of Hurst exponent 𝐻 ∈ (0, 1) is a stochastic process {𝐵𝐻(𝑡), 𝑡 ∈ ℝ} which satisfies 

the following: 

1. 𝐵𝐻(𝑡) is Gaussian, that is, for every t > 0,  𝐵𝐻(𝑡) has a normal distribution 

2. 𝐵𝐻(𝑡) is a self similar process meaning that for any ∝> 0, 𝐵𝐻(∝ 𝑡) has the same  law as ∝𝐻 𝐵𝐻(𝑡).  
3. It has stationary increments, that is, 𝐵𝐻(𝑡) - 𝐵𝐻(𝑠)~𝐵𝐻(𝑡 − 𝑠). 
Fractional Brownian motion, initially introduced by Kolmogrov in 1940 and subsequently explored by 

Mandlbrov and Van Ness, exhibits various properties that have garnered attention. Its applications extend into 

the pricing of financial derivatives, where a derivative is an instrument whose valuation is dependent on or 

derived from the value of another asset, often a stock.The concept of financial derivatives is not a recent 

development. Though there arehistorical debates regarding the precise creation date of financial derivatives, it 

is widely acknowledged that Charles Castelly's work in 1877 marked the first attempt at modern derivative 

pricing. In 1969, Fisher Black and Myron Scholes introduced an idea that would revolutionize the world of 

finance. Their groundbreaking paper centered around the revelation that estimating the expected return of a 

stock was not necessary to price an option written on that stock 

The Black-Scholes option pricing equation, typically driven by standard Brownian motion, is adapted in this 

study by replacing the conventional Brownian motion with fractional Brownian motion, characterized by the 

inclusion of the Hurst exponent denoted as H. The Hurst exponent is a statistical measure employed for time 

series classification, with its values ranging between 0 and 1. This modification allows for a more nuanced 

modeling of financial markets and enhances the understanding of option pricing dynamics. 

Some of the authors have conducted studies on option pricing dynamicsinclude Ouafoudi and Gao (2018). 

The authors employed the Modified Homotopy Perturbation Method (MHPM), Homotopy Perturbation 

Method (HPM), and Sumudu transforms to address the fractional Black-Scholes (B-S) equation. The results 

obtained from both approaches were found to be consistent. 

Yavuz and Ozdemir (2018) tackled the fractional B-S equation by recalibrating it as a fractional mean and 

applying the Adomian Decomposition Method (ADM) to both the fractional and generalized B-S equations to 

calculate option prices for fractional values. 

Alfaqeih and Ozis (2020) utilized an Aboodh transform and the Adomian Decomposition Method to solve a 

fractional B-S equation . 

Fadugba and Edogbanya (2020) conducted a comparative analysis of the fractional Laplace transform 

homotopy perturbation method and the fractional reduced differential transform method for solving the time-

fractional B-S equation. The study found that the Fractional Reduced Differential Transform Method 

(FRDTM) outperformed the Fractional Laplace Transform Homotopy Perturbation Method (FLTHPM) due 

to its shorter algorithms. 

To obtain an analytical solution for the time-space fractional B-S method, Edeki et al. (2020) employed a 

coupled transform approach, combining the characteristics of the fractional complex transform and reduced 

differential transform methods.  

Bhadane et al. (2020) presented analytical solutions for the fractional B-S equation using a combination of the 

Homotopy Perturbation Method (HPM) and the Elzaki transform, known as the Elzaki transform HPM. 

In addressing the fractional B-S problem, Ahmad et al. (2021) introduced a modified version of the Differential 

Transform Method (DTM) called the Fractional Reduced Differential Transform Method. 

 Yavuz and Ozdemir (2018) employed an iterative method to derive an approximate solution for fractional 

Black-Scholes models in a conformable derivative sense. 

Shehu and Zhao (2019) applied a new semi-analytical method known as the Homotopy Analysis Shehu 

Transform Method (HASTM) to solve the multidimensional fractional diffusion equation. This method not 
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only reduces the need for iterative differentiation and integration but also overcomes the restrictions of the 

Homotopy Analysis Method (HAM). Consequently, this inspired the application of the Homotopy Analysis 

Shehu Transform to the given B-S problem. The solutions are extremely consistent withthe existing results. 

In this paper we intend to solve the Black-Scholes option pricing equation modeled by fractional Brownian 

motion using direct algebraic method of solution of the Benjamin–Bona–Mahony Regular Long Wave (RLW) 

Equation., 

 

2. Fractional Option Pricing Model 

Theorem 1: Let a generic payoff function 𝐺(𝑡)  =  𝑈 (𝑆 , 𝑡). Then the partial differential equation associated 

with the price of the derivative on the stock price is ∂U∂t +   Hσ2S2t2H−1 ∂2U∂S2 + rS ∂U∂S − rU = 0,         S > 0,  t > 0 H ∈ (0 ,1), H ≠ 12,       (1) 

where U is the call option price , t is the time to maturity, H is the Hurst exponent, σ is the volatility , S is the 

stock price and r is the discount rate. 

Proof: 

The stock price St follows the fractional Brownian motion process 𝑑𝑆 =  𝜇𝑆𝑑𝑡 +  𝜎𝑆𝑑𝐵H (t).                        (2) 

The wealth of an investor   Vfollows a diffusion process given by  𝑑𝑈 =  Λ𝑑𝑆 + 𝑟(𝑋 − Λ𝑆)𝑑𝑡. (3) 

Putting equation (2) into equation (3) yields 

 𝑑𝑈 =  {𝑟𝑋 +  Λ𝑆(𝜇 − 𝑟)}𝑑𝑡 +  Λ𝑆𝜎𝑑𝐵𝐻(𝑡), (4) 

where 𝜇 –r is the risk premium. 

