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1. Introduction 

Tropical cyclones are among the most devastating natural disasters, causing immense 

destruction to human lives, infrastructure, and ecosystems. Their increasing frequency 

and intensity in recent decades have been strongly linked to rising global 

temperatures, a consequence of anthropogenic climate change. Warmer sea surface 

temperatures (SSTs) act as a primary energy source for cyclone formation, fuelling 

stronger winds, extending storm lifespans, and significantly amplifying their 

destructive potential. This intensification is particularly pronounced in tropical and 

Abstract: This study develops a mathematical model to examine the dynamics 

of cyclone intensity under climate change and proposes an optimal control 

strategy to mitigate its impacts. Recent observations indicate a marked rise in 

tropical cyclone intensity over past decades, largely driven by increasing global 

temperatures. The model captures the interactions between sea surface 

temperature, accumulated cyclone energy, and cyclone intensity. By applying 

Pontryagin’s Maximum Principle, we derive optimal control trajectories aimed 
at minimizing cyclone intensity while maintaining system stability. Numerical 

simulations reveal that adaptive temperature reduction strategies significantly 

outperform fixed controls, leading to lower cyclone intensity and enhanced 

system resilience over time. The analysis further establishes that the system’s 
equilibrium points are both locally and globally asymptotically stable, ensuring 

the feasibility of long-term solutions. Sensitivity analysis highlights the 

temperature growth rate and control effort as the most influential parameters, 

high lighting the importance of targeted interventions. 

Keywords: Environmental Management, Pontryagin’s Maximum Principle, 
Climate mitigation, Numerical simulations, Optimal Control 



Scope 
Volume 15 Number 03 September 2025 

 

1203 www.scope-journal.com 

 

subtropical regions, where elevated SSTs have led to an increase in high-intensity 

cyclones, resulting in devastating storm surges, torrential rainfall, and large-scale 

flooding. However, cyclones are not merely passive consequences of climate change; 

they actively influence the climate system by redistributing ocean heat, altering 

atmospheric circulation patterns, and driving oceanic mixing. This complex interplay 

between cyclone activity and climate variability makes long-term cyclone forecasting 

particularly challenging, necessitating the development of advanced models that 

account for both climate change and cyclone-induced feedback mechanisms. 

Mathematical modelling has emerged as a crucial tool for analysing the nonlinear 

dynamics of tropical cyclones. Traditional models, rooted in thermodynamics and 

fluid dynamics, have significantly improved storm forecasting by simulating 

formation, intensification, and dissipation processes. However, many of these models 

overlook the long-term influence of climate change and the potential role of human 

intervention in mitigating cyclone intensity. 

Climate change is significantly influencing tropical cyclones (TCs), as explored 

through various modelling, observational, and theoretical approaches. For instance, 

Walsh et al. (2000) found that storm intensities increased under enhanced greenhouse 

conditions, although their significance was constrained by vertical wind shear and 

model resolution. Similarly, Tsuboki et al. (2015) projected that future super typhoons 

could reach extreme intensities in a warming climate. In the same vein, Wu et al. 

(2022) and van (2024) further reinforced theoretical evidence of intensification; 

however, they also highlighted uncertainties stemming from data limitations, natural 

variability, and model biases, which complicate basin-wide assessments. In addition to 

storm physics, the socioeconomic and ecological dimensions of TC impacts have been 

emphasized. For example, Mendelsohn et al. (2012) demonstrated that economic 

losses from stronger storms could more than double, whereas Kropf et al. (2025) and 

Hülsen et al. (2025) projected long-term vulnerability of terrestrial ecosystems. The 

devastating human consequences of extreme storms were further illustrated by Knabb 

et al. (2005), who documented Hurricane Katrina as one of the most destructive 

hurricanes in U.S. history, reaching Category 5 intensity. At a regional scale, Gupta et 

al. (2019) reported severe impacts in the Bay of Bengal, while Li et al. (2025) showed 

that rapid intensification events in the Arabian Sea have doubled since 2013 due to 

rising SSTs. Supporting these observations, Hill et al. (2010) and Bhatia et al. (2018) 

predicted that future TCs will likely become more frequent and intense, exhibiting 

larger pressure deficits and increased precipitation rates. Advances in modelling and 

data-driven approaches have also provided valuable insights. For instance, Chen et al. 

(2025) reconstructed cyclone wind profiles to reveal increases in extreme storms, Wu 

et al. (2025) linked SST rises to intensification, and Varalakshmi et al. (2023) improved 

forecasts in India using hybrid deep learning techniques. Moreover, Sun et al. (2022) 

identified a threshold SST governing cyclone strengthening, whereas Régibeau-

Rockett et al. (2024) demonstrated that mechanical efficiency declines at very high 
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SSTs due to atmospheric moisture effects—thus underscoring the complex role of 

ocean temperatures. Several classic contributions have also shaped the theoretical 

foundation of TC research. Chan et al. (2001) identified an SST threshold of 

approximately 27°C for TC development, while Emanuel (2005) introduced the power 

dissipation index (PDI) to measure hurricane destructiveness, showing a marked 

increase since the 1970s as storms became stronger and longer-lived. In addition, Dare 

et al. (2011) reported that SSTs cool by an average of –0.9°C after TC passage, with 

recovery times varying by storm intensity and seasonality. Likewise, Chavas et al. 

(2017) established a theoretical relationship between central pressure deficit and peak 

wind speed, thereby improving the understanding of TC intensity. Similarly, Holland 

(1997) described the acceleration of maximum potential intensity (MPI) above 26°C. 

Looking ahead, Knutson et al. (2010, 2020) projected that although the overall 

frequency of TCs may decrease by 6–34%, their intensity is expected to increase by 2–
11%. Furthermore, Hart et al. (2001) found that 46% of Atlantic TCs transitioned to 

extratropical storms, primarily affecting the northeastern United States, Canada, and 

Europe. Finally, Vecchi et al. (2007) concluded that regional warming patterns, rather 

than localized SST increases alone, play a more decisive role in shaping TC potential 

intensity. 

Collectively, these studies highlight the central role of SST in shaping cyclone strength 

and frequency; however, they largely focus on natural warming trajectories rather than 

policy-driven cooling or stabilization of SSTs. This points to a crucial gap: while the 

intensifying effect of rising SSTs on TCs is well established, limited attention has been 

given to how climate mitigation policies that regulate SST might alter cyclone 

behavior. To address this gap, the present study develops a dynamical model that 

incorporates a control parameter representing policy strategies, thereby providing a 

novel framework to assess how temperature regulation could influence cyclone risks 

in a changing climate. 

 

2. Model formulation 

Cyclone intensity is driven by the interaction of accumulated cyclone energy, sea 

surface temperature, and external controls. Warm ocean waters enhance storm 

intensity through latent heat, while environmental factors like wind shear, land 

interaction, and ocean cooling limit growth. Accumulated cyclone energy reflects the 

storm’s energy, influenced by ocean temperature and atmospheric conditions. Sea 

surface temperature evolves due to natural warming, cyclone-induced mixing, and 

climate mitigation efforts. Global interventions, such as greenhouse gas reduction and 

ocean cooling, regulate sea surface temperature and help control cyclone intensity. 

We assume that at time t, S(t), E(t), and T(t) represent the level of cyclone intensity, 

accumulated cyclone energy, and the sea surface temperature respectively.  

The level of cyclone intensity is driven by the interplay between sea surface 

temperature and accumulated cyclone energy. Warmer sea surface temperatures 
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supply the latent heat necessary to sustain cyclones, while accumulated cyclone 

energy enhances storm intensity; however, excessive warming induces saturation 

effects, increasing wind shear and dry air intrusion, which limit further intensification. 

