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Abstract: This study develops a mathematical model to examine the dynamics
of cyclone intensity under climate change and proposes an optimal control
strategy to mitigate its impacts. Recent observations indicate a marked rise in
tropical cyclone intensity over past decades, largely driven by increasing global
temperatures. The model captures the interactions between sea surface
temperature, accumulated cyclone energy, and cyclone intensity. By applying
Pontryagin’s Maximum Principle, we derive optimal control trajectories aimed
at minimizing cyclone intensity while maintaining system stability. Numerical
simulations reveal that adaptive temperature reduction strategies significantly
outperform fixed controls, leading to lower cyclone intensity and enhanced
system resilience over time. The analysis further establishes that the system’s
equilibrium points are both locally and globally asymptotically stable, ensuring
the feasibility of long-term solutions. Sensitivity analysis highlights the
temperature growth rate and control effort as the most influential parameters,
high lighting the importance of targeted interventions.
Keywords: Environmental Management, Pontryagin’s Maximum Principle,
Climate mitigation, Numerical simulations, Optimal Control

1. Introduction

Tropical cyclones are among the most devastating natural disasters, causing immense
destruction to human lives, infrastructure, and ecosystems. Their increasing frequency
and intensity in recent decades have been strongly linked to rising global
temperatures, a consequence of anthropogenic climate change. Warmer sea surface
temperatures (SSTs) act as a primary energy source for cyclone formation, fuelling
stronger winds, extending storm lifespans, and significantly amplifying their
destructive potential. This intensification is particularly pronounced in tropical and
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subtropical regions, where elevated SSTs have led to an increase in high-intensity
cyclones, resulting in devastating storm surges, torrential rainfall, and large-scale
flooding. However, cyclones are not merely passive consequences of climate change;
they actively influence the climate system by redistributing ocean heat, altering
atmospheric circulation patterns, and driving oceanic mixing. This complex interplay
between cyclone activity and climate variability makes long-term cyclone forecasting
particularly challenging, necessitating the development of advanced models that
account for both climate change and cyclone-induced feedback mechanisms.
Mathematical modelling has emerged as a crucial tool for analysing the nonlinear
dynamics of tropical cyclones. Traditional models, rooted in thermodynamics and
fluid dynamics, have significantly improved storm forecasting by simulating
formation, intensification, and dissipation processes. However, many of these models
overlook the long-term influence of climate change and the potential role of human
intervention in mitigating cyclone intensity.

Climate change is significantly influencing tropical cyclones (TCs), as explored
through various modelling, observational, and theoretical approaches. For instance,
Walsh et al. (2000) found that storm intensities increased under enhanced greenhouse
conditions, although their significance was constrained by vertical wind shear and
model resolution. Similarly, Tsuboki et al. (2015) projected that future super typhoons
could reach extreme intensities in a warming climate. In the same vein, Wu et al.
(2022) and van (2024) further reinforced theoretical evidence of intensification;
however, they also highlighted uncertainties stemming from data limitations, natural
variability, and model biases, which complicate basin-wide assessments. In addition to
storm physics, the socioeconomic and ecological dimensions of TC impacts have been
emphasized. For example, Mendelsohn et al. (2012) demonstrated that economic
losses from stronger storms could more than double, whereas Kropf et al. (2025) and
Hiilsen et al. (2025) projected long-term vulnerability of terrestrial ecosystems. The
devastating human consequences of extreme storms were further illustrated by Knabb
et al. (2005), who documented Hurricane Katrina as one of the most destructive
hurricanes in U.S. history, reaching Category 5 intensity. At a regional scale, Gupta et
al. (2019) reported severe impacts in the Bay of Bengal, while Li et al. (2025) showed
that rapid intensification events in the Arabian Sea have doubled since 2013 due to
rising SSTs. Supporting these observations, Hill et al. (2010) and Bhatia et al. (2018)
predicted that future TCs will likely become more frequent and intense, exhibiting
larger pressure deficits and increased precipitation rates. Advances in modelling and
data-driven approaches have also provided valuable insights. For instance, Chen et al.
(2025) reconstructed cyclone wind profiles to reveal increases in extreme storms, Wu
et al. (2025) linked SST rises to intensification, and Varalakshmi et al. (2023) improved
forecasts in India using hybrid deep learning techniques. Moreover, Sun et al. (2022)
identified a threshold SST governing cyclone strengthening, whereas Régibeau-
Rockett et al. (2024) demonstrated that mechanical efficiency declines at very high
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SSTs due to atmospheric moisture effects—thus underscoring the complex role of
ocean temperatures. Several classic contributions have also shaped the theoretical
foundation of TC research. Chan et al. (2001) identified an SST threshold of
approximately 27°C for TC development, while Emanuel (2005) introduced the power
dissipation index (PDI) to measure hurricane destructiveness, showing a marked
increase since the 1970s as storms became stronger and longer-lived. In addition, Dare
et al. (20m1) reported that SSTs cool by an average of —0.9°C after TC passage, with
recovery times varying by storm intensity and seasonality. Likewise, Chavas et al.
(2017) established a theoretical relationship between central pressure deficit and peak
wind speed, thereby improving the understanding of TC intensity. Similarly, Holland
(1997) described the acceleration of maximum potential intensity (MPI) above 26°C.
Looking ahead, Knutson et al. (2010, 2020) projected that although the overall
frequency of TCs may decrease by 6-34%, their intensity is expected to increase by 2—
11%. Furthermore, Hart et al. (2001) found that 46% of Atlantic TCs transitioned to
extratropical storms, primarily affecting the northeastern United States, Canada, and
Europe. Finally, Vecchi et al. (2007) concluded that regional warming patterns, rather
than localized SST increases alone, play a more decisive role in shaping TC potential
intensity.