 Suppose that the value of this claim at time t is given by  𝐺(𝑡) = 𝑈(𝑆, 𝑡),   𝑆 = 𝑆𝑡(5) 

Applying the Ito’s formula for fractional Brownian motion on equation (5), we have  𝑑𝐺 = 𝜕𝑈𝜕𝑡 𝑑𝑡 + 𝜕𝑈𝜕𝑆 𝑑𝑆 + 𝐻𝑡2𝐻−1 𝜕2𝑈𝜕𝑆2 (𝑑𝑆)2 (6)                                      

Substituting (2) in (6), we have  𝑑𝐺 = 𝜕𝑈𝜕𝑡 𝑑𝑡 + 𝜕𝑈𝜕𝑆 [𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝐻(𝑡)] + 𝐻𝑡2𝐻−1 𝜕2𝑈𝜕𝑆2 [𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝐻(𝑡)]2.(7)    

Equation (7) simplifies to  𝑑𝐺 =  𝜕𝑈𝜕𝑡 𝑑𝑡 + 𝜕𝑈𝜕𝑆 [𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝐻(𝑡)] 
+H𝑡2𝐻−1 𝜕2𝑈𝜕𝑆2 [𝜇2𝑆2(𝑑𝑡)2 + 2𝜇𝜎𝑆2𝑑𝑡𝑑𝐵𝐻(𝑡) + 𝜎2𝑆2(𝑑𝐵𝐻(𝑡))2],  (8) 

 

Using the multiplication rule that  𝑑𝑡𝑑𝐵𝐻(𝑡) = (𝑑𝑡)2 = 0; (𝑑𝐵𝐻(𝑡))2 = 𝑑𝑡,  (Bernard,2007; Chukwueze et al 2019). 

Therefore (8) reduces to  𝑑𝐺 = 𝜕𝑈𝜕𝑡 𝑑𝑡 + 𝜕𝑈𝜕𝑆 [𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝐵𝐻(𝑡)] + 𝐻𝑡2𝐻−1𝜎2𝑆2 𝜕2𝑈𝜕𝑆2 𝑑𝑡(9) 

Collecting like terms we have  𝑑𝐺 = [𝜕𝑈𝜕𝑡 + 𝜇𝑆 𝜕𝑈𝜕𝑆 + 𝐻𝑡2𝐻−1𝜎2𝑆2 𝜕2𝑈𝜕𝑆2] 𝑑𝑡 + 𝜎𝑆 𝜕𝑈𝜕𝑆  𝑑𝐵𝐻(𝑡)  (10) 

Using (5) we have 𝑑𝑈 =  [𝜕𝑈𝜕𝑡 + 𝜇𝑆 𝜕𝑈𝜕𝑆 + 𝐻𝑡2𝐻−1𝜎2𝑆2 𝜕2𝑈𝜕𝑆2] 𝑑𝑡 + 𝜎𝑆 𝜕𝑈𝜕𝑆  𝑑𝐵𝐻(𝑡)  (11) 

Thus, equating coefficients in (3) and (11), we have  
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𝜕𝑈𝜕𝑡 + 𝜇𝑆 𝜕𝑈𝜕𝑆  𝐻𝜎2𝑆2𝑡2𝐻−1 𝜕2𝑈𝜕𝑆2 = 𝑟𝑈 + Λ𝑡𝑆(𝜇 − 𝑟),(12) 

from which 𝜎𝑆 𝜕𝑈𝜕𝑆 = Λ𝑡𝜎𝑆    (13) 

and  Λ𝑡 = 𝜕𝑈𝜕𝑆.(14) 

The substitution equation (14) into (12), gives 𝜕𝑈𝜕𝑡 + 𝜇𝑆 𝜕𝑈𝜕𝑆  𝐻𝜎2𝑆2𝑡2𝐻−1 𝜕2𝑈𝜕𝑆2 = 𝑟𝑈 + 𝑆𝜇 𝜕𝑈𝜕𝑆 − 𝑆𝑟 𝜕𝑈𝜕𝑆.(15) 

This implies that  𝜕𝑈𝜕𝑡 + 𝐻𝜎2𝑆2𝑡2𝐻−1 𝜕2𝑈𝜕𝑆2 +  𝑆𝑟 𝜕𝑈𝜕𝑆 − 𝑟𝑈 = 0                                                    (16) 

 

V(S,t) is the European call option price, S is the stock price at time t, t is the time to the expiration of the 

option, r is the discount rate, 𝜎 represents the volatility function of  the underlying asset and H is the Hurst 

exponent. 

 

3. The Model  

Theorem 2: Let equation (1) be given by 𝜕𝑈𝜕𝑡 + 𝐻𝑡2𝐻−1𝑆2𝜎2 𝜕2𝑈𝜕𝑆2 +  𝑟𝑆 𝜕𝑈𝜕𝑆 − 𝑟𝑈 = 0, 𝑆 > 0, 𝑡 > 0    (17) 

with 𝑈(0, t) = 0, 𝑈(S , t) ~ S as S→ ∞,𝑈(S , T) = max{|S − K|, 0} 
Then (17) can be reduced to one-dimensional heat equation of the form ∂𝑈∂τ = p ∂2𝑈∂x2  .   (18) 

Set𝜏 = 𝜎2(𝑇−𝑡)2 ;𝑥 = ln (𝑆/𝐾) and  𝑈(𝑆, 𝑡)  = 𝐾𝑣(𝑥, 𝜏).  (19)  

Differentiating (19), we have  𝜕𝑈𝜕𝑡 = 𝐾 𝜕𝑈𝜕𝜏  . 𝜕𝜏𝜕𝑡 = (𝐾 𝜕𝑈𝜕𝜏) (− 𝜎22 ) (20) 𝜕𝑈𝜕𝑆 = 𝐾 𝜕𝑈𝜕𝑥  . 𝜕𝑥𝜕𝑆 = 𝐾 𝜕𝑈𝜕𝑥 (1𝑆) = 𝐾𝑆 𝜕𝑈𝜕𝑥.  (21) 

The second partial derivative of 𝑈(𝑆, 𝑡) with respect to 𝑆 is given as 𝜕2𝑈𝜕𝑆2 = 𝜕𝜕𝑆 (𝜕𝑈𝜕𝑆) = 𝜕𝜕𝑆 (𝐾𝑆 𝜕𝑈𝜕𝑥) = 𝐾𝑆 ( 𝜕𝜕𝑆 𝜕𝑈𝜕𝑥) + 𝜕𝑈𝜕𝑥 ( 𝜕𝜕𝑆 𝐾𝑆) 

 = 
𝐾𝑆 ( 𝜕𝜕𝑆 𝜕𝑈𝜕𝑥) + 𝜕𝑈𝜕𝑥 (−𝐾𝑆2 ) 

= 
𝐾𝑆 [ 𝜕𝜕𝑥 (𝜕𝑈𝜕𝑥) 𝑑𝑥𝑑𝑆] − 𝐾𝑆2 𝜕𝑈𝜕𝑥 = 𝐾𝑆 𝜕2𝑈𝜕𝑥2 (1𝑆) − 𝐾𝑆2 𝜕𝑈𝜕𝑥, 

from which we obtain 𝜕2𝑈 𝜕𝑆2  =  − 𝐾𝑆2 𝜕𝑈𝜕𝑥 + 𝐾𝑆2 𝜕2𝑈𝜕𝑥2.(22) 