We assume that α is the energy transfer coefficient that represents the cyclone energy-

driven intensification process. Physically, it suggests that the rate of change of cyclone 

intensity increases proportionally to both the current strength of the cyclone and the 

amount of energy stored in the system. This reflects a positive feedback mechanism: as 

the cyclone becomes more intense and the surrounding environment holds more 

energy, the cyclone can strengthen even further. 

Similarly, we introduce β as the sensitivity coefficient, which governs the temperature-

dependent growth of cyclone intensity, modulated by a saturation effect. At lower sea 

surface temperature (SST) levels, even small increases in temperature can significantly 

enhance cyclone strength because additional thermal energy becomes available to fuel 

storm development. However, as SST continues to rise, various environmental 

constraints — such as increased atmospheric stability, enhanced upper-ocean heat 

mixing, and limitations in moisture supply or outflow ventilation — begin to cap the 

cyclone’s potential intensity. This leads to a phenomenon known as saturation, where 

further increases in SST contribute progressively less to cyclone growth, thereby 

preventing unbounded intensification. To capture the natural constraints on warming-

induced intensification, we assume that σ is the energy transfer rate associated with 

SST dynamics, and m represents a temperature threshold beyond which the ocean can 

no longer sustain unchecked warming. The term follows a logistic-type behavior: 

when the SST T is relatively small compared to m, the factor (1 − Tm) remains close to 

1, allowing SST to increase almost linearly. However, as T becomes larger and 

approaches the value of m, the factor steadily decreases toward zero, slowing the SST 

growth and reflecting the system’s natural resistance to excessive heating. Finally, 

cyclone dissipation, influenced by processes such as landfall, ocean surface cooling, 

and atmospheric instability, is modelled by the linear decay term μS, where μ 

represents the dissipation rate. This term accounts for the natural weakening of 

cyclones over time due to environmental and surface interactions that oppose 

intensification. 

The evolution of accumulated cyclone energy (ACE) is primarily influenced by the 

interactions between sea surface temperature (SST) and cyclone intensity. Warmer 

SSTs provide the essential latent heat that fuels cyclone activity, while stronger 

cyclones extract more energy from the environment, thereby increasing the 

accumulated cyclone energy. However, excessive warming can introduce inhibiting 

factors, such as enhanced vertical wind shear and dry air intrusion, which disrupt 

storm organization and limit further energy accumulation. We assume that ρ is the 
energy extraction coefficient, representing the efficiency with which cyclones draw 

available oceanic heat into kinetic energy. Physically, this coefficient implies that 
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higher sea surface temperatures and existing levels of cyclone energy together 

promote the growth of accumulated cyclone energy, reflecting a positive feedback 

loop where favourable oceanic conditions intensify storm development. 

To account for the regulation of ACE through cyclone intensity, we introduce τ as the 
intensity-energy coupling coefficient. This coefficient captures the idea that while 

stronger cyclones can tap into more energy, they also trigger internal structural 

changes and increased interaction with environmental conditions that moderate 

further energy accumulation. Thus, τ acts as a balancing factor that prevents unlimited 
growth of accumulated energy as cyclone strength rises. Additionally, we incorporate γ 

as the natural dissipation rate of accumulated cyclone energy, representing the 

combined effects of surface frictional losses and turbulent mixing with the 

surrounding atmosphere. This coefficient ensures that without continuous energy 

input from warm ocean surfaces, accumulated cyclone energy gradually decays over 

time due to environmental and surface processes. 

The evolution of sea surface temperature (SST) is a critical driver of cyclone dynamics 

and energy accumulation. SST increases are primarily influenced by external heat 

fluxes, ocean-atmosphere interactions, and internal oceanic processes. Warmer SSTs 

enhance the available latent heat for cyclones, but feedbacks from cyclonic activity 

and vertical mixing processes can limit or even reduce SST over time. We assume ϕ as 

the rate of temperature increase due to climate change, capturing the baseline rise in 

sea surface temperature (SST) driven by external factors, such as solar radiation and 

atmospheric heat fluxes. Cyclone-induced cooling is modelled by ξ, where ξ quantifies 

the efficiency of energy-driven ocean mixing in reducing SST. As cyclones interact 

with the ocean, they enhance vertical mixing, drawing cooler waters from below the 

surface and lowering the local SST. The strength of this cooling effect is proportional 

to both the cyclone energy E and the SST T, with ξ determining the efficiency of this 

process. 

In addition, we introduce u as the global temperature reduction effort coefficient, 

representing the impact of human interventions such as climate change mitigation 

policies, carbon emission reductions, and strategies aimed at curbing SST increases. 

These efforts act as an additional cooling influence on SST dynamics. However, the 

effectiveness of such measures diminishes as SST becomes very high, reflecting 

practical limitations in how much global action can offset the thermal inertia of the 

ocean. Finally, n is introduced as a saturation threshold parameter that modulates the 

efficiency of background cooling efforts. When SST levels are relatively low, the global 

temperature reduction measures are more effective; but as SST rises closer to n, the 

impact of cooling interventions weakens, realistically capturing the challenges of 

reversing warming trends in a heavily heated ocean system. 
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By using the above assumption we formulate the mathematical model as dSdt = αSE + βST1 + T + σT (1 − Tm) − μSdEdt = ρTE − τSE − γE                          dTdt = φT − ξTE − uTn + T }  
  (2.1) 

Note that all the parameters considered in the model system (2.1) are nonnegative. 

 

3. Dynamical behaviour of the System 

In this section, we discuss the boundedness of the system, equilibria and their 

stability, sensitivity analysis, and other related aspects. 

 

3.1. Boundedness of the system 

Theorem 3.1: All solutions of system (2.1) with non-negative initial conditions are 

ultimately bounded, i.e., there exists M > 0 such that (t), E(t), T(t) ≤ M , ∀t ≥ 0 . 

Proof: We define a positive function X = v1S + v2E + v3T 

where v1, v2, v3 are positive constants chosen appropriately to balance the 

contributions from cyclone intensity (S), accumulated cyclone energy (E), and 

temperature (T). 
Taking the time derivative along the system trajectories, we obtain  dXdt =  v1 dSdt + v2 dEdt + v3 dTdt  
Substituting the system (2.1), we get: dXdt =  v1 (αSE + βST1 + T + σT (1 − Tm) − μS) + v2(ρTE − τSE − γE)+ v3 (φT − ξTE − uTn + T) 

To show that X(t) is bounded, we assume there exists a positive constant M such that dXdt ≤ M − ηX 

where η is a positive constant. This differential inequality suggests that X grows at 

most linearly for small values but is suppressed for large values. 

By applying the standard comparison principle, we integrate both sides X(t) ≤  Mη (1 − e−ηt) + X(0)e−ηt 
Taking the limit as 𝑡 → ∞, we obtain 𝑋(𝑡) ≤  𝑀𝜂  

Since 𝑋(𝑡) is a linear combination of 𝑆, 𝐸, 𝑎𝑛𝑑 𝑇 with positive coefficients, it follows 

that 𝑆, 𝐸, 𝑎𝑛𝑑 𝑇 are individually bounded. Hence, the system is ultimately bounded, 
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ensuring that cyclone intensity, accumulated cyclone energy, and temperature do not 

grow indefinitely.  

 

3.2. Equilibria of the System 

Our proposed model has three different equilibria 

(i) Trivial equilibrium (TE:) 𝐸0(0,0,0), 
Represents a state where cyclone intensity, accumulated cyclone energy, and sea 

surface temperature diminish to zero, implying no cyclone activity. 