Collectively, these studies highlight the central role of SST in shaping cyclone strength
and frequency; however, they largely focus on natural warming trajectories rather than
policy-driven cooling or stabilization of SSTs. This points to a crucial gap: while the
intensifying effect of rising SSTs on TCs is well established, limited attention has been
given to how climate mitigation policies that regulate SST might alter cyclone
behavior. To address this gap, the present study develops a dynamical model that
incorporates a control parameter representing policy strategies, thereby providing a
novel framework to assess how temperature regulation could influence cyclone risks
in a changing climate.

2. Model formulation

Cyclone intensity is driven by the interaction of accumulated cyclone energy, sea
surface temperature, and external controls. Warm ocean waters enhance storm
intensity through latent heat, while environmental factors like wind shear, land
interaction, and ocean cooling limit growth. Accumulated cyclone energy reflects the
storm’s energy, influenced by ocean temperature and atmospheric conditions. Sea
surface temperature evolves due to natural warming, cyclone-induced mixing, and
climate mitigation efforts. Global interventions, such as greenhouse gas reduction and
ocean cooling, regulate sea surface temperature and help control cyclone intensity.
We assume that at time t,S(t), E(t), and T(t) represent the level of cyclone intensity,
accumulated cyclone energy, and the sea surface temperature respectively.

The level of cyclone intensity is driven by the interplay between sea surface
temperature and accumulated cyclone energy. Warmer sea surface temperatures
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supply the latent heat necessary to sustain cyclones, while accumulated cyclone
energy enhances storm intensity; however, excessive warming induces saturation
effects, increasing wind shear and dry air intrusion, which limit further intensification.
We assume that a is the energy transfer coefficient that represents the cyclone energy-
driven intensification process. Physically, it suggests that the rate of change of cyclone
intensity increases proportionally to both the current strength of the cyclone and the
amount of energy stored in the system. This reflects a positive feedback mechanism: as
the cyclone becomes more intense and the surrounding environment holds more
energy, the cyclone can strengthen even further.

Similarly, we introduce 3 as the sensitivity coefficient, which governs the temperature-
dependent growth of cyclone intensity, modulated by a saturation effect. At lower sea
surface temperature (SST) levels, even small increases in temperature can significantly
enhance cyclone strength because additional thermal energy becomes available to fuel
storm development. However, as SST continues to rise, various environmental
constraints — such as increased atmospheric stability, enhanced upper-ocean heat
mixing, and limitations in moisture supply or outflow ventilation — begin to cap the
cyclone’s potential intensity. This leads to a phenomenon known as saturation, where
further increases in SST contribute progressively less to cyclone growth, thereby
preventing unbounded intensification. To capture the natural constraints on warming-
induced intensification, we assume that o is the energy transfer rate associated with
SST dynamics, and m represents a temperature threshold beyond which the ocean can
no longer sustain unchecked warming. The term follows a logistic-type behavior:

when the SST T is relatively small compared to m, the factor (1 - %) remains close to

1, allowing SST to increase almost linearly. However, as T becomes larger and
approaches the value of m, the factor steadily decreases toward zero, slowing the SST
growth and reflecting the system’s natural resistance to excessive heating. Finally,
cyclone dissipation, influenced by processes such as landfall, ocean surface cooling,
and atmospheric instability, is modelled by the linear decay term pS, where p
represents the dissipation rate. This term accounts for the natural weakening of
cyclones over time due to environmental and surface interactions that oppose
intensification.

The evolution of accumulated cyclone energy (ACE) is primarily influenced by the
interactions between sea surface temperature (SST) and cyclone intensity. Warmer
SSTs provide the essential latent heat that fuels cyclone activity, while stronger
cyclones extract more energy from the environment, thereby increasing the
accumulated cyclone energy. However, excessive warming can introduce inhibiting
factors, such as enhanced vertical wind shear and dry air intrusion, which disrupt
storm organization and limit further energy accumulation. We assume that p is the
energy extraction coefficient, representing the efficiency with which cyclones draw
available oceanic heat into kinetic energy. Physically, this coefficient implies that
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higher sea surface temperatures and existing levels of cyclone energy together
promote the growth of accumulated cyclone energy, reflecting a positive feedback
loop where favourable oceanic conditions intensify storm development.

To account for the regulation of ACE through cyclone intensity, we introduce t as the
intensity-energy coupling coefficient. This coefficient captures the idea that while
stronger cyclones can tap into more energy, they also trigger internal structural
changes and increased interaction with environmental conditions that moderate
further energy accumulation. Thus, t acts as a balancing factor that prevents unlimited
growth of accumulated energy as cyclone strength rises. Additionally, we incorporate y
as the natural dissipation rate of accumulated cyclone energy, representing the
combined effects of surface frictional losses and turbulent mixing with the
surrounding atmosphere. This coefficient ensures that without continuous energy
input from warm ocean surfaces, accumulated cyclone energy gradually decays over
time due to environmental and surface processes.

