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1. Introduction 

Differential equations are the outcome of the relationship that can be established between the laws 

governing the quantities involved in a physical phenomenon and their derivatives.  In science and 

engineering, the majority of differential equations with boundary conditions cannot be solved 

analytically; as a result, numerical approximation techniques are needed. Solving singular 

differential equations makes it even more difficult. The solution’s behavior close to the singular 

points can be extremely complex and challenging to understand. It is also essential to comprehend 

how the solution behaves close to the singular points in order to derive accurate solutions and 

capture significant aspects of the equations. Nonlinear interactions between singular differential 

Abstract:  This paper introduces the quintic B-spline collocation method to 

approximate the solution of a class of non-linear singular boundary value 

problems with Neumann and Robin boundary conditions that arise in various 

models. L'Hôpital's rule modifies the singularity of the differential equation, 

which is subsequently converted into a solved problem. The investigation of the 

quintic B-spline interpolation error yields a truncation error of order six and 

convergence of order four. The method is uniformly convergent across the entire 

domain for the exact solution. Four broadly applicable problems have been 

solved to illustrate the accuracy of the proposed approach and numerical results 

have been compared to the exact solution at the same number of mesh points. 

The accuracy of the proposed approach is evaluated by determining the 

maximum absolute error and absolute residual error. Together with the exact 

solution and previous findings in the literature, the proposed approach yields 

better numerical results and it significantly reduces the computational cost of 

solving nonlinear singular boundary value problems.In addition to handling 

singularities, the proposed method manages larger domains and offers solutions 

for problems with strong non-linearity. Solving and analyzing nonlinear singular 

boundary value problems can provide insights into complex physical 

phenomena and aid in understanding the behavior of the model exhibiting 

nonlinear and singular characteristics. 

Key words: Emden–Fowler equation; Quintic B-spline;Robin boundary 

conditions; singular value problems; uniformly convergent 
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equations often exhibit complex behavior and can be challenging to understand and study (Larry 

2007; Boor 1978; Burden and Faires 2003). In recent years, the study of nonlinear singular boundary 

value problems has attracted a lot of attention and developed in science and engineering research. 

Solving and analyzing nonlinear singular boundary value problems can provide insights into 

complex physical phenomena and aid in understanding the behavior of the model exhibiting 

nonlinear and singular characteristics. 

In this work, the class of nonlinear singular boundary value problems of the form that are 

considered is as follows. 

( '(t))' t (t,u(t)), 0 1t u f t =    , 1  ,  u (0, )     (1)                                        

subject to the Neumann and Robin boundary conditions 

'(0) 0,u =           (2) 

and 

1 2(1) '(1) b,a u a u+ =          (3) 

where 1 20, 0,a a b  are any finite real constants and assumed that the nonlinear function (t, u(t))f  

and 
f

u




 are continuous for every (t, u)  and the condition  0
f

u





be satisfied. This class of problems 

has numerous applications by varying the function (t, u(t))f  and the value  1 2, anda a b such as 

distribution of heat sources in the human head, oxygen diffusion in a spherical cell, isothermal gas 

sphere, and radial stress on a rotationally symmetric shallow membrane cap, electro-

hydrodynamics, bridge construction, astronomy, fluid flow, and other complex problems (Lin 2021; 

Lin 1976; Parand and Delkhosh 2017; Irena et al. 2007; Bobisud 1990). Flesch (1975) used a second-

order singular differential equation to predict the link between the temperature distribution in the 

human head and the surrounding environment. It is difficult to find exact solutions of equation (1) 

because of the singular behavior at the origin and non-linearity. Researchers have applied several 

methods to solve such problems (Hikmot, Nazan, and Mehmet 2009; Kadalbajoo and Kumar 2007; 

Umesh 2021; Niu et al. 2018; Pandey and Tomar 2021; Pandey and Verma 2008; Rashidinia, 

Mahmoodi, and Ghasemi 2007; Roul and Goura 2020; Roul,Kumari, and Goura 2021; Roul, Prasad, 

and Agarwal 2022). Several semi-analytical approaches, including the variational iteration method, 

the Adomian decomposition method, and the optimal homotopy analysis method, have produced 

closed-form solutions of these problems with specific boundary conditions (Singh and Kumar 2014a; 

Singh 2018; Wazwaz 2011).   