The terminal condition is 𝑈(S,T) = max{|𝑆 − 𝐾|, 0} 
= max{|𝐾𝑒𝑥 − 𝐾|, 0}. 
Let 𝑈(𝑆, 𝑇) = 𝐾𝑣(𝑥, 0), 
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                                                                         𝑣(𝑆, 𝑇) = max{|𝑒𝑥 − 1|, 0}.(23) 

Substitute (20), (21) and (22) in (1) (𝐾 𝜕𝑈𝜕𝜏) (𝜎22 ) + 𝐻 (𝑇 − 2𝜏𝜎𝑧)2𝐻−1 𝑆2𝜎2 (− 𝐾𝑆2 𝜕𝑈𝜕𝑥 + 𝐾𝑆2 𝜕2𝑣𝜕𝑥2) + rS (𝐾𝑆 𝜕𝑈𝜕𝑥) − 𝑟𝐾𝑈 =  0 .  (24) 

Let 𝑚 = 2𝜏𝜎2, 
then  − 𝜎22 𝜕𝑈𝜕𝜏 + 𝐻(𝑇 −𝑚)2𝐻−1𝑆2𝜎2 (− 1𝑆2 𝜕𝑈𝜕𝑥 + 1𝑆2 𝜕2𝑈𝜕𝑥2) + 𝑟𝑆 (1𝑆 𝜕𝑈𝜕𝑥) − 𝑟𝑈 = 0.    (25) 

 − σ22 ∂U∂τ + 𝐻(𝑇 − 𝑚)2𝐻−1𝜎2 𝜕𝑈𝜕𝑥 + 𝐻(𝑇 −𝑚)2𝐻−1𝜎2 𝜕2𝑈𝜕𝑥2 + 𝑟 𝜕𝑣𝜕𝑥 − 𝑟𝑈 = 0      (26)  − 𝜎22 𝜕𝑈𝜕𝜏 +𝐻(𝑇 − 𝑚)2𝐻−1𝜎2 𝜕𝑈𝜕𝑥 − 𝑟 𝜕𝑣𝜕𝑥 − 𝐻(𝑇 −𝑚)2𝐻−1𝜎2 𝜕2𝑈𝜕𝑥2 + 𝑟𝑈 = 0    (27) 𝜎22 𝜕𝑈𝜕𝜏 + [𝐻(𝑇 − 𝑚)2𝐻−1𝜎2 − 𝑟] 𝜕𝑈𝜕𝑥 − 𝐻(𝑇 −𝑚)2𝐻−1𝜎2 𝜕2𝑈𝜕𝑥2 + 𝑟𝑈 = 0  (28) 𝜕𝑈𝜕𝜏 + [2𝐻(𝑇 − 𝑚)2𝐻−1 − 2𝑟𝜎2] 𝜕𝑈𝜕𝑥 − 2𝐻(𝑇 − 𝑚)2𝐻−1 𝜕2𝑈𝜕𝑥2 + 2𝑟𝑈𝜎2 = 0. (29) 

Let 𝑝 = 2𝐻(𝑇 − 𝑚)2𝐻−1 = 1 and 𝑞 = 2𝑟𝜎2 = 𝐴, 

then we have 𝜕𝑈𝜕𝜏 − 𝑝 𝜕2𝑈𝜕𝑥2 + +(𝑝 − 𝑞) 𝜕𝑈𝜕𝑥 + 𝑞𝑈 = 0,(30) 

which is a homogenous partial differential equation of second order in 𝑥. 

We shall solve equation (30) using direct algebraic method ofBenjamin-Bona–Mahony Regular Long Wave 

(RLW) Equation. 

The Regularized Long-Wave (RLW) equation, originally proposed by Peregrine to depict undular bore 

development, gained significance as an enhancement of the Korteweg-de Vries equation (KdV equation) by 

Benjamin, Bona, and Mahony in 1972. It serves as a valuable model for long surface gravity waves of small 

amplitude propagating in unidirectional (1 + 1) dimensions. 

The solution process involves the following steps: 

(i) Initiation with the non-linear equation in 1 + 1dimensions, where 𝑥 and 𝑡 represent space and time 

coordinates, respectively. The introduction of a traveling frame of reference through 𝜀 = 𝑥 − 𝑣𝑡 transforms the 

given non-linear partial differential equation (PDE) in 𝑈(𝑥, 𝑡) into an ordinary differential equation (ODE) in 𝜙(𝜀)  ≜  𝑈(𝑥, 𝑡). 
(ii) Integration of the ODE with respect to ε as many times as possible, avoiding integral equations. 

(iii) Substitution of 𝜙 =  𝑐1 +  𝜙  to obtain the most general solitary solution, potentially containing a constant 

term, 𝑐1 . 
(iv) Consideration of the linear part of the equation in 𝜙  by setting the coefficients of the nonlinear n term(s) 

equal to zero or neglecting them. By setting 𝜙  =  𝑒𝑘𝜀 in the linear equation, values of k and the constant term 

c_1 are obtained by setting the ϕ̂-independent part equal to zero. These values are then substituted back into 

the equation formed in step  

(v) Normalization of a few coefficients of the nonlinear terms for mathematical convenience by a single scaling 

transformation of 𝜙  into 𝜙 . 
(vi) Solution of the nonlinear equation in 𝜙  by expanding 𝜙  in terms of the harmonics of the decaying 

exponential solution of the linear equation. Setting 𝑔(𝑥) = 𝑒−𝑘𝜀 and ϕ̃ = ∑ ∑∞ 𝑛=1 𝑎𝑛𝑔𝑛(𝜀), and applying 

Cauchy’s rule for products, a recursion relation for𝑎ns is obtained. 
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(vii) Solution of the recursion relation to determine the general form of the coefficients 𝑎𝑛 through direct 

algebraic processes and computations. 

(viii) Substitution of the coefficients 𝑎𝑛obtained from the recursion relation into 𝜙  and using the scaling factor 𝜙 = 𝑐1 +  𝜙  to obtain the solution. 

(ix) Return to the original dependent variable u and the independent variables x and t. An exact solitary wave 

solution of the nonlinear PDE is obtained. 

Further insight and demonstration of the application of these steps are provided, focusing on the application of 

the Regular Long Wave (RLW) equation. 