The evolution of sea surface temperature (SST) is a critical driver of cyclone dynamics
and energy accumulation. SST increases are primarily influenced by external heat
fluxes, ocean-atmosphere interactions, and internal oceanic processes. Warmer SSTs
enhance the available latent heat for cyclones, but feedbacks from cyclonic activity
and vertical mixing processes can limit or even reduce SST over time. We assume ¢ as
the rate of temperature increase due to climate change, capturing the baseline rise in
sea surface temperature (SST) driven by external factors, such as solar radiation and
atmospheric heat fluxes. Cyclone-induced cooling is modelled by &, where § quantifies
the efficiency of energy-driven ocean mixing in reducing SST. As cyclones interact
with the ocean, they enhance vertical mixing, drawing cooler waters from below the
surface and lowering the local SST. The strength of this cooling effect is proportional
to both the cyclone energy E and the SST T, with § determining the efficiency of this
process.

In addition, we introduce u as the global temperature reduction effort coefficient,
representing the impact of human interventions such as climate change mitigation
policies, carbon emission reductions, and strategies aimed at curbing SST increases.
These efforts act as an additional cooling influence on SST dynamics. However, the
effectiveness of such measures diminishes as SST becomes very high, reflecting
practical limitations in how much global action can offset the thermal inertia of the
ocean. Finally, n is introduced as a saturation threshold parameter that modulates the
efficiency of background cooling efforts. When SST levels are relatively low, the global
temperature reduction measures are more effective; but as SST rises closer to n, the
impact of cooling interventions weakens, realistically capturing the challenges of
reversing warming trends in a heavily heated ocean system.
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By using the above assumption we formulate the mathematical model as

s _ SE + BST + T(l T) s)

at - PETTyr e m)

dE

< = PTE —TSE—VE r(2.1)
dT_ T TE uT
a ¢ § n+T J

Note that all the parameters considered in the model system (2.1) are nonnegative.

3. Dynamical behaviour of the System
In this section, we discuss the boundedness of the system, equilibria and their
stability, sensitivity analysis, and other related aspects.

3.1. Boundedness of the system
Theorem 3.1: All solutions of system (2.1) with non-negative initial conditions are
ultimately bounded, i.e., there exists M > 0 such that (t), E(t), T(t) <M, Vvt >0.

Proof: We define a positive function

X=v;S+ vyE +v3T
where v;,v,,v3 are positive constants chosen appropriately to balance the
contributions from cyclone intensity (S), accumulated cyclone energy (E), and
temperature (T).

Taking the time derivative along the system trajectories, we obtain
dX ds dE dT

E— Vla+V2a+V3a
Substituting the system (2.1), we get:

dx BST T
T (aSE + 1+_T+ oT (1 - B) - uS) + v,(pTE — tSE — yE)
uT
+ V3 ((pT — ETE - n+—T>
To show that X(t) is bounded, we assume there exists a positive constant M such that
d—X <M-nX
dt —

where 1 is a positive constant. This differential inequality suggests that X grows at
most linearly for small values but is suppressed for large values.
By applying the standard comparison principle, we integrate both sides

M
X() < 5 (1—e™M) +X(0)e ™Mt
Taking the limit as t — oo, we obtain
M
Xt) £ —
n

Since X(t) is a linear combination of S, E,and T with positive coefficients, it follows
that S,E,and T are individually bounded. Hence, the system is ultimately bounded,
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ensuring that cyclone intensity, accumulated cyclone energy, and temperature do not
grow indefinitely.

3.2. Equilibria of the System

Our proposed model has three different equilibria

(i) Trivial equilibrium (TE:) £°(0,0,0),

Represents a state where cyclone intensity, accumulated cyclone energy, and sea
surface temperature diminish to zero, implying no cyclone activity.

(ii) Temperature-Regulated Cyclone Equilibrium: E*(S;, 0, T;)

This equilibrium corresponds to a scenario where the cyclone intensity and sea surface
temperature are non-zero, but the accumulated cyclone energy is zero. The

equilibrium values are given by:
_ o(u-ne)(ut+e-ne)[(m+n)p-u] _u-ng
1= S prmrmBrwe G 11T

i —— e p __ v _ _Pusnop

Let us consider where,R; = — R, = o R; = T and R, = Tht DB

Using these, the equilibrium point E? can be rewritten as
_on?(m+n)(R1-1)(Rz—1)(R3—1) _ _

1= preGmprey 04 o= n(R = D).

The equilibrium point E! is considered feasible if the cyclone intensity and

temperature at equilibrium are non-negative. Since R; > 1 implies that R, > 1and
R; > 1 implies that R, > 1,
the equilibrium,E*(S;,0,T;)is feasiblewhen the following inequalities are satisfied
simultaneously: R; > 1and R, > 1.
(iii) The interior equilibrium E*(S*, E*,T*)
This equilibrium corresponds to a coexisting state where all three variables are non-
zero: S*#0,E*#0andT* # 0. The value of S*satisfies the following quartic
polynomial:
AS* + A,83 + A35% + AS + Ag = 0(3.1)
Where the coefficients are defined as:
A, = —éott
Ay = 2 (mp(Bp — uép + &0t — app) — £(4y + p + np)ot)
Az = 1(=¢(6y* + 3(1 + n)yp + np*)at + mp(BEp(2y + np) + y(—2uép + 3¢ot
— 2apg) + p(uap — (L + n)(usp — {0t + apy))))
Ay = —yE(4y? +3(1 + n)yp + 2np?)ot — mp(=Pyép(y + np) + y?*(uép — 3¢ot
+app) +yp(—uap + (1 + n)(uép — 2§01 + apy)) + p*(—uap + n(uép
—$ot + ap)))

As = —y§(y + p)(y —mp)(y + np)o
Using Descartes’ Rule of Signs, the polynomial equation (3.1) has a unique positive

root if the number of sign changes in its coefficients suggests exactly one positive real
root. In particular, if all coefficients satisfy:4; <0, 4, < 0,4; <0, A, < 0and4; <0,
then the polynomial has exactly one positive real solution. This guarantees the
existence of a unique interior equilibrium.
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Once the positive root S* is determined, it can be substituted back into the
expressions derived from system (2.1) to compute the corresponding equilibrium
values E* and T~.