(ii) Temperature-Regulated Cyclone Equilibrium: 𝐸1(𝑆1, 0, 𝑇1) 
This equilibrium corresponds to a scenario where the cyclone intensity and sea surface 

temperature are non-zero, but the accumulated cyclone energy is zero. The 

equilibrium values are given by: 𝑆1 = 𝜎(𝑢−𝑛𝜑)(𝑢+𝜑−𝑛𝜑)[(𝑚+𝑛)𝜑−𝑢]𝑚𝜑2[𝑢(−𝛽+𝜇)+(𝑛(𝛽−𝜇)+𝜇)𝜑]  and  𝑇1 = 𝑢−𝑛𝜑𝜑  

Let us consider where,𝑅1 = 𝑢𝑛𝜑 , 𝑅2 = 𝑢+𝜑𝑛𝜑 , 𝑅3 = 𝑢(𝑚+𝑛)𝜑 and 𝑅4 = 𝛽𝑢+𝑛𝜙𝜇𝑢𝜇+𝜙(𝜇+𝑛𝛽). 
Using these, the equilibrium point 𝐸1 can be rewritten as 𝑆1 = 𝜎𝑛2(𝑚+𝑛)(𝑅1−1)(𝑅2−1)(𝑅3−1)𝑚[𝑢𝜇+𝜙(𝜇+𝑛𝛽)][𝑅4−1]  and 𝑇1 = 𝑛(𝑅1 − 1). 
The equilibrium point 𝐸1 is considered feasible if the cyclone intensity and 

temperature at equilibrium are non-negative. Since 𝑅3 > 1 implies that 𝑅1 > 1 and 𝑅1 > 1 implies that 𝑅2 > 1, 
the equilibrium,𝐸1(𝑆1, 0, 𝑇1)is feasiblewhen the following inequalities are satisfied 

simultaneously:  𝑅3 > 1 and 𝑅4 > 1. 
(iii) The interior equilibrium 𝐸∗(𝑆∗, 𝐸∗, 𝑇∗) 
This equilibrium corresponds to a coexisting state where all three variables are non-

zero: 𝑆∗ ≠ 0, 𝐸∗ ≠ 0 𝑎𝑛𝑑 𝑇∗ ≠ 0. The value of 𝑆∗satisfies the following quartic 

polynomial: 𝐴1𝑆4 + 𝐴2𝑆3 + 𝐴3𝑆2 + 𝐴4𝑆 + 𝐴5 = 0(3.1) 
Where the coefficients are defined as: 𝐴1 = −𝜉𝜎𝜏4 𝐴2 = 𝜏2(𝑚𝜌(𝛽𝜉𝜌 − 𝜇𝜉𝜌 + 𝜉𝜎𝜏 − 𝛼𝜌𝜑) − 𝜉(4𝛾 + 𝜌 + 𝑛𝜌)𝜎𝜏) 𝐴3 =  𝜏(−𝜉(6𝛾2 + 3(1 + 𝑛)𝛾𝜌 + 𝑛𝜌2)𝜎𝜏 + 𝑚𝜌(𝛽𝜉𝜌(2𝛾 + 𝑛𝜌) + 𝛾(−2𝜇𝜉𝜌 + 3𝜉𝜎𝜏− 2𝛼𝜌𝜑) + 𝜌(𝑢𝛼𝜌 − (1 + 𝑛)(𝜇𝜉𝜌 − 𝜉𝜎𝜏 + 𝛼𝜌𝜑)))) 𝐴4 = −𝛾𝜉(4𝛾2 + 3(1 + 𝑛)𝛾𝜌 + 2𝑛𝜌2)𝜎𝜏 − 𝑚𝜌(−𝛽𝛾𝜉𝜌(𝛾 + 𝑛𝜌) + 𝛾2(𝜇𝜉𝜌 − 3𝜉𝜎𝜏+ 𝛼𝜌𝜑) + 𝛾𝜌(−𝑢𝛼𝜌 + (1 + 𝑛)(𝜇𝜉𝜌 − 2𝜉𝜎𝜏 + 𝛼𝜌𝜑)) + 𝜌2(−𝑢𝛼𝜌 + 𝑛(𝜇𝜉𝜌− 𝜉𝜎𝜏 + 𝛼𝜌𝜑))) 𝐴5 = −𝛾𝜉(𝛾 + 𝜌)(𝛾 − 𝑚𝜌)(𝛾 + 𝑛𝜌)𝜎 

Using Descartes’ Rule of Signs, the polynomial equation (3.1) has a unique positive 

root if the number of sign changes in its coefficients suggests exactly one positive real 

root. In particular, if all coefficients satisfy:𝐴1 < 0 , 𝐴2 < 0 ,𝐴3 < 0 , 𝐴4 < 0 and𝐴5 < 0, 

then the polynomial has exactly one positive real solution. This guarantees the 

existence of a unique interior equilibrium. 
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Once the positive root 𝑆∗ is determined, it can be substituted back into the 

expressions derived from system (2.1) to compute the corresponding equilibrium 

values  𝐸∗ 𝑎𝑛𝑑  𝑇∗. 
Interior Equilibrium Continued: The equilibrium value of the accumulated cy-clone 

energy 𝐸∗, corresponding to a known 𝑆∗ , is given by: 𝐸∗ = 𝛾𝜑 + 𝑛𝜌𝜑 + 𝑆∗𝜏𝜑 − 𝑢𝜌𝜉𝜌(𝛾 + 𝑛𝜌 + 𝑆∗𝜏)  

The corresponding equilibrium sea surface temperature 𝑇∗ is obtained as the positive 

root of the following quintic equation: 𝐵1𝑇5 + 𝐵2𝑇4 + 𝐵3𝑇3 + 𝐵4𝑇2 + 𝐵5𝑇 + 𝐵6 = 0(3.2) 
where the coefficients are defined as: 𝐵1 = −𝜉2𝜎 𝐵2 = −(1 −𝑚 + 2𝑛)𝜉2𝜎 𝐵3 = −𝑛(2 + 𝑛)𝜉2𝜎 +𝑚𝜉(𝛽𝜌 − 𝜇𝜌 + 𝜉𝜎 + 2𝑛𝜉𝜎) + 𝑚𝛼𝜌𝜑 𝐵4 = −𝑛2𝜉2𝜎 +𝑚(𝜉(𝛽(𝑛𝜌 − 𝛾) − 𝑢𝛼𝜌 + 𝜇(𝛾 − (1 + 𝑛)𝜌) + 𝑛(2 + 𝑛)𝜉𝜎) + 𝛼(𝜌 + 𝑛𝜌− 𝛾)𝜑) 𝐵5 = 𝑚(𝑢𝛼(𝛾 − 𝜌) + 𝜉(𝛾𝜇 − 𝑛(𝛽𝛾 − 𝛾𝜇 + 𝜇𝜌) + 𝑛2𝜉𝜎) − 𝛼(𝛾 + 𝑛𝛾 − 𝑛𝜌)𝜑) 𝐵6 = −𝑚𝛾(𝑛𝛼𝜑 − 𝑢𝛼 − 𝑛𝜇𝜉) 
By Descartes Rule of Signs, equation (3.2) admits a unique positive root if the 

coefficients change sign exactly once. This condition is satisfied if 𝐵1 < 0 , 𝐵2 < 0 ,𝐵3 < 0 , 𝐵4 < 0 , 𝐵5 < 0 𝑎𝑛𝑑 𝐵6 < 0, 

Under this condition, the quintic equation has exactly one positive solution, ensuring 

the existence of a unique, positive equilibrium value  𝑇∗ . 
 

3.3. Stability Analysis. 

A. Local Stability. 

Here, we analyze the local stability at different equilibrium points of the proposed 

system. 

