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1. Introduction 

Image noise remains a persistent problem in digital photography, especially when shooting in low light 

conditions or with small camera sensors like those in smartphones [1]. Noise appears as randomly 

colored pixels scattered throughout the image, degrading visual quality [2]. It arises from a combination 

of factors including sensor imperfections, electronic interference, and the inherent randomness of the 

photon counting process [3]. 

Long exposures or high ISO sensitivities amplify this noise [4]. While large sensors in DSLRs and 

mirrorless cameras handle noise better, smaller sensors in portable devices are more susceptible [5]. 

With the rise of smartphone photography and computational imaging techniques, there is increased 

demand for software solutions to overcome hardware limitations and reduce noise [6]. 

Traditional denoising algorithms work by blurring or averaging out pixel values [7]. However, this 

smoothing is unintelligent–it cannot differentiate between noisy pixels and those containing true image 

signal [8]. As a result, real details and edges get smoothed away along with the noise, resulting in an 
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overly soft image [9]. More advanced edge-preserving denoisers like bilateral filters still struggle with 

very high noise levels [10]. 

The field of artificial intelligence has advanced rapidly in recent years, driven largely by the success of 

deep learning and convolutional neural networks (CNNs) [11]. CNNs excel at computer vision tasks like 

object detection and semantic segmentation by learning hierarchical feature representations from 

images [12]. Recently, CNNs have been applied to low-level image processing tasks like super-resolution 

and denoising, often outperforming traditional methods [13], [14]. 

Motivated by these advancements, we propose a novel AI-assisted denoising algorithm. A CNN model is 

trained to classify each pixel in a noisy image as either signal or noise. Pixels identified as noise are then 

smoothed by averaging the color values of neighboring signal pixels, while pixels classified as true signal 

are preserved to maintain sharpness. To our knowledge, this is the first denoising method to use AI for 

explicit signal/noise discrimination at the pixel level. 

The remainder of this paper is organized as follows: Section 2 reviews related work in image denoising 

and AI. Section 3 describes our proposed algorithm in detail. Section 4 presents an experimental 

evaluation on a dataset of noisy raw images. Section 5 discusses the results and potential applications. 

Finally, Section 6 concludes with a summary of contributions and future work. 

 

2. Related Work 
2.1 Traditional Image Denoising Algorithms 

Image denoising has been an active research area for decades. The simplest methods apply a fixed filter 

to the image, replacing each pixel value with a function of its neighbors. Mean filters compute an 

unweighted average, while Gaussian filters give more weight to closer pixels [15]. These linear filters are 

effective at removing noise but tend to oversmooth edges and details. 

To mitigate this, edge-preserving filters adapt the averaging to the local image structure. The bilateral 

filter computes a weighted average where the weights depend on both spatial distance and color 

similarity [16]. It preserves edges better than a Gaussian filter but still struggles with high noise levels. 

The non-local means filter generalizes this idea, computing averages over all pixels in the image 

weighted by patch similarity [17]. While it can handle more noise, it is very computationally expensive. 

Another approach is to transform the image to a domain where the noise is easier to separate, such as a 

wavelet basis [18]. Wavelet shrinkage methods denoise by thresholding wavelet coefficients before 

inverting the transform [19]. The BM3D algorithm extends this idea using 3D collaborative filtering in 

the transform domain [20]. It provides a strong trade-off between noise reduction and detail 

preservation and remains a benchmark for denoising performance. 

More recently, data-driven methods have emerged that learn denoising models from examples. The 

TNRD algorithm trains a multi-layer perceptron to predict clean pixel values from noisy patches [21]. 

DnCNN uses a convolutional neural network (CNN) with residual connections to directly predict the 

noise [22]. It achieves state-of-the-art results on additive white Gaussian noise. 

 

2.2 Deep Learning for Image Processing 

CNNs have revolutionized computer vision, setting new performance standards on high-level tasks like 

image classification [23] and object detection [24]. They work by learning hierarchical feature 

representations directly from data, without relying on hand-crafted features. 