Interior Equilibrium Continued: The equilibrium value of the accumulated cy-clone
energy E*, corresponding to a known S*, is given by:

Yo +npp + S*tep —up
E*=
Sp(y +np + 577)
The corresponding equilibrium sea surface temperature T* is obtained as the positive

root of the following quintic equation:
B,T> + B,T* + B3T® + B,T? + BT + B, = 0(3.2)

where the coefficients are defined as:
B, = —¢%0

B, = —(1—m+ 2n)é%c

B; = —n(2 +n)é%0 + mé(Bp — up + &0 + 2néo) + mapg

B, = —n*§?o + m(§(B(np —y) —uap + u(y — (1 + n)p) + n(2 + n)éo) + a(p + np

— 7))
Bs = m(ua(y — p) +{(vu — n(By — yu + up) + n*éo) — a(y + ny — np)g)
Bg = —my(nag — ua — nué)
By Descartes Rule of Signs, equation (3.2) admits a unique positive root if the
coefficients change sign exactly once. This condition is satisfied if
B,<0,B,<0,B;<0,B,<0,Bs <0andBg <0,
Under this condition, the quintic equation has exactly one positive solution, ensuring
the existence of a unique, positive equilibrium value T~ .

3.3. Stability Analysis.
A. Local Stability.
Here, we analyze the local stability at different equilibrium points of the proposed
system.
Local Stability at the Trivial Equilibrium E°(0,0,0)
To examine the local stability at the trivial equilibrium E°, we compute the Jacobian
matrix of system (2.1) evaluated at £°(0,0,0) The Jacobian is given by:
—-u 0 o
0 -y 0

J(E?) = u
0o 0 - - + o

The eigenvalues of this matrix, which determine the local stability of the system, are
given by 4, = -y, 1, = —p A3 =— % + ¢. For the equilibrium E° to be locally
asymptotically stable, all eigenvalues must be negative. The first two eigenvalues, 4, =
—y,A, = —pu, are always negative. However, the stability of the equilibrium critically
depends on the sign ofA;, which is determined by the relationship between the control
parameter u and the temperature-related parameter ¢. Specifically, the equilibrium is
stable if and only if R; > 1.
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Local Stability at the Equilibrium E*(S;,0,T;)
The Jacobian matrix at Eis given by

T.p Si6 2T o
— S,a ——to——
14T, (1+Ty)? m
J(EY) = 0 —y +Tip— St 0
0 T s +
18 (n+Ty)? ¢
The eigenvalues of the Jacobian matrix, which determine the local stability of the
equilibrium, are given by 4; = — (p(u_mp)(uﬂp_mp), Ay = — UpZup NP O P ILE , and

u(ng-u-¢) ng—u-¢
A3 = (U0t + uPAp + uBgp? — [m(n(B —w) +u) + (¥ + np) + (n — Dn(m
+ n)ot]p?) / (me? [uu — B) + (B —p) + W)
whereA = [m(u —B)p — (m + 3n — 1)or1]
and B = [mu(p —y — 2np) + mB(y + 2np) + m(2n — 1)ot + n(3n — 2)o7]
These three eigenvalues can be written as

_ npRimD®Re-D , _ [uprd(utnp)lRs—1]
A = w2 = nbr—n  2nd

A3 = —[m((n(Rs — 1) + mRy)(u — B) + 1) ((Rs — 1)p + mRsp — )
+ (m+n)(R; —1)(n(R; — 1) + mR3)(1 + n(R; — 1) + mR3)ot]
/Imn(Ry — D(B + uR>)]

For the equilibrium point E' to be locally asymptotically stable, all eigenvalues

associated with the system—namely 4;,4,, and A;—must be negative. This ensures
that any small perturbation around the equilibrium will diminish over time, allowing
the system to return to its steady state. Specifically, .; < 0 when R; > 1, since Ry > 1
implies that R, > 1.

Now, A, < 0 when R, > 1andR, > 1. Again, we have the relation R; > 1 implies
that R; > 1and R, > 1 implies that R, > 1. So it is a routine calculation to verify that
Az < 0 when Ry > 1,
R,>1,u=pand n(R; — 1)p + mR3p > .

Therefore, the local asymptotic stability of the temperature-regulated cyclone
equilibrium, E*(S;,0,T;) is guaranteed when the following conditions are met
simultaneously: R; > 1,R, > 1,u > B and n(R; — 1)p + mR3p > v.

Local Stability at the Equilibrium E*(S*, E*, T*)

Theorem 3.2: The system (2.1) is locally asymptotically stable around its equilibrium
E*(S*E*,T*) if d; >0, d, > 0, d3> 0, and d;d, > d;, where the symbolic
parameters are defined in Appendix A.

Proof: The characteristic equation of the system (2.1) around the equilibrium E* is
given by

AB+diA2+d,A+d;=0 (33)
Where, d,, d,and dsare defined explicitly in Appendix A.
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According to the Routh-Hurwitz criteria, all the roots of the characteristic equation
will have negative real parts if the conditions stated in the theorem hold, ensuring that
the system (1) is locally asymptotically stable around the equilibrium E*.