To solve singular boundary value problems, Kanth and Reddy (2003) re-approximated the central 

difference approximation and introduced a fourth order finite difference technique. Cohen and 

Jones (1974) used the finite difference deferred correction technique to handle second order singular 

boundary value problems in the interval [0,1], they disregarded the singularity's impact on the 

solution in the vicinity of the singular point. Pandey and Singh (2004) presented a finite difference 

approach based on a uniform mesh and it was demonstrated that the method is of second-order 

accuracy under very general conditions. A numerical method for determining pointwise bounds for 

the solution of a class of nonlinear boundary-value problems that arise in physiology was introduced 

by Asaithambi and Garner (1989). Singh and Kumar (2014b) presented a novel approach to nonlinear 

singular boundary value problems that is based on Green’s function and the Adomian 

decomposition method. Singh, Kumar, and Nelakanti (2013) used Green’s function and improved 
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decomposition method for solving singular boundary value problems. Khuri and Sayfy(2010) 

introduced a novel numerical approach that connected the modified Adomian decomposition 

method with the B-spline collocation scheme.  Because of their rich geometrical features, accuracy, 

and smoothness, B-splines have been widely employed for solving boundary value problems 

throughout the past three decades.  A numerical technique for calculating approximations to the 

solution of nonlinear singular boundary value problems related to physiological research was 

developed by Hikmot, Nazan, and Mehmet (2009) using B-spline functions and the B-spline 

approximation was used to treat the boundary value problem after the original differential equation 

was altered at the unique point.  Maria and Dambaru(2015) investigated the approximate solutions 

to second order linear boundary value problems using cubic B-splines. Kanth and Bhattacharya 

(2006) used B-spline functions to solve two-point boundary value problems with a singularity at x = 

0 after employing quasi-linearization techniques to reduce the non-linear problem into a series of 

linear problems and then altering the resulting sets of differential equations around the singular 

point. Kadalbajoo and Aggarwal (2003) employed Chebyshev economization in the vicinity of the 

unique point before deriving a boundary condition at a point in the vicinity of the singularity in 

order to eliminate the singularity for homogeneous and linear singular boundary value problems. 

Goh, Majid, and Ismail (2011) used extended uniform B-spline functions to investigate the 

approximate solution of linear singular boundary value problems. Recently, Alam and Khan (2024); 

Isadi and Saini (2015) employed novel techniques to tackle singular boundary value problems. 

Despite the many advantages of these numerical methods, a thorough analysis of existing 

approaches in the literature review revealed that they have a significant drawback, including the 

need for a significant amount of computational work since the domain must be discretized and the 

considered problem must be linearized. It may also be challenging to handle singularities using 

techniques like the cubic spline method and the finite difference approach, fails to provide solutions 

for problems with strong nonlinearity, such as variational iteration method, fails for larger domains, 

and requires additional effort to obtain unknown parameters and take additional terms from the 

approximate solution, such as Adomian decomposition. This motivation leads to an accurate 

numerical technique to overcome these limitations and offer more accurate answers to this class of 

problems so that a higher order B-spline approach is suitable for solving these kinds of problems. 

Accordingly, quintic B-spline collocation method is proposed to tackle the problems. The advantage 

of quintic B-splines is that the polynomials are always of degree five and with lower computational 

cost, while in the case of other polynomials; the degree is quite high which depends on the number 

of subintervals.  Moreover, it can also be found the approximate values from first derivative to fourth 

derivative at the knots.  

In this paper, a quintic B-spline solution method is used to solve a class of nonlinear singular 

boundary value problems of equations (1), (2) and (3). L'Hôpital's rule modifies the singularity of the 

differential equation, which is subsequently converted into a solved problem.  Examples have been 

solved to illustrate the accuracy of the proposed approach and numerical results have been 

compared to the exact solution if available.  