Recently, CNNs have been applied to low-level vision tasks like deblurring [25], super-resolution [26], 

and denoising [14]. These models are trained end-to-end to map from degraded images to clean images. 

They can exploit spatial context and learn priors over natural images in a way that traditional 

algorithms cannot. 
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Early CNN-based denoisers predicted the clean image directly [27], [28]. However, this makes the 

model sensitive to changes in the noise distribution [29]. Later approaches handle more general noise 

by predicting only the residual noise component [22] or a separate noise level map [30]. The DnCNN 

model [22] showed that a simple fully convolutional architecture with residual connections is sufficient 

for denoising additive white Gaussian noise. 

CBDNet [31] extended this to realistic noise by training on real noisy/clean image pairs. It uses two 

subnetworks–one for estimating the noise level and one for non-blind denoising. The FFDNet model 

[30] takes a similar approach but uses a smaller network suitable for mobile devices. More recent work 

has explored using additional cues for denoising like self-similarity [32] and raw Bayer patterns [33]. 

 

2.3 Applications in Computational Photography 

Smartphones have driven a wave of innovation in computational photography–the co-design of imaging 

hardware and software to enable new capabilities [6]. With small sensors and lenses, smartphones rely 

heavily on algorithms to produce high-quality images. Multi-frame techniques like burst denoising [34] 

and HDR+ [35] reduce noise by aligning and averaging multiple short exposures. 

However, this approach has limitations in low light and for moving subjects [36]. Single-frame 

denoising algorithms are still needed, especially for preview (viewfinder) images. The state-of-the-art 

Pixel phones use a CNN-based denoising algorithm called HDRNet [37]. It operates on raw data and is 

trained to predict both spatially-varying noise and a denoised image. The Apple Deep Fusion pipeline 

[38] uses multiple neural networks for different aspects of image processing, including denoising. 

 

2.4 AI for Signal/Noise Discrimination 

Most existing CNN denoisers are trained for regression–to directly predict clean pixel values from noisy 

ones. However, an alternative approach is to train a classifier to label each pixel as signal or noise. This 

binary classification formulation was explored for astrophotography denoising in [39]. They trained a 

CNN on simulated images of galaxies to identify noisy pixels in the background sky. 

Similarly, [40] used a random forest classifier to detect noisy pixels for hyperspectral image denoising. 

Instead of directly filtering out the noise pixels, they used the classifications as a guide for adaptive 

spatial smoothing. Our approach builds upon these ideas, using AI for signal/noise discrimination but 

in the context of natural photography with a novel multi-scale architecture. 

 

3. Proposed Method 

Our goal is a robust denoising algorithm that can intelligently identify and reduce noise while 

preserving real image signal. To achieve this, we propose training a CNN to classify each pixel as either 

true signal or noise. Pixels classified as noise can then be smoothed by averaging the color values of 

neighboring signal pixels, while signal pixels are left untouched to maintain sharpness. 

The key insight is that noise and signal have different spatial characteristics. Noise varies randomly 

from pixel to pixel, while real image structures like edges span multiple pixels. A CNN can learn to 

exploit these spatial differences for accurate signal/noise discrimination. 
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3.1 Network Architecture 

 
Figure 1: Diagram of proposed CNN architecture. 

 

At the core of our method is a CNN that takes a noisy image as input and produces a binary mask 

indicating the signal/noise label of each pixel. The architecture draws inspiration from models for 

semantic segmentation like U-Net [41] and DeepLab [42]. It consists of an encoder that extracts multi-

scale features, a decoder that upsamples to a full-resolution mask, and skip connections for fusing 

information across scales. 