Local Stability at the Trivial Equilibrium 𝐸0(0,0,0) 
To examine the local stability at the trivial equilibrium 𝐸0, we compute the Jacobian 

matrix of system (2.1) evaluated at 𝐸0(0,0,0) The Jacobian is given by: 

𝐽(𝐸0) = (−𝜇 0 𝜎0 −𝛾 00 0 −𝑢𝑛 + 𝜑) 

The eigenvalues of this matrix, which determine the local stability of the system, are 

given by 𝜆1 = −𝛾, 𝜆2 = −𝜇, 𝜆3 = − 𝑢𝑛 + 𝜑.  For the equilibrium 𝐸0 to be locally 

asymptotically stable, all eigenvalues must be negative. The first two eigenvalues, 𝜆1 = −𝛾, 𝜆2 = −𝜇, are always negative. However, the stability of the equilibrium critically 

depends on the sign of𝜆3, which is determined by the relationship between the control 

parameter 𝑢 and the temperature-related parameter 𝜙. Specifically, the equilibrium is 

stable if and only if  𝑅1 > 1. 
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Local Stability at the Equilibrium 𝐸1(𝑆1, 0, 𝑇1) 
The Jacobian matrix at 𝐸1is given by 

𝐽(𝐸1) = ( 
 𝑇1𝛽1 + 𝑇1 − 𝜇 𝑆1𝛼 𝑆1𝛽(1 + 𝑇1)2 + 𝜎 − 2𝑇1𝜎𝑚0 −𝛾 + 𝑇1𝜌 − 𝑆1𝜏 00 −𝑇1𝜉 − 𝑛𝑢(𝑛 + 𝑇1)2 + 𝜑 ) 

 
 

The eigenvalues of the Jacobian matrix, which determine the local stability of the 

equilibrium, are given by 𝜆1 = − 𝜑(𝑢−𝑛𝜑)(𝑢+𝜑−𝑛𝜑)𝑢(𝑛𝜑−𝑢−𝜑) ,    𝜆2 = − 𝑢𝛽−𝑢𝜇−𝑛𝛽𝜑−𝜇𝜑+𝑛𝜇𝜑𝑛𝜑−𝑢−𝜑  ,  and 𝜆3   =  (𝑢3𝜎𝜏 + 𝑢2𝐴𝜙 +  𝑢𝐵𝜙2  −  [𝑚(𝑛(𝛽 − 𝜇)  + 𝜇)  +  (𝛾 +  𝑛𝜌)  + (𝑛 −  1)𝑛(𝑚 +  𝑛)𝜎𝜏]𝜙3) / (𝑚𝜙2 [𝑢(𝜇 − 𝛽) + (𝑛( 𝛽 − 𝜇)  + 𝜇)𝜙]) 
where 𝐴 =  [𝑚(𝜇  − 𝛽)𝜌 − (𝑚 +  3𝑛 −  1)𝜎𝜏] 
and 𝐵 =  [𝑚𝜇(𝜌 − 𝛾 −  2𝑛𝜌)  +  𝑚𝛽(𝛾 +  2𝑛𝜌)  +  𝑚(2𝑛 −  1)𝜎𝜏 +  𝑛(3𝑛 −  2)𝜎𝜏] 
These three eigenvalues can be written as  𝜆1 = − 𝑛𝜙(𝑅1−1)(𝑅2−1)𝑢(𝑅2−1) , 𝜆2 = − [𝑢𝜇+𝜙(𝜇+𝑛𝛽)][𝑅4−1]𝑛𝜙(𝑅2−1)  and 𝜆3 = −[𝑚((𝑛(𝑅3 − 1) + 𝑚𝑅3)(𝜇 − 𝛽) + 𝜇)(𝑛(𝑅3 − 1)𝜌 + 𝑚𝑅3𝜌 − 𝛾)+ (𝑚 + 𝑛)(𝑅3 − 1)(𝑛(𝑅3 − 1) + 𝑚𝑅3)(1 + 𝑛(𝑅3 − 1) + 𝑚𝑅3)𝜎𝜏]/[𝑚𝑛(𝑅4 − 1)(𝛽 + 𝜇𝑅2)] 
For the equilibrium point 𝐸1 to be locally asymptotically stable, all eigenvalues 

associated with the system—namely 𝜆1, 𝜆2, 𝑎𝑛𝑑 𝜆3—must be negative. This ensures 

that any small perturbation around the equilibrium will diminish over time, allowing 

the system to return to its steady state. Specifically, 𝜆1 <  0 when  𝑅1 > 1, since 𝑅1 > 1 

implies that 𝑅2 > 1. 
Now,  𝜆2 <  0 when 𝑅2 > 1 𝑎𝑛𝑑𝑅4 >  1. Again, we have the relation 𝑅3 > 1 implies 

that 𝑅1 > 1 and 𝑅1 > 1 implies that 𝑅2 > 1. So it is a routine calculation to verify that 𝜆3 <  0 when 𝑅3 > 1,  𝑅4 > 1, 𝜇 ≥ 𝛽 and 𝑛(𝑅3 − 1)𝜌 + 𝑚𝑅3𝜌 > 𝛾. 
Therefore, the local asymptotic stability of the temperature-regulated cyclone 

equilibrium,  𝐸1(𝑆1, 0, 𝑇1) is guaranteed when the following conditions are met 

simultaneously: 𝑅3 >  1, 𝑅4 >  1, 𝜇 ≥ 𝛽 and 𝑛(𝑅3 − 1)𝜌 + 𝑚𝑅3𝜌 > 𝛾. 
Local Stability at the Equilibrium 𝐸∗(𝑆∗, 𝐸∗, 𝑇∗) 
Theorem 3.2: The system (2.1) is locally asymptotically stable around its equilibrium 𝐸∗(𝑆∗, 𝐸∗, 𝑇∗) if 𝑑1 >  0, 𝑑2 >  0, 𝑑3 >  0, and 𝑑1𝑑2 > 𝑑3, where the symbolic 

parameters are defined in Appendix A. 

Proof: The characteristic equation of the system (2.1) around the equilibrium 𝐸∗ is 

given by 𝜆3 + 𝑑1𝜆2 + 𝑑2𝜆 + 𝑑3 = 0    (3.3) 

Where, 𝑑1, 𝑑2𝑎𝑛𝑑 𝑑3are defined explicitly in Appendix A. 
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According to the Routh-Hurwitz criteria, all the roots of the characteristic equation 

will have negative real parts if the conditions stated in the theorem hold, ensuring that 

the system (1) is locally asymptotically stable around the equilibrium 𝐸∗.  
 

B. Global Stability 

Theorem 3.3: The equilibrium (𝑆∗, 𝐸∗, 𝑇∗) is globally asymptotically stable if a 

Lyapunov function 𝑉(𝑆, 𝐸, 𝑇) satisfies  
𝑑𝑉𝑑𝑡 < 0∀ 𝑆, 𝐸, 𝑇 ≠ 𝑆∗, 𝐸∗, 𝑇∗. 

Proof:  We define the Lyapunov function as 𝑉(𝑆, 𝐸, 𝑇) = 𝑣1∫ 𝑆 − 𝑆∗𝑆𝑆
𝑆∗ 𝑑𝑆 + 𝑣2∫ 𝐸 − 𝐸∗𝐸𝐸

𝐸∗ 𝑑𝐸 + 𝑣3∫ 𝑇 − 𝑇∗𝑇𝑇
𝑇∗ 𝑑𝑇 

Where 𝑆∗, 𝐸∗, 𝑇∗ represent the equilibrium values of cyclone intensity, accumulated 

cyclone energy, and temperature, respectively, and 𝑣1, 𝑣2, 𝑣3 are positive constants. 