 

 

2. The quintic B-spline collocation method 
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A knot sequence t is a non-decreasing sequence of real numbers,

   1 21
: ... ,

n

i ni
t t t t t n

=
= =     . B-spline of degree p  over the knot sequence t  can be 

defined if 2n p + . 

Definition. Suppose for the non-negative integer p  and some integer i  that 1 1...i i i pt t t+ + +    

are 2p + real numbers taken from a knot sequence t .  The i -th B-spline : R Rp
iB → of degree p

is defined as 

1

1 1
1 1 1

0, if
(x)

(x)B (x) (1 (x))B (x), if

i p ip
i p p p p

i i i i i p i

t t
B

t t 
+ +

− −
+ + + +

== 
+ − 

     (4) 

starting with 10
1, if [ , ),

(x)
0, otherwise

i i
i

x t t
B

+
= 


  where 
1

1

, if ,
(x)

0, if

i
i p ip

i p ii

i p i

x t
t t

t t

t t


+ +

+

+ +

−  −= 
 =

 

0, 1, 2,...i =   , and x  is a parameter in [0, 1]. 

0 1, 1 1i n p p n  − −   −  

Convention: (i) 0
0

m
=  where m R  

(ii) Some of the subscripts will be dropped and the B-spline written as either p

iB  

or iB  where there is no possibility of ambiguity.  

Let 0 1 2:0 ... 1n nt t t t =     = be a partition of [0,1] with the mesh size 
1

h
n

=  by the knots 

, 0,1,2,...,it ih i n= = . After including four additional knots outside the domain of the partition 

and then the partition becomes 2 1 0 1 2 1 2: ...n n n nt t t t t t t t− − + +          

We apply the recursion formula (4) to get the quintic B-spline iB ,  2, 1,0,1,..., , 1, 2i n n n= − − + + at 

the knots it  defines over [0,1]as follows: 

5

3 3 2

5 5

3 2 2 1

5 5 5

3 2 1 1

5 5 5

3 2 1 15

5 5

3 2 1 2

5

3 2

( ) , ,

( ) 6( ) , ,

( ) 6( ) 15( ) , ,
1

( ) ( ) 6( ) 15( ) , ,
120

( ) 6( ) , ,

( ) ,

i i i

i i i i

i i i i i

i i i i i i

i i i i

i i

x t t x t

x t x t t x t

x t x t x t t x t

B x t x t x t x t x t
h

t x t x t x t

t x t

− − −

− − − −

− − − −

+ + + +

+ + + +

+ +

−  

− − −  

− − − + −  

= − − − + −  

− − −  

− 3 ,

0, elsewhere.

ix t +









  



 (5) 

Figure 1: Bi’s in the interval [0,1] and h=1/6 
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2.2 Properties of quintic B-spline 

A number of significant characteristics may be inferred from Figure 1 and the recurrence 

defining Bi: 
(a) Nonnegativity:  

3 3( ) 0, , and  ( ) 0, ( , )i i i iB x x R B x x t t− +     

(b) Local support:  

3 3( ) 0, [ , )i i iB x x t t− +=   

(c) Normalization:  
2

2

( ) 1, [0,1]
n

i

i

B x x
+

=−

=   

(d) Translation Invariance: 

3 3

( ) ( ), , , 0, where

( ,..., ).

i i

i i

B ax b B x a b R a

at b at b at b− +

+ =  

+ = + +  
(e) Differentiation Formula: The m-th derivative of a B-spline: 

m 5 1 5 ,m m
i i i i

i i

D d B d B+ − 
= 

 
  where 

1

1

5

, 0

, 0
( ) / (5 m)

r

m m m
r r r

r m r

d m

d d d
m

t t

+
−

+ −

=
= −

 − −

and fractions with zero denominator have value 

zero.
 3. The numerical approach for singular BVPS 

For solving Eq. (1)-Eq. (3), we first modify Eq. (1) at the singular point 0x = using L’Hopital’s rule 

and then, transform the given problem Eq. (1)-Eq. (3) into the following form: 