B. Global Stability
Theorem 3.3: The equilibrium (S*,E*,T*) is globally asymptotically stable if a
Lyapunov function V (S, E, T) satisfies Z—: <OVS,E,T+#S*"E*T".

Proof: We define the Lyapunov function as

S —§*
V(S,E,T):vlf d5+v2.l- dE+U3f

Where S*,E*,T* represent the equilibrium values of cyclone intensity, accumulated

EE —E* T —T*

dT

* * *

cyclone energy, and temperature, respectively, and v4, v,, v3 are positive constants.

Taking the time derivative of V (S, E, T) along system (2.1) trajectories, we obtain:
dv s E T
_:vl(S_S)?+U2(E_E)E+U3(T_T)?

dt
Using the system (1) equations we obtain
v ) BST T )
T 1 (§—=S )(aSE+1+—T+0'T(1—E)—/JS)+UZ(E—E Y(pTE —tSE —YE)
uT
+ 173(T - T*) (gDT - fTE - m)

To establish global asymptotic stability, we need to show that % <OV (S,E,T)#0

Expanding each term and rearranging, we obtain

d_V__ _ CH\2__ _ EF*\2_ _ T\ 2
i viu(S =S —vy(E — E*)*—vu(T —T*)* + R(S,E, T)

Where R(S, E, T) contains interaction terms that decay over time.
Since vy, v,, v3, 14, ¥, u are all positive, it follows that

d_V _ . C¥\2 _ _ E*\2 _ _ 2
— < —ki(S =S ko (E — E)? — ks(T = T

Where k1 = V1, kz = vy, k3 = V3u
Since all k; are positive, % < 0V (S,E,T) # 0, proving global stability. That confirms

that the system always returns to equilibrium, ensuring that cyclone intensity is
effectively controlled under climate regulation policies.

3.4. Sensitivity Analysis
To evaluate the impact of key parameters on the cyclone intensity model, we focus on
the sensitivity of R, , which governs the system’s behavior and stability. The sensitivity

ORy, n ___ mubwte oo
on Ry  upptnp+uf(u+ng)
For the given parameter values, the computed sensitivity index is Sg‘* = —0.11, Sf t =

index of R, with respect to n is given by: S-* =

—0.27, S% = 0.11 and S/‘?‘* = 0.27.This indicates that R, is highly sensitive to changes

in n, with a 10% increase in n leading to a 5% increase in R,. Parameters y and £ show
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moderate sensitivities, On the other hand, ¢ and u demonstrate low sensitivities,
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implying only a minor influence onR,.
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Figure-1: Sensitivity Index and Contour map of key parameters affecting R,

The right panel displays a contour plot that visualizes the combined effect of n and u
on cyclone intensity. The colour gradient indicates the magnitude of the system
response, where warmer colours (red and orange) correspond to higher intensity levels
and cooler colours (blue shades) indicate lower intensity. The plot shows that
simultaneous increases in both n and u lead to a significant amplification of cyclone
intensity, whereas lower values of these parameters result in diminished responses.
The smooth gradient and diagonal orientation of the contour lines suggest a strong
positive correlation between n and p, highlighting their synergistic influence on
cyclone behaviour. For the numerical simulations, the parameter set is chosen
as:P; = {10, n,u} = {0.358,0.7, 0.75, 10.9,0.342,}.

4. Optimal Control Analysis
To proceed with the optimal control analysis for mitigating cyclone intensity, we
formulate an optimal control problem where the objective is to minimize cyclone
intensity (S), accumulated cyclone energy (E), and temperature (T) over a given time
horizon while ensuring the effectiveness of the applied control policy. The optimal
control problem is defined as

J(S,E,T,u) = Miny) f, (Wls2 + W E? + waT? + 2 cu? (t)) dt (4)
where, w;,w, and w3 are positive weighting parameters representing the relative
importance of cyclone intensity, accumulated cyclone energy, and temperature
reduction. The parameter ¢ is a control cost coefficient, ensuring that excessive
control efforts are penalized. The control variable u(t) is the control parameter,
representing climate mitigation efforts such as global temperature regulation.
Penalizing u?(t)in the objective functional ensures that extreme interventions are
discouraged, balancing system stabilization with realistic policy implementation.
To solve this optimal control problem, we define the Hamiltonian function:
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, , , 1, . dS _dE _dT
H(S,E, T,u,Aq,45,13) = wyS* + wyE* + w3T +Ecu + Ald—t + Azd—t + A3E

Where 14, A,&A;are adjoint variables (costate functions)

To determine the optimal control function u*(t), we apply the Pontryagin’s Maximum

Principle (Mandal et al., 2020),

dA, TR,
E = —25W1 - E(Zﬂl - 1+—T+ ALLI + EAZT
d,

d_t = _2W2E - Safll + ]//12 + TA3E - lep + Sﬂ.zT
dls  SPA  uls

dt  1+T n+T
+T (—2w3 +

+ EA3€ - Elzp - /110-
SR, uls 27,0
)_/13<P

A+T2 m+T)2  m

satisfying the transversality conditionsA;(t) = 0,i = 1,2,3.

Theorem 4.1. There exists an optimal control u*(t) for t €[0,T] such that:
Q(S(t),E(t),T(t),u*(t)): m(ig)lQ(S(t),E(t),T(t),u(t)) subject to the system of
u

differential equations governing cyclone dynamics.