Taking the time derivative of 𝑉(𝑆, 𝐸, 𝑇) along system (2.1) trajectories, we obtain: 𝑑𝑉𝑑𝑡 = 𝑣1(𝑆 − 𝑆∗) 𝑆∗𝑆 + 𝑣2(𝐸 − 𝐸∗) 𝐸∗𝐸 + 𝑣3(𝑇 − 𝑇∗) 𝑇∗𝑇  

Using the system (1) equations we obtain  𝑑𝑉𝑑𝑡 = 𝑣1(𝑆 − 𝑆∗) (𝛼𝑆𝐸 + 𝛽𝑆𝑇1 + 𝑇 + 𝜎𝑇 (1 − 𝑇𝑚) − 𝜇𝑆) + 𝑣2(𝐸 − 𝐸∗)(𝜌𝑇𝐸 − 𝜏𝑆𝐸 − 𝛾𝐸)+ 𝑣3(𝑇 − 𝑇∗) (𝜑𝑇 − 𝜉𝑇𝐸 − 𝑢𝑇𝑛 + 𝑇) 

To establish global asymptotic stability, we need to show that  
𝑑𝑉𝑑𝑡  ≤ 0∀ (𝑆, 𝐸, 𝑇) ≠ 0 

Expanding each term and rearranging, we obtain  𝑑𝑉𝑑𝑡 = −𝑣1𝜇(𝑆 − 𝑆∗)2−𝑣2𝛾(𝐸 − 𝐸∗)2−𝑣3𝑢(𝑇 − 𝑇∗)2 + 𝑅(𝑆, 𝐸, 𝑇)  
Where 𝑅(𝑆, 𝐸, 𝑇) contains interaction terms that decay over time. 

Since 𝑣1, 𝑣2, 𝑣3, 𝜇, 𝛾, 𝑢 are all positive, it follows that 𝑑𝑉𝑑𝑡  ≤  −𝑘1(𝑆 − 𝑆∗)2 − 𝑘2(𝐸 − 𝐸∗)2 − 𝑘3(𝑇 − 𝑇∗)2 

Where  𝑘1 = 𝑣1𝜇, 𝑘2 = 𝑣2𝛾 , 𝑘3 = 𝑣3𝑢 

Since all 𝑘𝑖 are positive, 
𝑑𝑉𝑑𝑡  ≤ 0∀ (𝑆, 𝐸, 𝑇) ≠ 0, proving global stability. That confirms 

that the system always returns to equilibrium, ensuring that cyclone intensity is 

effectively controlled under climate regulation policies. 

 

3.4. Sensitivity Analysis 

To evaluate the impact of key parameters on the cyclone intensity model, we focus on 

the sensitivity of 𝑅4 , which governs the system’s behavior and stability. The sensitivity 

index of 𝑅4  with respect to 𝑛 is given by:  𝑆𝑛𝑅4 = 𝜕𝑅4𝜕𝑛 ∗  𝑛𝑅4 = 𝑛(𝑢𝛽+𝜇2)𝜙𝑢𝜇𝜙+𝑛𝜇2𝜙+𝑢𝛽(𝜇+𝑛𝜙) = 0.5, 

For the given parameter values, the computed sensitivity index is  𝑆𝜙𝑅4 = −0.11, 𝑆𝜇𝑅4 =−0.27, 𝑆𝑢𝑅4 = 0.11 and 𝑆𝛽𝑅4 = 0.27.This indicates that 𝑅4  is highly sensitive to changes 

in 𝑛, with a 10% increase in 𝑛 leading to a 5% increase in 𝑅4. Parameters 𝜇 and 𝛽 show 
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moderate sensitivities, On the other hand, 𝜙 and 𝑢 demonstrate low sensitivities, 

implying only a minor influence on𝑅4. 

 
Figure-1: Sensitivity Index and Contour map of key parameters affecting 𝑹𝟒 

 

The right panel displays a contour plot that visualizes the combined effect of 𝑛 and 𝜇  

on cyclone intensity. The colour gradient indicates the magnitude of the system 

response, where warmer colours (red and orange) correspond to higher intensity levels 

and cooler colours (blue shades) indicate lower intensity. The plot shows that 

simultaneous increases in both 𝑛 and 𝜇 lead to a significant amplification of cyclone 

intensity, whereas lower values of these parameters result in diminished responses. 

The smooth gradient and diagonal orientation of the contour lines suggest a strong 

positive correlation between 𝑛 and 𝜇, highlighting their synergistic influence on 

cyclone behaviour. For the numerical simulations, the parameter set is chosen 

as: 𝑃₁ =  {𝛽, 𝜇, 𝜑, 𝑛, 𝑢, }  =  {0.358, 0.7, 0.75, 10.9, 0.342, }. 
 

4. Optimal Control Analysis 

To proceed with the optimal control analysis for mitigating cyclone intensity, we 

formulate an optimal control problem where the objective is to minimize cyclone 

intensity (𝑆), accumulated cyclone energy (𝐸), and temperature (𝑇) over a given time 

horizon while ensuring the effectiveness of the applied control policy. The optimal 

control problem is defined as 𝐽(𝑆, 𝐸, 𝑇, 𝑢) = 𝑀𝑖𝑛𝑢(𝑡) ∫ (𝑤1𝑆2 + 𝑤2𝐸2 + 𝑤3𝑇2 + 12 𝑐𝑢2(𝑡))  𝑑𝑡𝑇0   (4) 
where, 𝑤1, 𝑤2 𝑎𝑛𝑑 𝑤3 are positive weighting parameters representing the relative 

importance of cyclone intensity, accumulated cyclone energy, and temperature 

reduction. The parameter 𝑐 is a control cost coefficient, ensuring that excessive 

control efforts are penalized. The control variable 𝑢(𝑡) is the control parameter, 

representing climate mitigation efforts such as global temperature regulation. 

Penalizing 𝑢2(𝑡)in the objective functional ensures that extreme interventions are 

discouraged, balancing system stabilization with realistic policy implementation. 

To solve this optimal control problem, we define the Hamiltonian function: 
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𝐻(𝑆, 𝐸, 𝑇, 𝑢, 𝜆1, 𝜆2, 𝜆3) =  𝑤1𝑆2 +𝑤2𝐸2 + 𝑤3𝑇2 + 12 𝑐𝑢2 + 𝜆1 𝑑𝑆𝑑𝑡 + 𝜆2 𝑑𝐸𝑑𝑡 + 𝜆3 𝑑𝑇𝑑𝑡  

Where 𝜆1, 𝜆2&𝜆3are adjoint variables (costate functions) 

To determine the optimal control function 𝑢∗(𝑡), we apply the Pontryagin’s Maximum 

Principle (Mandal et al., 2020), 𝑑𝜆1𝑑𝑡 = −2𝑆𝑤1 − 𝐸𝛼𝜆1 − 𝑇𝛽𝜆11 + 𝑇 + 𝜆1𝜇 + 𝐸𝜆2𝜏 𝑑𝜆2𝑑𝑡 =  −2𝑤2𝐸 − 𝑆𝛼𝜆1 + 𝛾𝜆2 + 𝑇𝜆3𝜉 − 𝑇𝜆2𝜌 + 𝑆𝜆2𝜏 𝑑𝜆3𝑑𝑡 =  − 𝑆𝛽𝜆11 + 𝑇 + 𝑢𝜆3𝑛 + 𝑇 + 𝐸𝜆3𝜉 − 𝐸𝜆2𝜌 − 𝜆1𝜎+ 𝑇 (−2𝑤3 + 𝑆𝛽𝜆1(1 + 𝑇)2 − 𝑢𝜆3(𝑛 + 𝑇)2 + 2𝜆1𝜎𝑚 ) − 𝜆3𝜑 

satisfying the transversality conditions𝜆𝑖(𝑡) = 0 , 𝑖 =  1, 2,3. 
Theorem 4.1. There exists an optimal control 𝑢∗(𝑡) for 𝑡 ∈ [0, 𝑇] such that: 𝑄(𝑆(𝑡), 𝐸(𝑡), 𝑇(𝑡), 𝑢∗(𝑡)) =  𝑚𝑖𝑛𝑢(𝑡) 𝑄(𝑆(𝑡), 𝐸(𝑡), 𝑇(𝑡), 𝑢(𝑡)) subject to the system of 

differential equations governing cyclone dynamics. 