 

The application of the Benjamin–Bona–Mahony Regular Long Wave (RLW) Equation 

 

The Benjamin–Bona–Mahony Regular Long Wave(RLW) equation is given below: 𝑈𝑡 + 𝑈𝑥 + 𝛼𝑈𝑈𝑥 − 𝑈2𝑥𝑡 = 0. 

We present a solution using the approach/methodology as follows,                                                 𝑈𝑡 + 𝑈𝑥 + 𝛼𝑈𝑈𝑥 − 𝑈2𝑥𝑡 = 0.                                                            (31) 

To solve equation (31), we compare equations (30) and (31) and transform the  

resultant equationinto an ODE using the traveling frame of reference 𝜀 = 𝑥 − 𝑣𝑡,    𝜙(𝜀) ≜ 𝑢(𝑥, 𝑡). 𝑢𝑡 = −𝑣𝜙𝜀, 𝑢𝑥 = 𝜙𝜀, 𝑢2𝑥𝑡 = (𝑢2𝑥)𝑡 = −𝑣𝜙3𝜀. (32) 

Assuming that  𝑢2𝑥𝑡 = 𝑝𝑢𝑥𝑥, substituting (32) into (30), we obtain −𝑣𝜙𝜀 + (𝑝 − 𝑞)𝜙𝜀 + 𝛼𝜙𝜙𝜀 + 𝑣𝜙3𝜀 = 0 .   (33) 

Integrating (33) with respect to 𝜖 we have, −𝑣 ∫𝜙𝑒𝑑𝜀 + (𝑝 − 𝑞) ∫𝜙𝜀𝑑𝜀 + 𝛼 ∫𝜙𝜙𝜀𝑑𝜀 + 𝑣 ∫𝜙3𝜀𝑑𝜀 = 0, 

which  with 𝜆 = (𝑝 − 𝑞)simplifies to −𝑣𝜙 + 𝜆𝜙 + 𝛼2 𝜙2 + 𝑣𝜙2𝜀 + 𝑐1𝐶 = 0                                                             (34) 

where 𝑐1𝐶 is the constant of integration. 

Substituting                                       𝜙 = 𝑐1 + 𝜙̂  (35) 

into (34) we get, −𝑣(𝑐1 + 𝜙̂) + 𝜆(𝑐1 + 𝜙̂) + 𝛼2 (𝑐1 + 𝜙̂)2 + 𝑣(𝑐1 + 𝜙̂)2𝜀 + 𝑐1𝐶 = 0, 

that modifies to (−𝑣 + 𝜆 + 𝛼𝑐1)𝜙̂ + 𝑣𝜙̂2𝜀 + 𝛼2 𝜙2 − 𝑣𝑐1 + 𝑐1 + 𝛼2 𝑐12 + 𝑐1𝐶 = 0.      (36) 

Ignoring the nonlinear part and setting the𝜙̂ −independent part equal to zero (0) the remaining linear part of 

equation (36) becomes, (−𝑣 + 𝜆 + 𝛼𝑐1)𝜙̂ + 𝑣𝜙̂2𝜀 = 0. 

Let, 𝜙̂ = 𝑒𝑘𝜀 ,  and  𝜙̂2𝜀 = 𝑘2𝑒𝑘𝜀 then (−𝑣 + 𝜆 + 𝛼𝑐1)𝑒𝑘𝜀 + 𝑣𝑘2 + 𝑣𝑘2𝑒𝑘𝜀 = 0, 

from which we obtain −𝑣 + 𝜆 + 𝛼𝑐1 + 𝑣𝑘2 = 0 

and                                          𝑘2 = 𝑣−𝜆−𝛼𝑐1𝑣 . 

Considering the 𝜙̂ − independent part that has been set equal to zero, we get −𝑣𝑐1 + 𝑐1 + 𝛼2 𝑐12 + 𝑐1𝐶 = 0, 
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and −𝑣 + 𝜆 + 𝛼2 𝑐1 + 𝐶 = 0 

from which we obtain                                                 𝑐1 = 2(𝑣−𝜆−𝐶)𝛼 ,    (37) 

and 𝑘2 = 1𝑣 [𝑣 − 𝜆 − 𝛼 (2(𝑣 − 𝜆 − 𝐶)𝛼 )] = 1𝑣 [𝑣 − 𝜆 − 2𝑣 + 2𝜆 + 2𝐶] 𝑘 = √𝜆−𝑣+2𝐶𝑝𝑣 .       (38) 

Substituting (37) in (66), we get (−𝑣 + 𝜆 + 𝛼 [2(𝑣−𝜆−𝐶)𝛼 ]) 𝜙̂ + 𝑣𝜙̂2𝜀 + 𝛼2 𝜙̂2 = 0. 

and (𝑣 − 𝜆 − 2𝐶)𝜙̂ + 𝑣𝜙̂2𝜀 + 𝛼2 𝜙̂2 = 0.        (39) 

Normalizing the coefficient of the non linear term using the scaling term 𝜙̂ = 2𝛼 (𝜆 + 2𝐶 − 𝑣)𝜙̂.       (40) 

Then putting (40) in (39) yields 2𝛼 (𝑣 − 𝜆 − 2𝐶)(𝜆 + 2𝐶 − 𝑣)𝜙̃ + 𝑣 [2𝛼 (𝜆 + 2𝐶 − 𝑣)𝜙̃]2𝜀 + 𝛼2 [2𝛼 (𝜆 + 2𝐶 − 𝑣)𝜙̃]2 = 0, 

that simplifies to (𝜆 + 2𝐶 − 𝑣)𝜙̃ − 𝑣𝜙̃2𝜀 − (𝜆 − 2𝐶 − 𝑣)𝜙̃2 = 0.         (41) 

From (38) 𝑣𝑘2 = 1 + 2𝐶 − 𝑣 

and substituting this into (41) leads to 𝑣𝑘2𝜙̃ − 𝑣𝜙̃2𝜀 − 𝑣𝑘2𝜙̃2 = 0 

that reduces to 𝑘2𝜙̃ − 𝜙̃2𝜀 − 𝑘2𝜙̃2 = 0.       (42) 

The expansion of𝜙̃ in terms of the harmonics of the decaying exponential solution of the linear equation 𝑔(𝑥) = 𝑒−𝑘𝜀, 
we have using theCauchy’s rule that 𝜙̃ = ∑𝑎𝑛𝑔𝑛(𝜀)∞

𝑛=1 =∑𝑎𝑛𝑒−𝑛𝑘(𝜀)∞
𝑛=1  

𝜙̃𝜀 = −𝑘∑𝑛𝑎𝑛𝑔𝑛(𝜀)∞
𝑛=1  

𝜙̃2𝜀 = 𝑘2∑𝑛2𝑎𝑛𝑔𝑛(𝜀)∞
𝑛=1  

𝜙̃2 = [∑𝑎𝑛𝑔𝑛(𝜀)∞
𝑛=1 ]2 = ∑ ∑ 𝑎𝑙𝑎𝑛−𝑙𝑔𝑛(𝜀)𝑛−1𝑙=1∞𝑛=1 . 