Proof: To establish the existence of an optimal control u*(t) that minimizes the
objective function Q(S,E,T,u) while satisfying the system dynamics, we apply
standard results from optimal control theory. The control variable u(t) is assumed to
belong to a compact and convex admissible set, ensuring boundedness. The system’s
dynamics are continuously differentiable, guaranteeing the existence of solutions.
Furthermore, the objective function is convex in u, ensuring a unique minimum, and
the state variables are uniformly bounded, preventing unbounded growth. By
Filippov’s Existence Theorem, an optimal control u*(t) exists that minimizes
Q(S,E,T,u). To determine its explicit form, we apply Pontryagin’s Maximum Principle,
introducing the Hamiltonian function that includes the system dynamics and adjoint
variables. The necessary optimality condition requires differentiating the Hamiltonian
with respect to u and setting it to zero, yielding the optimal control strategy. Since all
conditions for existence and uniqueness are satisfied, we conclude that an optimal
control function u*(t) exists, ensuring the minimization of cyclone intensity while
maintaining system stability. Thus, the theorem is proven.

Theorem 4.2. There exists an optimal control u*(t) for t € [0,T] that minimizes the
objective function Q(S, E,T,u) over the admissible control region, given by:
TAs
- c(n+T)
subject to the system of differential equations governing cyclone dynamics.

u

Proof: To derive the optimal control function u*(t), we employ Pontryagin’s
Maximum Principle. Taking the necessary condition for optimality, we differentiate

e . . oH TA3
the Hamiltonian (4) with respect to u and set it equal to zero, So U= — =

)
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TA3
c(n+T)
variable u(t) must lie within the admissible range 0 < u(t) <1, we enforce this

Solving for u, we obtain the optimal control function u*(t) = . Since the control

constraint by bounded the control function as follows

. _ T3

u*(t) = max {O,mm <C(71—+T)' 1)}

This ensures that the control remains within the allowed range. The co-state variable
Az , which represents the marginal value of the state variable T, follows the adjoint
system and is solved backward in time with appropriate terminal conditions. The
resulting optimal control function u*(t) effectively balances the trade-off between
reducing cyclone intensity and maintaining system stability. Thus, the theorem is
proved.

5. Model Verified by Numerical Simulations

At first, we analyze the dynamical behaviour of cyclone evolution over time. In this
case for simulation work we set the parameters values as a« = 0.044,8 = 0.206,0 =
0.049,u = 0.19,7 = 0.127,y = 0.389,¢ = 0.484,¢p = 0.347,p = 0.473,m =

11.5,n = 109,u = 0.082,5, =3.3,Ey =3.1,T, = 2.8. In Figure 2, The left panel
presents a time evolution plot of the state variables S(t), E(t), and T(t) , where the
red, green, and blue lines represent these respective variables. Initially, all three state
variables exhibit high oscillatory behavior with significant amplitude fluctuations,
particularly noticeable in the cyclone intensity S(t), which shows large peaks before
gradually stabilizing over time. The early-stage fluctuations indicate the chaotic
nature of cyclone development, where interactions among temperature, energy, and
intensity lead to rapid variations. However, as time progresses, the oscillations
dampen, suggesting a convergence toward a steady-state equilibrium where the
system stabilizes. This stabilization highlights the underlying feedback mechanisms
within the cyclone model, where dissipative effects, energy transfers, and the control
parameter u gradually bring the system into a balanced state. The right panel displays
a 3D phase diagram of cyclone dynamics, plotting temperature T(t), cyclone energy
E(t), and cyclone intensity S(t) in a three-dimensional space. The phase trajectory
initially starts from a higher state, exhibiting a spiraling motion indicative of transient
oscillations before settling into a stable attractor. The spiral structure suggests a
system undergoing nonlinear damped oscillations, where the interactions between
energy, temperature, and intensity dictate the pathway toward equilibrium. A notable
feature in the phase space plot is the presence of a converging structure, implying the
existence of a stable fixed point or a limit cycle governing the cyclone system. The
labelled point (S* = 0.8894,E* = 0.6961,T* = 1.066) within the 3D trajectory marks a
specific state in the system's evolution, likely highlighting a significant transition or
equilibrium state.
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Figure 2: Evolution of Cyclone State Variables and Their Convergence to
Equilibrium

The stability of the equilibriums are analysed by solving the system (1) using the
fourth-order Runge-Kutta method in MATLAB, utilizing the specified parameter
values: a= 07,= 0358,0= 0.04,u= 0.18,7= 0.18,y = 0.28,¢ = 0.08,¢ =
0.75,p = 0.78,c = 0.78,m = 0.85,n = 0.7,t1 = 100,w; = 0.5,w, = 0.5,w3 =
0.5, which govern the system dynamics over a time span of t; = 100 units. The initial
conditions for the state variables are given by S, =1, E; = 1 and Ty = 1. we conduct
numerical simulations under two scenarios: first, by considering a fixed control
parameter, and second, by applying the control parameter optimally. Figure 3 shows
the evolution of the state variables over time, highlighting the system’s response under
these parameter conditions. Initially, both variables start at the same level and
gradually increase; however, their growth is significantly influenced by the presence or
absence of the control parameter. When climate mitigation efforts, represented by u,
are applied (solid lines), both temperature (T) and cyclone intensity (S) increase at a
slower rate compared to the scenario without control (dashed lines), where the
absence of regulatory mechanisms allows them to rise more rapidly. Over time, the
gap between the controlled and uncontrolled cases becomes more pronounced,
indicating that implementing u helps in curbing the escalation of both variables. A
crucial observation from the graph is that as the controlled temperature (T, blue line)
remains lower than its uncontrolled counterpart, the cyclone intensity (S, red line)
also follows a similar pattern, decreasing in response to the lower temperature. This
aligns with the fundamental dynamics of cyclone development, where higher sea
surface temperatures serve as the primary energy source for storm intensification. By
regulating temperature through the control parameter u, the energy available for
cyclone growth is reduced, leading to a decline in cyclone intensity. This relationship
highlights the interconnected nature of these variables: when temperature is
mitigated, cyclone intensity is naturally restrained. Without intervention, however,
temperature rises unchecked, fuelling stronger and more persistent storms.
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Figure-3: Effects of Control Parameter (u) on the Evolution of Cyclone State
Variables