Proof: To establish the existence of an optimal control 𝑢∗(𝑡) that minimizes the 

objective function 𝑄(𝑆, 𝐸, 𝑇, 𝑢) while satisfying the system dynamics, we apply 

standard results from optimal control theory. The control variable 𝑢(𝑡) is assumed to 

belong to a compact and convex admissible set, ensuring boundedness. The system’s 

dynamics are continuously differentiable, guaranteeing the existence of solutions. 

Furthermore, the objective function is convex in 𝑢, ensuring a unique minimum, and 

the state variables are uniformly bounded, preventing unbounded growth. By 

Filippov’s Existence Theorem, an optimal control 𝑢∗(𝑡) exists that minimizes 𝑄(𝑆, 𝐸, 𝑇, 𝑢). To determine its explicit form, we apply Pontryagin’s Maximum Principle, 

introducing the Hamiltonian function that includes the system dynamics and adjoint 

variables. The necessary optimality condition requires differentiating the Hamiltonian 

with respect to 𝑢 and setting it to zero, yielding the optimal control strategy. Since all 

conditions for existence and uniqueness are satisfied, we conclude that an optimal 

control function 𝑢∗(𝑡)  exists, ensuring the minimization of cyclone intensity while 

maintaining system stability. Thus, the theorem is proven. 

Theorem 4.2. There exists an optimal control 𝑢∗(𝑡) for 𝑡 ∈ [0, 𝑇] that minimizes the 

objective function  𝑄(𝑆, 𝐸, 𝑇, 𝑢) over the admissible control region, given by:  𝑢 = 𝑇𝜆3𝑐(𝑛 + 𝑇) 
subject to the system of differential equations governing cyclone dynamics. 

Proof: To derive the optimal control function 𝑢∗(𝑡), we employ Pontryagin’s 

Maximum Principle. Taking the necessary condition for optimality, we differentiate 

the Hamiltonian (4) with respect to 𝑢 and set it equal to zero,  
𝜕𝐻 𝜕𝑢 = 𝑐𝑢 − 𝑇𝜆3𝑛+𝑇 = 0, 
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Solving for 𝑢, we obtain the optimal control function 𝑢∗(𝑡) = 𝑇𝜆3𝑐(𝑛+𝑇) . Since the control 

variable 𝑢(𝑡) must lie within the admissible range 0 ≤ 𝑢(𝑡) ≤ 1, we enforce this 

constraint by bounded the control function as follows  𝑢∗(𝑡) = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 ( 𝑇𝜆3𝑐(𝑛 + 𝑇) , 1)} 
This ensures that the control remains within the allowed range. The co-state variable 𝜆3 , which represents the marginal value of the state variable 𝑇, follows the adjoint 

system and is solved backward in time with appropriate terminal conditions. The 

resulting optimal control function 𝑢∗(𝑡) effectively balances the trade-off between 

reducing cyclone intensity and maintaining system stability. Thus, the theorem is 

proved. 

 

5.  Model Verified by Numerical Simulations 

At first, we analyze the dynamical behaviour of cyclone evolution over time. In this 

case for simulation work we set the parameters values as 𝛼 =  0.044, 𝛽 =  0.206, 𝜎 = 0.049, 𝜇 =  0.19, 𝜏 =  0.127, 𝛾 =  0.389, 𝜉 =  0.484, 𝜑 =  0.347, 𝜌 =  0.473,𝑚 = 11.5, 𝑛 =  10.9, 𝑢 =  0.082, 𝑆0 = 3.3, 𝐸0 = 3.1, 𝑇0 =  2.8. In Figure 2, The left panel 

presents a time evolution plot of the state variables 𝑆(𝑡), 𝐸(𝑡), and 𝑇(𝑡) , where the 

red, green, and blue lines represent these respective variables. Initially, all three state 

variables exhibit high oscillatory behavior with significant amplitude fluctuations, 

particularly noticeable in the cyclone intensity 𝑆(𝑡), which shows large peaks before 

gradually stabilizing over time. The early-stage fluctuations indicate the chaotic 

nature of cyclone development, where interactions among temperature, energy, and 

intensity lead to rapid variations. However, as time progresses, the oscillations 

dampen, suggesting a convergence toward a steady-state equilibrium where the 

system stabilizes. This stabilization highlights the underlying feedback mechanisms 

within the cyclone model, where dissipative effects, energy transfers, and the control 

parameter 𝑢 gradually bring the system into a balanced state. The right panel displays 

a 3D phase diagram of cyclone dynamics, plotting temperature 𝑇(𝑡), cyclone energy 𝐸(𝑡), and cyclone intensity 𝑆(𝑡) in a three-dimensional space. The phase trajectory 

initially starts from a higher state, exhibiting a spiraling motion indicative of transient 

oscillations before settling into a stable attractor. The spiral structure suggests a 

system undergoing nonlinear damped oscillations, where the interactions between 

energy, temperature, and intensity dictate the pathway toward equilibrium. A notable 

feature in the phase space plot is the presence of a converging structure, implying the 

existence of a stable fixed point or a limit cycle governing the cyclone system. The 

labelled point ( 𝑆∗ = 0.8894, 𝐸∗ = 0.6961, 𝑇∗ = 1.066) within the 3D trajectory marks a 

specific state in the system's evolution, likely highlighting a significant transition or 

equilibrium state. 
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Figure 2: Evolution of Cyclone State Variables and Their Convergence to 

Equilibrium 

 

The stability of the equilibriums are analysed by solving the system (1) using the 

fourth-order Runge-Kutta method in MATLAB, utilizing the specified parameter 

values: 𝛼 =  0.7, 𝛽 =  0.358, 𝜎 =  0.04, 𝜇 =  0.18, 𝜏 =  0.18, 𝛾 =  0.28, 𝜉 =  0.08, 𝜑 = 0.75, 𝜌 =  0.78, 𝑐 =  0.78,𝑚 =  0.85, 𝑛 =  0.7, 𝑡1 =  100,𝑤1 =  0.5, 𝑤2 =  0.5, 𝑤3 = 0.5, which govern the system dynamics over a time span of 𝑡1 = 100 units. The initial 

conditions for the state variables are given by 𝑆0 = 1, 𝐸0 = 1 and 𝑇0 = 1. we conduct 

numerical simulations under two scenarios: first, by considering a fixed control 

parameter, and second, by applying the control parameter optimally. Figure 3 shows 

the evolution of the state variables over time, highlighting the system’s response under 

these parameter conditions.  Initially, both variables start at the same level and 

gradually increase; however, their growth is significantly influenced by the presence or 

absence of the control parameter. When climate mitigation efforts, represented by 𝑢, 

are applied (solid lines), both temperature (𝑇) and cyclone intensity (𝑆) increase at a 

slower rate compared to the scenario without control (dashed lines), where the 

absence of regulatory mechanisms allows them to rise more rapidly. Over time, the 

gap between the controlled and uncontrolled cases becomes more pronounced, 

indicating that implementing 𝑢 helps in curbing the escalation of both variables. A 

crucial observation from the graph is that as the controlled temperature (𝑇, blue line) 

remains lower than its uncontrolled counterpart, the cyclone intensity (𝑆, red line) 

also follows a similar pattern, decreasing in response to the lower temperature. This 

aligns with the fundamental dynamics of cyclone development, where higher sea 

surface temperatures serve as the primary energy source for storm intensification. By 

regulating temperature through the control parameter 𝑢, the energy available for 

cyclone growth is reduced, leading to a decline in cyclone intensity. This relationship 

highlights the interconnected nature of these variables: when temperature is 

mitigated, cyclone intensity is naturally restrained. Without intervention, however, 

temperature rises unchecked, fuelling stronger and more persistent storms.  
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Figure-3: Effects of Control Parameter (u) on the Evolution of Cyclone State 