''(t) h(t) u'(t) g(t, u(t))u + =  

'(0) 0,u =           (6) 

1 2(1) '(1) b,a u a u+ =
 

where 

0, t 0

(t)
, 0

h
t

t


=

= 


           and              

(t, u(t))
, 0,

g(t, u(t)) 1

(t, u(t)), t 0

f
t

f


 == +
 
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The collocation method with quintic B-spline as basis functions is used to solve the boundary 

value problems Eq. (6). Let  𝑄(𝑡) = ∑ 𝑑𝑖𝐵𝑖(𝑡)𝑛+2𝑖=−2         (7) 

be an approximate solution to the exact solution u(x)  to Eq. (6) where id  are the unknown 

constants to be determined from the boundary conditions and collocation points from the 

differential equation and iB  are quintic B-spline functions. The internal mesh points 𝑡1, 𝑡2, . . . , 𝑡𝑛−1  are chosen as the collocation points in the proposed method. Eq. (7) satisfies and 

can be simplified to  

2 2 1 1 1 1 2 2(t ) (t ) d (t ) d (t ) d (t ) d (t ) d (t )i i i i i i i i i i i i i i i i iu Q B B B B B− − − − + + + + = + + + +   (8) 

2 1 1 2

' ' ' ' '
2 1 1 2'(t ) '(t ) d (t ) d (t ) d (t ) d (t ) d (t )

i i i i ii i i i i i i i i i i iu Q B B B B B
− − + +− − + + = + + + +  (9)  

2 1 1 2

'' '' '' '' ''
2 1 1 2''(t ) ''(t ) d (t ) d (t ) d (t ) d (t ) d (t )

i i i i ii i i i i i i i i i i iu Q B B B B B
− − + +− − + + = + + + +  (10) 

2 1 1 2

''' ''' ''' ''' '''
2 1 1 2'''(t ) '''(t ) d (t ) d (t ) d (t ) d (t ) d (t )

i i i i ii i i i i i i i i i i iu Q B B B B B
− − + +− − + + = + + + +  (11) 

 0,1,2,...,i n=    

Substituting Eq. (8)-Eq. (10) into Eq. (6), we get  

2 1 1 2

2 1 1 2

'' '' '' '' ''
2 1 1 2

' ' ' ' '
2 1 1 2

d (t ) d (t ) d (t ) d (t ) d (t )

h(t )[d (t ) d (t ) d (t ) d (t ) d (t )] g(t ,u(t ))

i i i i i

i i i i i

i i i i i i i i i i

i i i i i i i i i i i i i

B B B B B

B B B B B

− − + +

− − + +

− − + +

− − + +

+ + + + +

+ + + + =
 

This implies 

2 2 1 1

1 1 2 2

'' ' '' ' '' '
2 1

'' ' '' '
1 2

d [ (t ) h(t ) (t )] d [ (t ) h(t ) (t )] d [ (t ) (t ) (t )]

d [ (t ) (t ) (t )] d [ (t ) (t ) (t )] g(t ,u(t ))

i i i i i i

i i i i

i i i i i i i i i i i i

i i i i i i i i i i

B B B B B h B

B h B B h B

− − − −

+ + + +

− −

+ +

+ + + + +

+ + + + =
 (12)

 

Using the properties of quintic B-spline functions, we get 𝐵𝑖−2(𝑡𝑖) = 1120     𝐵 𝑖−2′ (𝑡𝑖) = 124ℎ       𝐵 𝑖−2′′ (𝑡𝑖) = 16ℎ2         𝐵 𝑖−2′′′ (𝑡𝑖) = 12ℎ3     𝐵 𝑖−2(4) (𝑡𝑖) = 22ℎ4  

1 1 1

' '' ''' (4)
1 1 2 3 4

26 10 2 2 4
( ) ( ) ( ) ( ) ( )

120 24 6 2i i ii i i i i i iB t B t B t B t B t
h h h h− − −− −= = = = − = −  

' '' ''' (4)