Substituting these expansions into (42), it becomes 
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𝑘2∑𝑎𝑛𝑔𝑛(𝜀)∞
𝑛=1 − 𝑘2∑𝑛2∞

𝑛=1 𝑎𝑛𝑔𝑛(𝜀) − 𝑘2∑∑𝑎𝑙𝑎𝑛−𝑙𝑔𝑛(𝜀)𝑛−1
𝑙=1

∞
𝑛=1 = 0 

[(1 − 𝑛2)𝑎𝑛 −∑𝑎𝑙𝑎𝑛−𝑙𝑛−1
𝑙=1 ] 𝑘2∑𝑔𝑛(𝜀)∞

𝑛=1 = 0 (𝑛2 − 1)𝑎𝑛 + ∑ 𝑎𝑙𝑎𝑛−𝑙𝑛−1𝑙=1 = 0, 𝑛 ≥ 2.      (43) 

The recursion relation (43) is solved to find the general form of the coefficient 𝑎𝑛 

For 𝑛 = 2, (22 − 1)𝑎2 +∑𝑎𝑙𝑎2−𝑙 = 01
𝑙=1  3𝑎2 + 𝑎1𝑎1 = 0  𝑎2 = 13𝑎12 = −623 (𝑎16 )2 

For 𝑛 = 3 (32 − 1)𝑎3 +∑𝑎𝑙𝑎3−𝑙 = 02
𝑙=1  8𝑎3 + 𝑎1𝑎2 + 𝑎2𝑎1 = 0 𝑎3 = −14𝑎1 (−13𝑎12) = 112 𝑎13 = 6(3)(−1)3+1 (𝑎16 )3 

For 𝑛 = 4 𝑎4 = −24 (𝑎16 )4 = 6(4)(−1)4+1 (𝑎16 )4 

From the above, 𝑎𝑛 is arbitrary and the pattern can be clearly seen as 𝑎𝑛 = 6𝑛(−1)𝑛+1 (𝑎16 )𝑛 , 𝑎1 > 0 

Then the coefficient𝑎𝑛is substituted into the equation for 𝜙 to obtain the solution. 

From (4.5), 𝜙 = 𝑐1 + 𝜙̂ 

But, 𝜙 = 2𝛼 (𝑣 − 𝜆 − 𝐶) + 𝜙̂. 

Also, from (40), 

therefore 𝜙 = 2𝛼 (𝑣 − 1 − 𝐶) + 2𝛼 (1 + 2𝐶 − 𝑣)𝜙̃. 

But, 𝜙̃ = ∑𝑎𝑛𝑔𝑛(𝜀)∞
𝑛=1  

𝜙 = 2𝛼 (𝑣 − 𝜆 − 𝐶) + 2𝛼 (𝜆 + 2𝐶 − 𝑣)∑𝑎𝑛𝑔𝑛(𝜀)∞
𝑛=1  

= 2𝛼 (𝑣 − 𝜆 − 𝐶) + 2𝛼 (𝜆 + 2𝐶 − 𝑣) ∑ 6𝑛(−1)𝑛+1∞𝑛=1 (𝑎16 )𝑛 𝑔𝑛. 

Let𝑎 = 𝑎16  
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therefore 𝜙 = 2𝛼 (𝑣 − 𝜆 − 𝐶) + 2𝛼 (𝜆 + 2𝐶 − 𝑣)∑ 6𝑛(−1)𝑛+1(𝑎𝑔)𝑛∞𝑛=1 .   (44) 

The power series ∑ 6𝑛(−1)𝑛+1∞𝑛=1 (𝑎𝑔)𝑛 is convergent for 𝑎𝑔 < 1. 

Using  

Differentiating both sides the well-known power series 11 − 𝑥 = ∑𝑥𝑛∞
𝑛=0 , |𝑥| < 1 

with respect to 𝑥we have 𝑑𝑑𝑥 ( 11 − 𝑥) = 𝑑𝑑𝑥 (∑𝑥𝑛∞
𝑛=0 ) 

and 𝑑𝑑𝑥 (1 − 𝑥)−1 = 𝑑𝑑𝑥∑𝑥𝑛∞
𝑛=0  

which becomes 1(1−𝑥)2 = ∑ 𝑛𝑥𝑛−1∞𝑛=1 . 

Further, we multiply both sides of the above equation by 𝑥, we get 𝑥(1−𝑥)2 = ∑ 𝑛𝑥𝑛∞𝑛=1 . 

The substitution of (−𝑎𝑔) for 𝑥, gives − 𝑎𝑔(1 + 𝑎𝑔)2 =∑𝑛(−𝑎𝑔)𝑛∞
𝑛=0  

which modifies to − 𝑎𝑔(1+𝑎𝑔)2 = ∑ 𝑛(−1)𝑛+1(𝑎𝑔)𝑛∞𝑛=0 .     (45) 

Substituting (45) into (44), we have 𝜙 = 2𝛼 (𝑣 − 𝜆 − 𝐶) + 2𝛼 (𝜆 + 2𝐶 − 𝑣) 6𝑎𝑔(1+𝑎𝑔)2. 
Putting 𝑔(𝑥) = 𝑒−𝑘𝜀 as defined initially, into the above equation, we get  𝜙 = 2𝛼 (𝑣 − 𝜆 − 𝐶) + 2𝛼 (𝜆 + 2𝐶 − 𝑣) 6𝑎𝑒−𝑘𝜀(1+𝑎𝑒−𝑘𝜀)2.        (46) 

We obtain equation from (46) 𝜙 = 2𝛼 (𝑣 − 𝜆 − 𝐶) + 12𝛼 (𝜆 + 2𝐶 − 𝑣) [ 𝑎𝑒𝑘𝜀 ÷ (1 + 𝑎𝑒𝑘𝜀)2] = 2𝛼 (𝑣 − 𝜆 − 𝐶) + 12𝛼 (𝜆 + 2𝐶 − 𝑣) × 𝑎𝑒𝑘𝜀𝑎2 (1 + 1𝑎 𝑒𝑘𝜀)2 