Variables 

 

Figure 4 presents the sensitivity analysis of the state variables—cyclone intensity (S), 

accumulated cyclone energy (E), and sea surface temperature (T)—in response to 

variations in the parameters 𝛼 (0.5, 0.7, and 0.9), 𝛽 (0.2, 0.358, and 0.5), and 𝜎 (0.02, 

0.04, and 0.06). The figure clearly shows that increases in α and β lead to a significant 
rise in cyclone intensity (S), likely due to enhanced energy exchange between the 

ocean and atmosphere (via 𝛼) and strengthened saturation feedback mechanisms (via 𝛽), both of which contribute to cyclone intensification. Meanwhile, accumulated 

cyclone energy (E) shows a moderate decrease with higher 𝛼, possibly because more 

intense cyclones consume available energy more rapidly, while variations in 𝛽 induce 

only mild changes in E. Sea surface temperature (T), however, remains largely 

unchanged in response to 𝛼 and 𝛽, indicating that these parameters have a more 

direct effect on cyclone dynamics than on ocean thermal structure, possibly because 

the short timescale of atmospheric response limits the extent of ocean surface cooling. 

Furthermore, variations in the dissipation-related parameter 𝜎 exhibit negligible 

visible changes in all three variables—S, E, and T—indicating that within the 

considered range, 𝜎 exerts a minimal impact on cyclone evolution and ocean-

atmosphere energy exchanges. 
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Figure 4: Analysis of Cyclone Intensity (S), Accumulated Cyclone Energy (E), 

and Sea Surface Temperature (T) in Response to Variations in Parameters 𝜶,𝜷, and 𝝈 

 

Similarly, Figure 5 shows that as τ increases from 0.1 to 0.25, E exhibits a noticeable 
decline, indicating that stronger wind stress promotes more efficient energy 

dissipation from the system. This effect is likely due to enhanced surface turbulence 

and mixing, which promote the loss of heat from the ocean to the atmosphere. 

However, the corresponding effect of 𝜏 on S is relatively minor, suggesting that while 

wind stress alters the overall energy budget, it does not substantially influence the 

peak intensity of cyclones. Additionally, the effect of 𝜏 on T is not clearly discernible in 

this setting, indicating a limited impact on sea surface temperature under the 

considered conditions. Variations in 𝜉, from 0.05 to 0.12, lead to moderate reductions 

in accumulated cyclone energy (E) and a more pronounced decline in sea surface 

temperature (T), suggesting that increased surface heat exchange enhances ocean 

cooling and reduces energy retention. This indicates that higher surface heat exchange 

enhances heat transfer from the atmosphere to the ocean, increasing the total energy 

available for cyclonic activity. However, this same process may also enhance vertical 

mixing and surface cooling, thereby reducing T. The influence on S remains relatively 

subtle, suggesting that while 𝜉 affects oceanic thermal conditions and energy 

accumulation, it does not strongly impact cyclone intensity over the simulation 

period. The parameter 𝜌, ranging from 0.6 to 0.9, exerts the most significant influence 

on all three variables. As 𝜌 increases, both S and E rise sharply, reflecting a strong 

positive feedback mechanism in which greater ocean heat retention promotes cyclone 

intensification and sustains higher energy levels. Interestingly, T declines as 𝜌 

increases—a result that may seem counterintuitive but can be attributed to enhanced 

subsurface heat fluxes and intensified mixing processes, which redistribute heat 

vertically and reduce surface temperatures. 
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Figure 5: Analysis of Cyclone Intensity (S), Accumulated Cyclone Energy (E), 

and Sea Surface Temperature (T) in Response to Variations in Parameters 𝝆, 𝝉, and 𝝃 

 

Figure 6 consists of three subplots representing the time evolution of the co-state 

variables, denoted as 𝜆1, 𝜆2 and 𝜆3, over a time span of 100 units. All three co-state 

variables gradually decrease over time, approaching zero as time progresses. The 

monotonic decrease in these variables indicates that the system is approaching an 

optimal steady-state condition, where the control strategy effectively minimizes the 

cost function or stabilizes the system. 

 
Figure 6: Temporal Dynamics of Co-State Variables 𝝀𝟏, 𝝀𝟐 and 𝝀𝟑 over time 
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6. Conclusions  

In this study, we developed a mathematical model to analyse the dynamics of cyclone 

intensity under climate change and formulated an optimal control strategy to mitigate 

its impacts. Recent studies indicate that global warming has led to a gradual increase 

in cyclone intensity. According to newly homogenized data, the proportion of tropical 

cyclones (TCs) with significant intensity has increased by approximately 13% over the 

past 40 years, while the fraction of extremely high-energy TCs has grown by around 

25% (Chen et al., 2024). Furthermore, projections suggest that by the end of the 21st 

century (2071–2100), TCs will be 9.5% and 17% more intense under different climate 

scenarios compared to the historical period (1985–2014) (Pérez et al., 2023). This raises 

a crucial question: if global policies successfully reduce temperature, can cyclone 

intensity also be mitigated? To address this, we developed a mathematical model of 

cyclone intensity that is uniformly bounded ensuring the feasibility of solutions. 

Additionally, we established that the equilibrium points of the system are both locally 

and globally asymptotically stable, providing a robust framework for analyzing long-

term cyclone dynamics and control strategies. Sensitivity analysis shows that 𝑅4  is 

highly influenced by 𝑛, whereas the parameters 𝜇 and 𝛽have comparatively minimal 

effects on cyclone intensity. 

By applying Pontryagin’s Maximum Principle, we derived optimal control trajectories 

that reduce cyclone intensity while ensuring long-term system stability. Numerical 

simulations were conducted under two scenarios: one with a fixed control parameter 

and another with optimally applied control. The findings show that adaptive control 

strategies, primarily through temperature reduction, significantly enhance system 

stability and minimize cyclone intensity over time. Beyond theoretical insights, the 

model holds practical relevance for disaster management.  

Among the parameters analysed, 𝛼 and 𝜌 are the most influential parameters in 

shaping cyclone intensity and energy evolution, with 𝛼 driving cyclone strength 

through ocean-atmosphere energy exchange and 𝜌 enhancing long-term energy build-

up via strong feedback mechanisms. 𝛽 also contributes moderately to cyclone 

dynamics, while 𝜉 primarily affects thermal conditions with limited impact on 

intensity. 𝜏 and 𝜎 have relatively minor roles, with 𝜏 promoting energy dissipation and 𝜎 exerting minimal influence within the tested range. Sea surface temperature (T) 

shows the highest sensitivity to 𝜉 and 𝜌 due to their roles in heat exchange and 

feedback processes. 