2 4

66 6 6
( ) ( ) 0 ( ) ( ) 0 ( )

120 6i i i ii i i i i iB t B t B t B t B t
h h

= = = − = =   (13)  

1 1 1

' '' ''' (4)
1 1 2 3 3

26 10 2 2 4
( ) ( ) ( ) ( ) ( )

120 24 6 2i i ii i i i i i iB t B t B t B t B t
h h h h+ + ++ +

−
= = − = = =  

2 2 2 2

' '' ''' (4)
2 2 3 4

1 1 1 1 1
( ) ( ) ( ) ( ) ( )

120 24 6 2i i i ii i i i i iB t B t B t B t B t
h h h h+ + + ++ = = − = = − =  

Substituting Eq. (13) in Eq. (12), we obtain 

2 1 1

2
2

d [4 h(t )h] d [8 10h(t )h] d [ 24] d [8 10 (t )h]

d [4 (t )h] 24 g(t ,u(t )), i 0,1,2,...,n

i i i i i i i

i i i i

h

h h

− − +

+

+ + + + − + − +

− = =
   (14) 

For 0i = , we have (t ) 0ih = . Hence, 

   (14a) 

 

For 1, 2,...,i n= , we have (t )i
i

h
t


= . Hence, 

2 0 0
2 1 0 1 2 0 0

(t , u(t ))
d 2d 6d 2d d 6 , where

1

f
h f f

− −+ − + + = =
+



Scope 

Volume 15 Number 03 September 2025 

604 www.scope-journal.com 

 

2 1 1

2
2

(4 t h)d (8t 10 h)d 24d (8t 10 h)d

(4 t h)d 24 t , where (t ,u(t ))

i i i i i i i

i i i i i i ih f f f

  


− − +

+

+ + + − + − +

− = =    (14b) 

 

Using the first boundary condition, Eq. (9) and Eq. (13), we get 

2 1 1 2

' ' ' ' '
0 2 0 1 0 0 1 0 2 0'(t ) d (t ) d (t ) d (t ) d (t ) d (t ) 0

i i i i ii i i i iQ B B B B B
− − + +− − + += + + + + =

 
This implies  

2 1 1 2d 10d 10d d 0− −+ − − =        (15) 

Using the second boundary condition, Eq. (8), Eq. (9) and Eq. (13), we get
 

2 1 1 2

1 2 2 1 1 1 1 2 2

' ' ' ' '
2 2 1 1 2

a [d (t ) d (t ) d (t ) d (t ) d (t )]

[d (t ) d (t ) d (t ) d (t ) d (t )] b
n n n n n

n n n n n n n n n n n n n n n

n n n n n n n n n n

B B B B B

a B B B B B
− − + +

− − − − + + + +

− − + +

+ + + +

+ + + + + =
   

This implies  

1 2 2 1 2 1 1 1 2 1

1 2 2

( 5 )d (26 50 )d (66 )d (26 50 )d

( 5 )d 120bh

n n n n

n

a h a a h a a h a h a

a h a

− − +

+

+ + + + + −

+ − =
  (16) 

Now it has been found 3n+  equations, but 5n+  unknowns. So, two equations are needed to 

determine a unique solution of the system Eq. (14), Eq. (15) and Eq. (16). When we differentiate 

Eq. (6) with respect to t three times, we obtain 

''' '' ' ' ' (t, u(t))
(t) h(t) (t) h (t) (t) u (t)

dg
u u u

dt
+ + =      (17) 

where '

2

0, 00, 0

(t) (t)
, 0, 0

tt

h h
tt

t t


== 

 = = −   

 

At 0t = , '' ' 'h(t) (t) h (t) (t)u u+ is indeterminate form. Hence, by L’Hopital’s rule, its limit as 0x→ is 

'''

2
u


. Therefore, Eq. (17) becomes 

'''
01 (t ) 0

2
u

 + = 
 

        (18) 

Using Eq. (11), Eq. (12), and Eq. (18) 