= 2𝛼 (𝑣 − 𝜆 − 𝐶) + 12𝛼 (𝜆 + 2𝐶 − 𝑣) × 1𝑎 𝑒𝑘𝜀(1 + 1𝑎 𝑒𝑘𝜀)2 

= 2𝛼 (𝑣 − 𝜆 − 𝐶) + 12𝛼 (𝜆 + 2𝐶 − 𝑣) × 𝑒ln(1𝑎)+𝑘𝜀(1+𝑒ln(1𝑎)+𝑘𝜀)2.                        (47) 

Also since 𝑠𝑒𝑐ℎ𝑥 = 2𝑒𝑥1 + 𝑒2𝑥 
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Hence, 14 𝑠𝑒𝑐ℎ2𝑥 = 𝑒2𝑥(1 + 𝑒2𝑥)2 

Let  𝑥 = 12 (ln (1𝑎) + 𝑘𝜀) 

Then      
14 𝑠𝑒𝑐ℎ2𝑥 [ln (1𝑎) + 𝑘𝜀] = 𝑒ln(1𝑎)+𝑘𝜀(1+𝑒ln(1𝑎)+𝑘𝜀)2 

Substituting this into (4.17), the solution 𝑢(𝑥, 𝑡) is obtained 𝜙 = 2𝛼 (𝑣 − 𝜆 − 𝐶) + 3𝛼 (𝜆 + 2𝐶 − 𝑣)𝑠𝑒𝑐ℎ2 [12 ln (1𝑎) + 12 𝑘𝜀] 
Let  𝜗 = 12 ln (1𝑎) 𝜙 = 2𝛼 (𝑣 − 𝜆 − 𝐶) + 3𝛼 (𝜆 + 2𝐶 − 𝑣)𝑠𝑒𝑐ℎ2 [𝜗 + 12 𝑘𝜀] 
also, 𝑘 = √𝜆−𝑣+2𝐶𝑣 = (𝜆+2𝐶−𝑣𝑣 )12. 
and 𝜀 = 𝑥 − 𝑣𝑡, 𝜆 = (𝑝 − 𝑞) 
therefore 𝑈(𝑥, 𝑡) = 2𝛼 (𝑣 + 𝑞 − 𝑝 − 𝐶) + 3𝛼 (𝜆 + 2𝐶 − 𝑣)𝑠𝑒𝑐ℎ2 [12 (𝑝−𝑞+2𝐶−𝑣𝑣 )12 (𝑥 − 𝑣𝑡) + 𝜗]. (48) 

In a special case where𝐶 = 𝑣 + 𝑞 − 𝑝,we obtain that 𝑈(𝑥, 𝑡) = 3𝛼 (𝑣 + 𝑞 − 𝑝)𝑠𝑒𝑐ℎ2 [12 (𝑣+𝑞−𝑝𝑣 )12 (𝑥 − 𝑣𝑡) + 𝜗]. 
The solution is therefore given as: 𝑈(𝑥, 𝑡) = 3 {𝛼(𝑣 + 𝑞 − 𝑝)𝑠𝑒𝑐ℎ2 [12 (𝑣+𝑞−𝑝2𝑣 )12 (𝑥 − 𝑣𝑡) + 𝜗]}−1.    (49)  

But 𝑝 = 2𝐻(𝑇 − 𝑚)2𝐻−1and  𝑞 = 2𝑟𝜎2, 
Therefore equations (48) and (49)  respectively become    𝑈(𝑥, 𝑡) = 2𝛼 (𝑣 + 2𝑟𝜎2 − 2𝐻(𝑇 − 𝑚)2𝐻−1 − 𝐶) 

+ 3𝛼 (𝜆 + 2𝐶 − 𝑣)𝑠𝑒𝑐ℎ2 [12 (2𝑟𝜎2−2𝐻(𝑇−𝑚)2𝐻−1+2𝐶−𝑣𝑣 )12 (𝑥 − 𝑣𝑡) + 𝜗] ,   (50) 

and for the special case 

𝑈(𝑥, 𝑡) = 3{𝛼 (𝑣 + 2𝑟𝜎2 − 2𝐻(𝑇 −𝑚)2𝐻−1) 𝑠𝑒𝑐ℎ2 [12(𝑣+2𝑟𝜎2−2𝐻(𝑇−𝑚)2𝐻−12𝑣 )12 (𝑥 − 𝑣𝑡) + 𝜗]}−1.  (51)  

To consider the non-homogeneous case, we get from equation  
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𝜕𝑈𝜕𝜏  + [2𝐻 (𝑇 − 2𝜏𝜎2)2𝐻−1 + 2𝑟𝜎2] 𝜕𝑈𝜕𝑥 + [2𝐻 (𝑇 − 2𝜏𝜎2)2𝐻−1] 𝜕2𝑣𝜕𝑥2 = 2𝑟𝑈𝜎2  ,                 (52) 

which with 𝜓(𝑡) = [2𝐻 (𝑇 − 2𝜏𝜎2)2𝐻−1 + 2𝑟𝜎2];𝜒 = [2𝐻 (𝑇 − 2𝜏𝜎2)2𝐻−1]; 𝑔(𝑡) = 2𝑟𝑈𝜎2 , 

reduces to 𝑈𝑡 + 𝜒𝑈𝑥𝑥 + 𝜓(𝑡)𝑈𝑥 = 𝑔(𝑡),    (53) 

which we shall solve using algebraic method of the Modified Sine-Cosine. 

The modified sine-cosine method is used to solve the non-homogeneous form of Benjamin-Bona-Mahony 

equation with time-dependent coefficients.  