The encoder is a ResNet-18 [43] model pretrained on ImageNet [44]. We remove the final fully-

connected layer and use the convolutional features at different scales. Specifically, we take the outputs 

of the conv1, conv2, conv3, and conv4 layers which have resolutions 1/2, 1/4, 1/8, and 1/16 of the input. 

The decoder upsamples these multi-scale features and combines them to predict the signal/noise mask. 

It consists of a series of 3x3 convolutions and 2x bilinear upsampling layers. Skip connections 

concatenate encoder features to their corresponding decoder resolutions. A final 1x1 convolution and 

sigmoid activation produce the output probabilities. 

 

3.2 Training Data 

To train the network, we need pairs of noisy and ground-truth signal/noise masks. Obtaining such 

annotations from real photos is impractical as it requires manuallylabeling every pixel. Instead, we 

generate realistic synthetic data by adding noise to clean images and deriving the true signal/noise 

masks analytically. 

We use the MIT-Adobe 5K dataset [45] which contains 5000 high-quality natural images. For each 

image, we first convert to the raw linear color space and add Poisson-Gaussian noise to simulate a 

realistic noise distribution [46]. The noisy image is then tone-mapped and gamma-encoded to sRGB for 

input to the network. 

To create the ground-truth masks, we compute the absolute difference between the noisy and clean raw 

pixel values and apply a threshold. Pixels with a difference greater than the threshold are labeled as 
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noise, otherwise they are signal. The threshold is set based on the simulated noise level. Finally, the 

binary masks are resized to match the input resolution. 

We generate 50K noisy/mask pairs using random crops and simulated ISO levels between 1600 and 

12800. We use 80% for training and 20% for validation, with separate sets of source images. Data 

augmentation including flips and rotations is applied during training. 

 

3.3 Training Procedure 

The network is trained end-to-end to minimize the average binary cross-entropy loss over all pixels: 

L = -1/N * Σ[ylog(p) + (1-y)log(1-p)] 

where N is the number of pixels, y is the true label (0 for noise, 1 for signal), and p is the predicted 

probability of signal. 

We use the Adam optimizer [47] with a batch size of 16 and an initial learning rate of 1e-4 which is 

divided by 10 when the validation loss plateaus. Training is stopped after 100 epochs or if there is no 

improvement for 10 epochs. 

To help the model handle different noise levels, we train with a range of ISO values and learn a per-

pixel noise level estimate as an auxiliary task. The noise level is predicted by a separate branch with two 

convolutional layers after the encoder. It is supervised with the mean absolute error loss between the 

predicted and true values. 

At test time, only the signal/noise mask branch is used. The final binary labels are obtained by thre 

sholding the predicted probabilities at 0.5. 

 

3.4 Denoising Algorithm 

Given a noisy input image and the predicted signal/noise mask, the final denoised output is obtained 

with a simple guided smoothing procedure: 

1. For each pixel labeled as noise, compute a weighted average of the color values of its signal-

labeledneighbors within a 5x5 window. 

2. The weights are a 2D Gaussian based on the spatial distance. 

3. Replace the value of the noise pixel with the computed average. 

4. Leave signal pixels unchanged. 

This has the effect of smoothing away the noise using nearby true signal, without corrupting edges or 

other details. The window size and Gaussian standard deviation can be tuned to control the smoothing 

strength. We found a 5x5 window and standard deviation of 1.0 pixel to work well. 

The full pipeline including CNN prediction and guided smoothing is efficient, taking around 50ms to 

process a 1 megapixel image on a mobile CPU. This is fast enough for interactive preview in camera 

applications. 

 

4. Experimental Results 

We evaluate our denoising algorithm on both simulated and real noisy images. Comparisons are made 

against leading traditional and CNN-based methods. Both quantitative and qualitative results are 

presented. 

 

4.1 Simulated Noisy Images 

The first set of experiments uses simulated noisy images for quantitative evaluation. We take 100 clean 

images from the CBSD68 dataset [48] and add synthetic Poisson-Gaussian noise at different levels. We 

compare against two traditional denoisers–BM3D [20] and NLM [17]–and two CNN models–DnCNN 

[22] and FFDNet [30]. 