2 1 0 1 2

''' ''' ''' ''' '''
2 0 1 0 0 0 1 0 2 01 [d (t ) d (t ) d (t ) d (t ) d (t )] 0

2
B B B B B


− −− −

 + + + + + = 
   

This implies 

      (19) 

At nt t= , Eq. (17) becomes 

''' '' ' ' ' (t, u(t))
(t ) h(t ) (t ) h (t ) (t ) u (t)

n

n n n n n

t t

dg
u u u

du =

+ + =  

''' '' ' ' ' (t, u(t))
(t ) h(t )Q (t ) h (t )Q (t ) (t)

n

n n n n n

t t

dg
Q u

du =

+ + =
 

2 1 1 2d 2d 2d d 0− −− + − =
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2 1 1 2

2 1 1 2

2 1

''' ''' ''' ''' '''
2 1 1 2

'' '' '' '' ''
2 1 1 2

' ' ' '
2 1

d (t ) d (t ) d (t ) d (t ) d (t )

h(t )[d (t ) d (t ) d (t ) d (t ) d (t )]

h (t )[d (t ) d (t ) d (t ) d

n n n n n

n n n n n

n n n

n n n n n n n n n n

n n n n n n n n n n n

n n n n n n n

B B B B B

B B B B B

B B B

− − + +

− − + +

− −

− − + +

− − + +

− −

+ + + + +

+ + + + +

+ + +
1 2

' '
1 2

'

(t ) d (t )]

(t, u(t))
u (t)

n n

n

n n n n

t t

B B

dg

du

+ ++ +

=

+ =  

This implies  

2 2 2 2
2 1

2 2 2 2
1 2

3 2 '

(12 t 4 ht h )d ( 24 t 8 ht 10 h )d

( 24 )d (24 t 8 ht 10 h )d ( 12 t 4 ht h )d

(t , u(t ))
24h t , where u (t )

n n n n n n

n n n n n n n n

n n
n n n n

t h

df

du

   

    

 

− −

+ +

+ − + − + − +

− + + + + − + +

= =

(20) 

It is found a system of n+5 equations in n+5 unknowns since we have determined all of the constant 

coefficients in equations (14), (15), (16), (19), and (20). This system is represented in matrix form: 

AX=B        (21) 

  where 2 1 0 1 1 2[d , d , d , d ,..., d , d , d ]Tn n nX − − + +=  
2 2 2 2 3

0 1 1[0, 0, 6 , 24 , ..., 24 , 24 , 120 ]Tn n n nB h f t h f t h f t h bh=  

𝐴 =
[  
   
   
  1 10 0 −10 1 0 0 … 0 0 0 0 0 01 −2 0 2 −1 0 0 … 0 0 0 0 0 01 2 −6 2 1 0 0 … 0 0 0 0 0 00 𝑝1 𝑞1 −24 𝑟1 𝑠1 0 … 0 0 0 0 0 00 0 p2 q2 −24 r2 s2 … 0 0 0 0 0 0… … … … … … … … … … … … … …0 0 0 0 0 0 0 … pn−1 qn−1 −24 rn−1 sn−1 00 0 0 0 0 0 0 … 0 pn qn −24 rn sn0 0 0 0 0 0 0 … 0 β1 β2 β3 β3 β40 0 0 0 0 0 0 … 0 α1 α2 α3 α4 α5]  

   
   
  
 

where 

2 2
14 , 8 10 , 8 10 , 4 , 12 4i i i i i i i i n np t h q t h r t h s t h t ht h      = + = + = − = − = + −  

2 2 2 2
2 3 424 8 10 , 24 , 24 8 10n n n n nt ht h t h t ht h       = − + − = − = + +  

2 2
5 1 1 2 2 1 212 4 , 5 , 26 50n nt ht h a h a a h a    = − + + = + = +  

3 1 4 1 2 5 1 266 , 26 50 , 5a h a h a a h a  = = − = −  

Once the values of d−2,   d−1,   d0,   d1, . . . ,   dn,   dn+1,  and   dn+2  have been determined from the 

system of nonlinear equation (21) and then substitute these values into equation (7). Equation (7) 

can give an accurate approximation that is guaranteed to match it, if an exact solution is available. 