It of the form 𝑈𝑡 + 𝛼𝑈𝑥𝑥𝑡 + [𝛽(𝑡) + 𝛾(𝑡)𝑈]𝑈𝑥 = 𝑔(𝑡)(54) 

where 𝛼 is a real constant and 𝛽(𝑡), 𝛾(𝑡) and 𝑔(𝑡) are functions depending on the variable t only. Numerous 

investigations have explored various forms of the BBM equation through diverse methodologies, with notable 

contributions from Benjamin, Bona, and Mahony (1972), Wazwaz (2005), Alquran (2012), Alquran and Al-

Khaled (2011), Chen, Lai, and Qing (2007), and Abazari (2013). Applying the framework of equation (53), 

equation (54) undergoes modification as follows: 𝑈𝑡 + 𝛼𝜒𝑈𝑥𝑥𝑡 + [𝛽(𝑡) + 𝛾(𝑡)𝑈]𝑈𝑥 = 𝑔(𝑡).      (55) 

where 𝜓(𝑡) = [𝛽(𝑡) + 𝛾(𝑡)𝑈] 
 

 

The Modified Sine-Cosine and the solution homogeneous equation 

 

The enhanced sine-cosine method, an extension of the conventional sine-cosine method, incorporates 

advancements introduced by Tascan and Bekir (2009), Ali, Soliman, and Raslan (2007), as well as the 

contributions of Alquran and Qawasmeh (2013) and Alquran and Al-Khaled (2011). This method 

acknowledges and employs solutions in the form of: 𝑢(𝑥, 𝑡) = 𝐴(𝑡) cos𝑚(𝜇𝜁) , 𝜁 = 𝑥 − 𝑐(𝑡)    (56) 

and 𝑢(𝑥, 𝑡) = 𝐴(𝑡) sin𝑚(𝜇𝜁) , 𝜁 = 𝑥 − 𝑐(𝑡) .      (57) 

For some parameters𝐴(𝑡), 𝜇,𝑚 and 𝑐(𝑡) to be determined later where𝜇 is the wave number and  𝑐(𝑡) is the 

wave speed being a function of the time 𝑡. From (56), we have 𝑢𝑡(𝑥, 𝑡) = 𝐴′(𝑡) cos𝑚 (𝜇(𝑥 − 𝑐(𝑡))) + 𝑚𝜇𝐴(𝑡)𝑐′(𝑡) cos𝑚−1 (𝜇(𝑥 − 𝑐(𝑡))) sin (𝜇(𝑥 − 𝑐(𝑡))) 𝑢𝑡(𝑥, 𝑡) = −𝑚𝜇𝐴(𝑡) cos𝑚−1 (𝜇(𝑥 − 𝑐(𝑡))) sin (𝜇(𝑥 − 𝑐(𝑡))), 𝑢𝑥𝑥𝑡(𝑥, 𝑡) =𝑚(𝑚 − 1)𝜇2𝐴′(𝑡) cos𝑚−2 (𝜇(𝑥 − 𝑐(𝑡))) − 𝑚2𝜇2𝐴′(𝑡) cos𝑚 (𝜇(𝑥 − 𝑐(𝑡))) − 𝑚3𝜇3𝐴(𝑡)𝑐′(𝑡) cos𝑚−1 (𝜇(𝑥 −𝑐(𝑡))) sin (𝜇(𝑥 − 𝑐(𝑡))) + 𝑚(𝑚 − 1)(𝑚 − 2)𝜇3𝐴(𝑡)𝑐′(𝑡)cos𝑚−3 (𝜇(𝑥 − 𝑐(𝑡))) sin (𝜇(𝑥 − 𝑐(𝑡))). 
 (58) 

Due to the duality relationship between sine and cosine functions, and without loss of generality, we forego 

the analysis argument concerning the solution presented in (57). Subsequently, by substituting (58) into the 

original partial differential equation (55), a trigonometric equation emerges, featuring terms of either cos𝑛(𝜇𝜁)or cos𝑛(𝜇𝜁) sin(𝜇𝜁)). The parameter 𝑛 can be determined by comparing exponents. The necessity for 
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the coefficient of cos𝑖(𝜇𝜁)or cos𝑖(𝜇𝜁) sin(𝜇𝜁)to vanish for all powers of 𝑖 results in a system of algebraic 

equations involving the unknowns 𝐴(𝑡), 𝜇,𝑚and 𝑐(𝑡). The solution proposed in (56) promptly follows from 

this system. 

 

 

 

Generalized Benjamin-Bona-Mahony  

Consider the following non-homogeneous BBM 𝑢𝑡 + 𝛼𝑢𝑥𝑥𝑡 + 𝛽(𝑡)𝑢𝑥 + 𝛾(𝑡)𝑢𝑢𝑥 = 𝑔(𝑡)    (59) 

First, we use the transformation 𝑢(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) + h(𝑡)     (60) 

Substituting (60) in (59) yields 𝑤𝑡 + h′(𝑡) + 𝛼𝑤𝑥𝑥𝑡 + 𝛽(𝑡)𝑤𝑥 + 𝛾(𝑡)𝑤𝑤𝑥 + 𝛾(𝑡)h(𝑡)𝑤𝑥 = 𝑔(𝑡)   (61) 

We require that h′(𝑡) = 𝑔(𝑡) so that h(𝑡) = ∫𝑔(𝑡)𝑑𝑡 
Hence, the following homogeneous BBM equation is obtained 𝑤𝑡 + 𝛼𝑤𝑥𝑥𝑡 + 𝑘(𝑡)𝑤𝑥 + 𝛾(𝑡)𝑤𝑤𝑥 = 0,     (62)  

where 𝑘(𝑡) = 𝛽(𝑡) + 𝛾(𝑡)h(𝑡).      (63) 

Through the substitution of the cosine assumptions from (56) and (58) into (62), and subsequent comparison of 

exponents and collection of coefficients for cos𝑖(𝜇𝜁)or cos𝑖(𝜇𝜁) sin(𝜇𝜁)across all values of 𝑖, the resulting 

algebraic system is as follows: 0 = 𝑚 + 2 0 = (𝑚 − 1)(𝑚 − 2)𝜇2𝛼(𝑡)𝑐′(𝑡) − 𝐴(𝑡)𝛾(𝑡) 0 = 𝐴′(𝑡)(1 − 𝑚2𝜇2𝛼(𝑡)) 0 = 𝑚(𝑚 − 1)𝜇2𝛼(𝑡)𝐴′(𝑡), 0 = 𝑐′(𝑡) − 𝑘(𝑡) − 𝑚2𝜇2𝛼(𝑡)𝑐′(𝑡)    (64) 

Solving the above system yields 𝑚 = −2 𝐴′(𝑡) = 0 𝑐′(𝑡) = 3𝑘(𝑡) + 𝐴(𝑡)𝛾(𝑡)3  𝜇 = ± √𝐴(𝑡)2√𝛼√3𝑘(𝑡)𝛾(𝑡)+𝐴(𝑡) .     (65) 

We obtain the following facts from (65) 