Future extensions of this work could integrate real meteorological data and machine 

learning techniques to enhance predictive accuracy and refine optimal intervention 

strategies.  
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Appendix A 

From (3.3) 𝑑1 = 1(1 + 𝑇∗)(𝑛 + 𝑇∗)2 (𝑛(−(1 + 𝑇∗)𝑢 − 2𝑇∗(𝛾 + 𝜇 − (1 + 𝑇∗)𝐸∗(𝛼 − 𝜉) + 𝑆∗𝜏+ 𝑇∗(−𝛽 + 𝛾 + 𝜇 − (1 + 𝑇∗)𝜌 + 𝑆∗𝜏)) + 2𝑇∗(1 + 𝑇∗)𝜑) + 𝑛2(−𝛾 − 𝜇+ (1 + 𝑇∗)𝐸∗(𝛼 − 𝜉) − 𝑆∗𝜏 + 𝜑 + 𝑇∗(𝛽 − 𝛾 − 𝜇 + 𝜌 + 𝑇∗𝜌 − 𝑆∗𝜏 + 𝜑))+ 𝑇∗2(−𝛾 − 𝜇 + (1 + 𝑇∗)𝐸∗(𝛼 − 𝜉) − 𝑆∗𝜏 + 𝜑 + 𝑇∗(𝛽 − 𝛾 − 𝜇 + 𝜌 + 𝑇∗𝜌− 𝑆∗𝜏 + 𝜑))) 𝑑2 = 1(1 + 𝑇∗)(𝑛 + 𝑇∗)2 (𝑛2((1 + 𝑇∗)𝐸∗2𝛼𝜉 − (𝑇∗𝛽 − (1 + 𝑇∗)𝜇)(−𝛾 + 𝑇∗𝜌 − 𝑆∗𝜏) + (𝛾+ 𝜇 + 𝑆∗𝜏 + 𝑇∗(−𝛽 + 𝛾 + 𝜇 − (1 + 𝑇∗)𝜌 + 𝑆∗𝜏))𝜑 + 𝐸∗(𝜉(𝑇∗𝛽 − 𝛾 − 𝑇∗𝛾− 𝜇 − 𝑇∗𝜇 − 𝑆∗(1 + 𝑇∗)𝜏) − (1 + 𝑇∗)𝛼(−𝛾 + 𝑇∗𝜌 + 𝜑))) − 𝑇∗2(−(1+ 𝑇∗)𝐸∗2𝛼𝜉 + (𝑇∗𝛽 − (1 + 𝑇∗)𝜇)(−𝛾 + 𝑇∗𝜌 − 𝑆∗𝜏) − (𝛾 + 𝜇 + 𝑆∗𝜏+ 𝑇∗(−𝛽 + 𝛾 + 𝜇 − (1 + 𝑇∗)𝜌 + 𝑆∗𝜏))𝜑 + 𝐸∗(𝜉(𝛾 + 𝜇 + 𝑆∗𝜏 + 𝑇∗(−𝛽 + 𝛾+ 𝜇 + 𝑆∗𝜏)) + (1 + 𝑇∗)𝛼(−𝛾 + 𝑇∗𝜌 + 𝜑))) + 𝑛(𝑢((1 + 𝑇∗)𝐸∗𝛼 − 𝛾 − 𝜇− 𝑆∗𝜏 + 𝑇∗(𝛽 − 𝛾 − 𝜇 + 𝜌 + 𝑇∗𝜌 − 𝑆∗𝜏)) − 2𝑇∗(−(1 + 𝑇∗)𝐸∗2𝛼𝜉 + (𝑇∗𝛽− (1 + 𝑇∗)𝜇)(−𝛾 + 𝑇∗𝜌 − 𝑆∗𝜏) − (𝛾 + 𝜇 + 𝑆∗𝜏 + 𝑇∗(−𝛽 + 𝛾 + 𝜇 − (1+ 𝑇∗)𝜌 + 𝑆∗𝜏))𝜑 + 𝐸∗(𝜉(𝛾 + 𝜇 + 𝑆∗𝜏 + 𝑇∗(−𝛽 + 𝛾 + 𝜇 + 𝑆∗𝜏)) + (1+ 𝑇∗)𝛼(−𝛾 + 𝑇∗𝜌 + 𝜑))))) 𝑑3 = −2𝑇∗2𝐸∗𝜉𝜎𝜏𝑚 + 1(1 + 𝑇∗)2(𝑛 + 𝑇∗)2 (𝑛2(𝐸∗𝜉((1 + 𝑇∗)𝛾((1 + 𝑇∗)𝐸∗𝛼 + 𝑇∗𝛽 − (1+ 𝑇∗)𝜇) + (𝑆∗𝑇∗(2 + 𝑇∗)𝛽 − 𝑆∗(1 + 𝑇∗)2𝜇 + 𝑇∗(1 + 𝑇∗)2𝜎)𝜏) + (1+ 𝑇∗)((1 + 𝑇∗)𝐸∗𝛼(−𝛾 + 𝑇∗𝜌) + (𝑇∗𝛽 − (1 + 𝑇∗)𝜇)(−𝛾 + 𝑇∗𝜌 − 𝑆∗𝜏))𝜑)+ 𝑇∗2(𝐸∗𝜉((1 + 𝑇∗)𝛾((1 + 𝑇∗)𝐸∗𝛼 + 𝑇∗𝛽 − (1 + 𝑇∗)𝜇) + (𝑆∗𝑇∗(2 + 𝑇∗)𝛽− 𝑆∗(1 + 𝑇∗)2𝜇 + 𝑇∗(1 + 𝑇∗)2𝜎)𝜏) + (1 + 𝑇∗)((1 + 𝑇∗)𝐸∗𝛼(−𝛾 + 𝑇∗𝜌)+ (𝑇∗𝛽 − (1 + 𝑇∗)𝜇)(−𝛾 + 𝑇∗𝜌 − 𝑆∗𝜏))𝜑) + 𝑛((1 + 𝑇∗)𝑢(((1 + 𝑇∗)𝐸∗𝛼+ 𝑇∗𝛽 − (1 + 𝑇∗)𝜇)(𝛾 − 𝑇∗𝜌) + 𝑆∗(𝑇∗𝛽 − (1 + 𝑇∗)𝜇)𝜏) + 2𝑇∗(𝐸∗𝜉((1+ 𝑇∗)𝛾((1 + 𝑇∗)𝐸∗𝛼 + 𝑇∗𝛽 − (1 + 𝑇∗)𝜇) + (𝑆∗𝑇∗(2 + 𝑇∗)𝛽− 𝑆∗(1 + 𝑇∗)2𝜇 + 𝑇∗(1 + 𝑇∗)2𝜎)𝜏) + (1 + 𝑇∗)((1 + 𝑇∗)𝐸∗𝛼(−𝛾 + 𝑇∗𝜌)+ (𝑇∗𝛽 − (1 + 𝑇∗)𝜇)(−𝛾 + 𝑇∗𝜌 − 𝑆∗𝜏))𝜑))) 
Note 1. To prove the inequalities 𝑑1 >  0, 𝑑2 >  0, 𝑑3 >  0, and 𝑑1𝑑2 > 𝑑3 , we analyze 

the structure of 𝑑1, 𝑑2 , 𝑑3 .  𝐸𝑎𝑐ℎ 𝑜𝑓 𝑑1, 𝑑2  𝑎𝑛𝑑 𝑑3  𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚: (1 +𝑇∗)(n + T∗)2,  which is always positive under the reasonable assumption that T∗ > −1 

and  T∗ > n . Since this denominator does not affect the sign of d1, d2or d3  , the sign of 

each expression is determined by its numerator. 
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The numerator of d1  consists of multiple terms, the presence of positive terms such as 2T∗(1 + T∗)φ and contributions from cyclone intensity (S∗), accumulated energy (E∗), 
and temperature (T∗) suggests that the numerator can be positive. Given physically 

reasonable conditions, such as positive energy accumulation and control parameters, 

we conclude that d1 >  0. 

The numerator of d2contains contributions from terms like E∗ξ, (1 + T∗)E∗, and 

various interaction terms involving ϕ, τ, and other parameters. Since these terms 

represent energy transfer, dissipation, and climate interactions, they are typically 

positive under realistic physical conditions. Therefore, we argue that d2 >  0. 

The expression for d3 is slightly different, as it contains a negative term: − 2T∗2E∗ξστm  , 

which might suggest negativity. However, the remaining terms in d3  contain positive 

contributions from energy transfer, cyclone intensity, and climate forcing. If these 

positive terms outweigh the negative term, then d3 > 0holds. 

Since d1 >  0 and d2 >  0, their product is positive. The expression for d3  includes a 

negative term, making it easier to show that d1d2 > d3under reasonable physical 

assumptions. If the growth and control terms dominate, this inequality naturally 

holds. 
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