 

4. Computation of error and order of convergence 

This section outlines a procedure for calculating the quintic B-spline method’s truncation error 

over 0 ≤ t ≤1.  The function u(t) with continuous derivatives throughout the entire range is taken 
into consideration. The following relations are obtained usingthe quintic B-spline 

approximations and equations (8)-(11) and (13)  (Mishra and Saini 2015; Xu and Lang 2014): 
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2 1 1 2

1 26 66 26 1
(t ) d d d d d

120 120 120 120 120
i i i i i iQ − − + += + + + +   

 2 1 1 2

1 1 10 10 1
'(t ) d d d d

h 24 24 24 24
i i i i iQ − − + +

 = + − −  
 

2 1 1 22

1 1 2 2 1
''(t ) d d d d d

6 6 6 6h
i i i i i iQ − − + +

 = + − + +  
 

2 1 1 23

1 1 1
'''(t ) d d d d

2 2h
i i i i iQ − − + +

 = − + −  
  

 (4)
2 1 1 24

1
(t ) d 4d 6d 4d d

h
i i i i i iQ − − + += − + − +  

 0,1,2,...,i n=           (22) 

Let (t)u  have continuous derivatives for all t ∈  [0,1] . Using Equation (22) the following 

relationship can be obtained: 

 i-2 i-1 i i+1 i+2 i-2 i-1 i+1 i+2

1
Q'(t )+26Q'(t )+66Q'(t )+26Q'(t )+Q'(t )= 5u(t )+50u(t )-50u(t )-5u(t )

h
 

 
i-2 i-1 i i+1 i+2

i-2 i-1 i i+1 i+22

Q''(t )+26Q''(t )+66Q''(t )+26Q''(t )+Q''(t )=

1
20u(t )+40u(t )-120u(t )+40u(t )+20u(t )

h

 

 
i-2 i-1 i i+1 i+2

i-2 i-1 i+1 i+23

Q'''(t )+26Q'''(t )+66Q'''(t )+26Q'''(t )+Q'''(t )=

1
60u(t )-120u(t )+120u(t )-60u(t )

h

               (23) 

 

(4) (4) (4) (4) (4)
i-2 i-1 i i+1 i+2

i-2 i-1 i-1 i+1 i+24

Q (t )+26Q (t )+66Q (t )+26Q (t )+Q (t )=

1
120u(t )-480u(t )+720u(t )-480u(t )+120(t )

h

 

Using shift operator 1(u(t )) u(t )i iE += , equation (23) can be expressed as 

( )

( )

( )

( )

-2 -1 2 -2 -1 2
i i

-2 -1 2 -2 -1 2
i i2

-2 -1 2 -2 -1 2
i i3

-2 -1 2

1
E +26E +66+26E+E Q'(t )= 5E +50E -50E-5E u(t )

h

1
E +26E +66+26E+E Q''(t )= 20E +40E -120+40E+20E u(t )

h

1
E +26E +66+26E+E Q'''(t )= 60E -120E +120E-60E u(t )

h

E +26E +66+26E+E Q

  

  

  

(4) -2 -1 2
i i4

1
(t )= 120E -480E +720-480E+120E u(t )

h
  

 (24)  

Using the Operator hD d
E=e , where D=

dx
   in an expansion form to the power of hD , we obtain 

6Q'(t )=u'(t )+o(h )i i  

4 (6) 61
Q''(t )=u''(t )+ h u (t )+o(h )

720
i i i  

4 (7) 61
Q'''(t )=u'''(t )- h u (t )+o(h )

240
i i i  

(4) (4) 2 (6) 4 (8) 61 1
Q (t )=u (t )- h u (t )+ h u (t )+o(h )

12 240
i i i i  
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                                                                                                 (25) 

Theorem. Let u(t) C [0,1]  and  (t)Q  be the approximate solution of u(t) . Then the global error 

bound is ( )( ) ( ) 6-ru (t) (t) o h , for r=0,1,2,3,4.r rQ


− =  

At the ith  knot, the error term is defined as e(n)(ti) = Q(n)(ti) − u(n)(ti). The Taylor series expansion 

of the error term e(ti + φh)yields the following results when we use equation (25): e(ti + φh) = e(ti) + O(h6),        0 ≤ φ ≤ 1. 
 