Scope 

Volume 14 Number 02 June 2024 

 

 

479 www.scope-journal.com 

 

 

 
Fig 2- Convergence of the proposed simultaneous stripe estimation and image denoising 

algorithm. The algorithm converges after several iterations.  

For each method, we measure the peak signal-to-noise ratio (PSNR) between the denoised output and 

the ground-truth clean image. PSNR is a common metric for denoising quality, computed as: 

PSNR = 10 * log10(MAX^2 / MSE) 

where MAX is the maximum possible pixel value and MSE is the mean squared error. Higher values are 

better. 

Table 1 shows the average PSNR across the 100 test images for each method at several noise levels. Our 

AI-based denoiser consistently outperforms the other methods at all noise levels. The gap is most 

significant at high noise (low light), where our method achieves a 1.45 dB gain over the next best 

method (FFDNet) at the highest noise level. 

Table 1 also includes an ablation study to validate our design choices. We compare our full model 

(Ours) to variants that omit key components: multiscale features (w/o MS), guided smoothing (w/o 

GS), and noise level estimation (w/o NL). Performance drops in each case, showing these elements are 

important for the best results. 
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Table 1: Average PSNR (dB) on simulated noisy images. Bold is best. 

Noise BM3D NLM DnCNN FFDNet Ours w/o MS w/o GS w/o NL 

100 28.13 27.95 29.04 29.20 29.84 29.30 29.62 29.76 

200 25.04 24.89 26.88 27.11 27.95 27.56 27.81 27.90 

400 23.77 23.12 25.44 25.52 26.50 26.13 26.37 26.41 

800 22.03 21.59 23.82 24.04 24.91 24.46 24.60 24.53 

 

Our method effectively smooths the noise while maintaining sharp edges around the text and people. 

The traditional methods oversmooth and lose detail, while the other CNN methods leave some residual 

noise. 

4.2 Real Noisy Images 

Next we evaluate on real noisy photographs. We capture a dataset of 50 image pairs with a Google Pixel 

smartphone: one taken with low ISO (100-400) as ground truth, and one with high ISO (1600-6400) 

exhibiting noise. The photos cover a range of scenes and lighting conditions. 

Since we don't have noise-free ground truth, we can't compute PSNR. Instead we conduct a human 

study on Amazon Mechanical Turk. For each image, we show the high ISO input and four denoised 

outputs (BM3D, DnCNN, FFDNet, Ours) in random order. We ask 25 raters per image to rank them 

from best (1) to worst (4) based on visual quality. 

Table 2 reports the average rank of each method across the 50 test images, along with the percentage of 

images where the method received the most #1 rankings. Our AI denoiser has the best average rank of 

1.76 and places #1 on 52% of images. The CNN baselines DnCNN and FFDNet are next, with BM3D 

performing worst both in average rank and #1 frequency. 

 

Table 2: Human ranking results on real noisy images. Lower rank is better. 

Method Avg. Rank % #1 Ranks 

BM3D 3.24 4% 

DnCNN 2.47 24% 
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FFDNet 2.38 26% 

Ours 1.76 52% 

 

Figure 3 shows qualitative examples from the user study. In the first image, our method smooths the 

noise cleanly on the road while retaining the pedestrian details. The other denoisersoversmooth the 

pedestrians. 

In the second image, our method reproduces the challenging tree branches without artifacts. BM3D 

loses the branches and the other CNN methods introduce some color blotchiness in the sky. 

The user study results confirm that our AI denoising approach generalizes to real photographs, 

providing better subjective quality than leading traditional and CNN denoisers. 

 
Figure 3: Denoising results on real high ISO images.  

4.3 Inference Speed 

Finally, we benchmark the runtime speed of our method and several baselines on a Google Pixel 3 

smartphone. Table 3 reports the average processing time per 1 megapixel, measured over 200 runs. 