Figure 4 presents the sensitivity analysis of the state variables—cyclone intensity (S),
accumulated cyclone energy (E), and sea surface temperature (T)—in response to
variations in the parameters a (0.5, 0.7, and 0.9), 8 (0.2, 0.358, and 0.5), and ¢ (0.02,
0.04, and 0.06). The figure clearly shows that increases in o and 3 lead to a significant
rise in cyclone intensity (S), likely due to enhanced energy exchange between the
ocean and atmosphere (via @) and strengthened saturation feedback mechanisms (via
B), both of which contribute to cyclone intensification. Meanwhile, accumulated
cyclone energy (E) shows a moderate decrease with higher a, possibly because more
intense cyclones consume available energy more rapidly, while variations in £ induce
only mild changes in E. Sea surface temperature (T), however, remains largely
unchanged in response to a and S, indicating that these parameters have a more
direct effect on cyclone dynamics than on ocean thermal structure, possibly because
the short timescale of atmospheric response limits the extent of ocean surface cooling.
Furthermore, variations in the dissipation-related parameter o exhibit negligible
visible changes in all three variables—S, E, and T—indicating that within the
considered range, o exerts a minimal impact on cyclone evolution and ocean-
atmosphere energy exchanges.
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Figure 4: Analysis of Cyclone Intensity (S), Accumulated Cyclone Energy (E),
and Sea Surface Temperature (T) in Response to Variations in Parameters
a,B,and o

Similarly, Figure 5 shows that as t increases from o.1 to 0.25, E exhibits a noticeable
decline, indicating that stronger wind stress promotes more efficient energy
dissipation from the system. This effect is likely due to enhanced surface turbulence
and mixing, which promote the loss of heat from the ocean to the atmosphere.
However, the corresponding effect of 7 on S is relatively minor, suggesting that while
wind stress alters the overall energy budget, it does not substantially influence the
peak intensity of cyclones. Additionally, the effect of 7 on T is not clearly discernible in
this setting, indicating a limited impact on sea surface temperature under the
considered conditions. Variations in ¢, from 0.05 to 0.12, lead to moderate reductions
in accumulated cyclone energy (E) and a more pronounced decline in sea surface
temperature (T), suggesting that increased surface heat exchange enhances ocean
cooling and reduces energy retention. This indicates that higher surface heat exchange
enhances heat transfer from the atmosphere to the ocean, increasing the total energy
available for cyclonic activity. However, this same process may also enhance vertical
mixing and surface cooling, thereby reducing T. The influence on S remains relatively
subtle, suggesting that while ¢ affects oceanic thermal conditions and energy
accumulation, it does not strongly impact cyclone intensity over the simulation
period. The parameter p, ranging from 0.6 to 0.9, exerts the most significant influence
on all three variables. As p increases, both S and E rise sharply, reflecting a strong
positive feedback mechanism in which greater ocean heat retention promotes cyclone
intensification and sustains higher energy levels. Interestingly, T declines as p
increases—a result that may seem counterintuitive but can be attributed to enhanced
subsurface heat fluxes and intensified mixing processes, which redistribute heat
vertically and reduce surface temperatures.
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Figure 5: Analysis of Cyclone Intensity (S), Accumulated Cyclone Energy (E),
and Sea Surface Temperature (T) in Response to Variations in Parameters
p,T,and §

Figure 6 consists of three subplots representing the time evolution of the co-state
variables, denoted as 4, 1, and A3, over a time span of 100 units. All three co-state
variables gradually decrease over time, approaching zero as time progresses. The
monotonic decrease in these variables indicates that the system is approaching an
optimal steady-state condition, where the control strategy effectively minimizes the
cost function or stabilizes the system.

0 10 20 30 40 50 &0 70 a0 a0 100

Figure 6: Temporal Dynamics of Co-State Variables 44, 4, and 43 over time
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6. Conclusions

In this study, we developed a mathematical model to analyse the dynamics of cyclone
intensity under climate change and formulated an optimal control strategy to mitigate
its impacts. Recent studies indicate that global warming has led to a gradual increase
in cyclone intensity. According to newly homogenized data, the proportion of tropical
cyclones (TCs) with significant intensity has increased by approximately 13% over the
past 40 years, while the fraction of extremely high-energy TCs has grown by around
25% (Chen et al., 2024). Furthermore, projections suggest that by the end of the 21st
century (2071-2100), TCs will be 9.5% and 17% more intense under different climate
scenarios compared to the historical period (1985-2014) (Pérez et al., 2023). This raises
a crucial question: if global policies successfully reduce temperature, can cyclone
intensity also be mitigated? To address this, we developed a mathematical model of
cyclone intensity that is uniformly bounded ensuring the feasibility of solutions.
Additionally, we established that the equilibrium points of the system are both locally
and globally asymptotically stable, providing a robust framework for analyzing long-
term cyclone dynamics and control strategies. Sensitivity analysis shows that R, is
highly influenced by n, whereas the parameters ¢ and fhave comparatively minimal
effects on cyclone intensity.