1. 𝐴(𝑡) must be a constant i.e. 𝐴(𝑡) = 𝐴 

2. 𝑐(𝑡) = ∫ 3𝑘(𝑡)+𝐴𝛾(𝑡)3 𝑑𝑡 
3. Since 𝜇 is constant from the cosine assumption, therefore 

𝑘(𝑡)𝛾(𝑡) must be constant. Thus, 𝑘(𝑡) is a multiple of 𝛾(𝑡). 
Therefore from the foregoing we obtain the solution of the BBM (59) as 𝑢(𝑥, 𝑡) = 𝐴 sec2[√𝐴(𝑡)[𝑥−∫3𝑘(𝑡)+𝐴𝛾(𝑡)3 𝑑𝑡]2√𝛼√3𝑘(𝑡)𝛾(𝑡)+𝐴(𝑡) ] + ∫𝑔(𝑡)𝑑𝑡 .  (66) 
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In the context of various cases of the non-homogeneous BBM equation characterized by diverse time-

dependent coefficients, the following discussion unfolds: 

Case 1: In this case we consider 𝛼 = 1, 𝛽(𝑡) = 1, 𝛾(𝑡) = 1, 𝑔(𝑡) = 0, 𝐴 = 1 

By the constraints on the coefficient functions we find that h(𝑡) = 0, 𝑘(𝑡) − 1, 𝜇 = ± 14.  and 𝑐(𝑡) = 4𝑡3  

and the solution of the BBM is 𝑢(𝑥, 𝑡) = sec2 (3𝑥−4𝑡12 )(67)  

Case 2: Considering 𝛼 = 1, 𝛽(𝑡) = 2𝑡 − 𝑡2, 𝛾(𝑡) = 𝑡, 𝑔(𝑡) = 1, 𝐴 = 1 

we find that h(𝑡) = 𝑡, 𝑘(𝑡) = 2𝑡, 𝜇 = ± 12√7 , 𝑐(𝑡) = 7𝑡26  

and obtaining the solution 𝑢(𝑥, 𝑡) = sec2 ( 12√7 (𝑥 − 7𝑡26 )) + 𝑡 .      (68) 

Case 3:In the case where 𝛼 = 1, 𝛽(𝑡) = 2𝑒−𝑡 − 1, 𝛾(𝑡) = 𝑒−1, 𝑔(𝑡) = 𝑒𝑡 , 𝐴 = 1 

we find that ℎ(𝑡) = 𝑒𝑡 , 𝑘(𝑡) = 2𝑒−𝑡 , 𝜇 = ± 12√7 , 𝑐(𝑡) = −7𝑒−𝑡3  

and the solution is 𝑢(𝑥, 𝑡) = sec2 ( 12√7 (𝑥 − 7𝑡23 )) + 𝑒𝑡.     (69) 

Case 4: Considering α = 1, β(t) = 2 sin(𝑡) + 1, 𝛾(𝑡) = sin(𝑡) , 𝑔(𝑡) = csc(𝑡) cot(𝑡) , 𝐴 = 1 

we find that ℎ(𝑡) = − csc(𝑡) , 𝑘(𝑡) = 2 sin(𝑡),  𝜇 = ± 12√7 , 𝑐(𝑡) = −7 cos(𝑡)3  

giving the solution  𝑢(𝑥, 𝑡) = sec2 ( 12√7 (𝑥 − 7 cos(𝑡)3 )) − csc(𝑡).       (70) 

But𝑥 = ln (𝑆/𝐾) 
From the above we have the solutions to our problem in the respective circumstances are 

Case 1 𝑢(𝑥, 𝑡) = sec2 (3ln (𝑆/𝐾) − 4𝑡12 ) 

 

 

Case 2 𝑢(𝑥, 𝑡) = sec2 ( 12√7(ln (𝑆/𝐾) − 7𝑡26 )) + 𝑡 
Case 3 
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𝑢(𝑥, 𝑡) = sec2 ( 12√7 (ln (𝑆/𝐾) − 7𝑡23 )) + 𝑒𝑡. 
Case 4 

 𝑢(𝑥, 𝑡) = sec2 ( 12√7 (ln (𝑆/𝐾) − 7 cos(𝑡)3 )) − csc(𝑡) 
 

Case 5 

However for the classical Black-Scholes; 𝜕𝑉𝜕𝑡 + 𝜎2𝑥22 𝜕2𝑉𝜕𝑆2 + [𝑟 + (𝜇 − 𝛼)]𝑥 𝜕𝑉𝜕𝑆 − 𝑟𝑉 = −𝛼𝑥(71) x > 0, 𝑡 > 0, 𝐻 ∈ (0 ,1), 𝐻 = 12 
 

Solving the nonhomogeneous part of (71); 

Let 𝑢𝑃 = 𝐴 + 𝐵𝑥,   𝑉𝑝′ = 𝐵𝑉𝑝′′ = 0, then [𝑟 + (𝜇 − 𝛼)]𝐵𝑥 − 𝑟(𝐴 + 𝐵𝑥)  =  𝛼𝑥,   

so that 𝑟𝐵𝑥 + (𝜇 −  𝛼)𝐵𝑥 − 𝑟𝐴 − 𝑟𝐵𝑥 =  𝛼𝑥, 

but 𝐴 = 0  and 𝐵 = 𝛼𝜇−𝛼 when the coefficients are compared 

Then 𝑢𝑃 = 𝛼𝜇−𝛼 𝑥.  

 𝑢(𝑥, 𝑡) = sec2 ( 12√7(ln (𝑆/𝐾) − 7 cos(𝑡)3 )) − 𝛼𝜇 − 𝛼 𝑥 

 

 

 

4. Conclusion 

 

The exploration of pricing for addressing the challenges associated with risky assets and their derivatives is a 

fundamental aspect of the field of mathematical finance. Within this domain, the problem of option pricing 

holds particular significance. 

This study delves into the modeling of the option pricing equation using fractional Brownian motion, leading 

to the derivation of a solution for the Regular Long Wave Equation in the context of the Fractional Black-

Scholes Option Pricing Model. 

Further the modified sine-cosine method, coupled with symbolic computation, which proves to be a robust 

approach for effectively addressing the proposed BBM equation featuring time-dependent variable coefficients 
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which used to find Solitary wave solutions are successfully derived, subject to specific constraints on the 

coefficient functions. Additionally, the study provides geometric illustrations that elucidate the physical 

structure of the non-homogeneous BBM was used to find the solution to thenon-homogeneous case ofour 

problem 
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