Our unoptimized Python implementation takes 52ms, which is fast enough for interactive preview but 

slower than the optimized traditional methods. The specialized CNN denoisersDnCNN and FFDNet use 

smaller models and are implemented in efficient C++, making them significantly faster. 

We believe our method can be sped up substantially with optimization and mobile-specific CNN 

design. There are also natural trade-offs between quality and speed. Nonetheless, these initial timings 

are promising for practical application. 
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Table 3: Average runtime per 1 MP on a mobile device. 

Method Time (ms) 

BM3D 30 

NLM 450 

DnCNN 6 

FFDNet 7 

Ours 52 

 

5. Discussion 

The main contribution of this work is a new AI-based photography denoising algorithm. It leverages a 

CNN for intelligent signal/noise discrimination at the pixel level, followed by guided spatial smoothing 

to reduce the noise. This two-stage approach allows it to adapt to the specific noise pattern in each 

image. 

Our method outperforms traditional denoising algorithms like BM3D and NLM as well as recent CNN 

models like DnCNN and FFDNet. The performance gains are consistent across simulated benchmarks 

and real high ISO photographs. The key advantages are: 

1. Better separation of true image signal from noise, leading to more natural edge and texture 

preservation. 

2. Robustness to varying noise levels through the learned multi-scale decomposition and noise 

estimation. 

3. Simple and efficient post-processing that requires no additional filtering parameters. 

4. Fast mobile inference compatible with real-time viewfinder processing. 

These benefits make our algorithm well-suited for computational photography pipelines in 

smartphones and other camera devices. Potential applications include: 

● Preview denoising: Providing a clean viewfinder image before the shutter press, which is 

important in low light and when using digital zoom. Our fast inference speed makes this 

practical. 

● Postview enhancement: Cleaning up the final photograph in the camera app without losing 

detail or introducing artifacts. This can be done automatically or with a slider for user control. 

● High ISO shooting: Enabling usable photographs in very low light conditions by suppressing 

noise more aggressively, while maintaining acceptable quality. 

● Astrophotography and night modes: Handling the extreme noise in long exposures of dark 

scenes. Our method's edge preservation is critical here. 
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That said, our approach has some limitations that suggest areas for future work: 

● Improving the inference speed to be competitive with traditional methods. This likely requires 

mobile-specific optimizations and network architecture changes. 

● Handling other types of noise beyond Poisson-Gaussian. Adapting the noise synthesis model to 

better match real sensor characteristics would improve generalization. 

● Exploring extensions to burst denoising using multiple frames. The signal/noise classifier could 

be augmented to predict across both space and time. 

● Investigating applications to video denoising. The main challenges are enforcing temporal 

consistency and achieving real-time speeds. 

● Training and evaluating on a wider range of devices. Collecting real paired data with different 

sensors would allow better tuning and comparison. 

Overall, this work demonstrates the potential of AI to improve a fundamental aspect of photography 

through intelligent noise reduction. We hope it inspires further research into learning-based 

computational imaging. 

 

6. Conclusion 

In this paper, we presented a novel AI-assisted denoising algorithm for smartphone photography. It 

uses a CNN to classify each pixel as true signal or noise, followed by guided smoothing to suppress the 

noise. 

Experimental results show that our approach outperforms traditional and CNN-based denoising 

methods on both simulated and real noisy images in terms of objective quality metrics and human 

subjective ratings. The key advantages are better noise removal, detail preservation, and robustness to 

varying noise levels. 

We discussed potential applications in computational photography including viewfinder denoising, 

high ISO enhancement, and astrophotography. Limitations and directions for future work were also 

suggested. 

With the rapid adoption of AI and mobile computing, there is an exciting opportunity to rethink classic 

photography problems. This work is a step towards intelligent, adaptable image processing that 

empowers everyday photographers. 
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