By applying Pontryagin’s Maximum Principle, we derived optimal control trajectories
that reduce cyclone intensity while ensuring long-term system stability. Numerical
simulations were conducted under two scenarios: one with a fixed control parameter
and another with optimally applied control. The findings show that adaptive control
strategies, primarily through temperature reduction, significantly enhance system
stability and minimize cyclone intensity over time. Beyond theoretical insights, the
model holds practical relevance for disaster management.

Among the parameters analysed, a and p are the most influential parameters in
shaping cyclone intensity and energy evolution, with a driving cyclone strength
through ocean-atmosphere energy exchange and p enhancing long-term energy build-
up via strong feedback mechanisms. £ also contributes moderately to cyclone
dynamics, while ¢ primarily affects thermal conditions with limited impact on
intensity. T and o have relatively minor roles, with 7 promoting energy dissipation and
o exerting minimal influence within the tested range. Sea surface temperature (T)
shows the highest sensitivity to ¢ and p due to their roles in heat exchange and
feedback processes.

Future extensions of this work could integrate real meteorological data and machine
learning techniques to enhance predictive accuracy and refine optimal intervention
strategies.
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Appendix A
From (3.3)

dy

= Ao T P+ T =210 4= L+ TOE @ = ) + 57

+T*(—B+y+u—A+THp+S5*1)+2T* (1 +T)p) + n?(—y — u
+A+THE (=8-S 1+ +T"B—-y—u+p+Tp—S't+¢))
4Ty —pu+ A+ THE (@ =8 =S 14+ 0o+T"B—y—pu+p+Tp
= ST+ ¢)))

2(L+THE?a = (T8~ (L+THW(y +T'p =S + (¥

L= Trmymrr "

+u+St+T(—B+y+u—A+THp+S" 1)+ E*E(T*B—y—T"y
—u=T'u=S"A+THD) = A +THa(=y +T*p + ) - T**(-(1
+THE?aé + (TB—A+THWD(~y +Tp = S*1) — (v + u+ S*1
+T(—B+y+u—A+THp+S 1)+ E*"E(y+u+St+T*(—-f+y
+u+S )+ A +THa(=y+Tp+¢)) +n(u((L+THE*a—y —u
—S T4+ T*B—-y—pu+p+Tp—S571))—2T*(—(1 + THE*?aé + (T*B
-A+THW(y+Tp—-S)—(y+u+St+T"(-f+y+u—_~1
+THp+S" 1))+ E*E(y+u+St+T(—-f+y+u+S't))+ (1
+Ta(=y +T°p + ¢)))))
2T**E*éot A . o .
3 = — — +(1+T*)2(n+T*)2(n (E4(A+THy(QA+THE a+T*f - (1
+THW + (S T*QR+THE—-S*A+TH?u+T*(1+T*)?0)1) + (1
TT)((A+THE a(=y+Tp) + (T°F = A +THW(~y +T"p = 571))9)
+T2EEA+THY(A+THE* a +T*B — (1 + THw) + (S*T*(2 + T*)B
—S*A+TH*u+TA+TH?)D)+ A +TH((A+THE*a(—y + T*p)
+(TB—-—A+THW(—y+Tp—=S1)p) +n((A+THu((1 + THE
T -A+THWY -Tp) +S(T"F - A +THwW7) + 2T7(E*E((1
+TY((A+THE a+TB—A+THu) + (S T* 2+ TP
—S*A+TH*u+T*A+TH?0))+ (1 +TH((L+THE*a(—y + T*p)
+ (TR —A+THW(=y +T"p = 5'1))9)))
Note 1. To prove the inequalities d; > 0, d, > 0, d; > 0, and d;d, > d3 , we analyze

the structure of
d,,d,,ds;. Each of d,,d, and d5 contains a denominator of the form: (1 +

T*)(n + T*)?, which is always positive under the reasonable assumption that T* > —1
and T* > n. Since this denominator does not affect the sign of d;, d,or d; , the sign of
each expression is determined by its numerator.
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The numerator of d; consists of multiple terms, the presence of positive terms such as
2T*(1 + T*)@ and contributions from cyclone intensity (S*), accumulated energy (E*),
and temperature (T*) suggests that the numerator can be positive. Given physically
reasonable conditions, such as positive energy accumulation and control parameters,
we conclude that d; > 0.

The numerator of d,contains contributions from terms like E*¢, (1 + T*)E*, and
various interaction terms involving ¢, T, and other parameters. Since these terms
represent energy transfer, dissipation, and climate interactions, they are typically
positive under realistic physical conditions. Therefore, we argue that d, > 0.

. L : . . . 2T*?E*
The expression for dj is slightly different, as it contains a negative term: —% ,

which might suggest negativity. However, the remaining terms in d; contain positive
contributions from energy transfer, cyclone intensity, and climate forcing. If these
positive terms outweigh the negative term, then d; > Oholds.

Since d; > 0 and d, > 0, their product is positive. The expression for d; includes a
negative term, making it easier to show that d;d, > d;under reasonable physical
assumptions. If the growth and control terms dominate, this inequality naturally
holds.
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