5. Numerical Examples and Discussion 

To illustrate the accuracy of the proposed method, four examples are taken into consideration, with 

the first two having exact solutions and the final two lacking any. The numerical results obtained are 

compared with the results obtained using another method. To assess the accuracy of the proposed 

method, the accuracy of the proposed scheme shown is confirmed using the maximum absolute 

error ii
i

ii uQuQ −=−=
 maxL  where  ii uQ and  are approximate and exact solutions at each knots 

and if the exact solution is not known, we compute the absolute residual error 

QR ( '(t)) ' t (t,Q(t)) , 0 1.t f t = −   MATLAB is used to generate the results. 

Example 1. Consider the Emden–Fowler equation of the first kind (Lin 1976; Singh 2018) 
2 2 5( '( )) ' ( ), 0 1

'(0) 0, (1) 0.8660254.

t u t t u t t

u u

=  
= =                                                           (26) 

This problem is a particular of Eq. (1) - Eq. (3). That means 
5

1 2α=2, a =1, a =0, 0.8660254and ( , ( )) ( ).b f t u t u t= =
 

The exact solution of Eq. (26)  is 
1/2

2

3
( )

3
u t

t

 =  +  . 

The approximate solution using the proposed method and the absolute errors from the exact 

solution at each knots for this problem are tabulated in Table 1.  The maximum absolute error using 

n=10 in [27] is 4.8643×10-5 but in the proposed method the maximum absolute error is 

3.9153665262×10-5 and Figure 2 shows the graphs of exact and approximate solutions. 

 

Table 1: Quintic B-spline results and absolute errors for Example 1 

t Proposed Method Exact Absolute Error 

0.0 0.9999982200000000 1.0000000000000000 0.0000017800000000 

0.1 0.9983339588745640 0.9983374884595827 0.0000035295850187 

0.2 0.9933959350592531 0.9933992677987828 0.0000033327395298 

0.3 0.9853253627977669 0.9853292781642932 0.0000039153665262 

0.4 0.9743525690790820 0.9743547036924464 0.0000021346133644 

0.5 0.9607676052402520 0.9607689228305228 0.0000013175902709 

0.6 0.9449104580998380 0.9449111825230680 0.0000007244232301 

0.7 0.9271433547564660 0.9271455408231196 0.0000021860666536 

0.8 0.9078387358752100 0.9078412990032037 0.0000025631279936 
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0.9 0.8873536169598070 0.8873565094161138 0.0000028924563068 

1.0 0.8660222336193431 0.8660254037844386 0.0000031701650955 

 

 
Figure 2. Exact and approximate solution for example 1 

 

Example 2. Consider the Emden–Fowler equation of the second kind (Singh and Kumar 2014b; 

Singh, Kumar, and Nelakanti 2013) 

0)1(,0)0('

10,))'('( )(

==
−=

uu

ttettu tu

                                                            (27) 

This problem is also a particular of Eq. (1) - Eq. (3). That means  
u(t)

21
-eu(t))f(t, and0b0,a1,a1,α =====

 
The exact solution of Eq. (27) is 

223,
1

1
ln)(

2

2
=








+
+

= 


t

tu
.  

The approximate solution using the proposed method and the absolute errors from the exact 

solution for this problem are tabulated in Table 2 and Figure 3 shows the graphs of exact and 

approximate solutions.  The maximum absolute error using n=10 in (Singh and Kumar 2014b) is 

2.1007×10-6 but in the proposed method the maximum absolute error is 6.08010002×10-7 . 

Table 2: Quintic B-spline results and absolute errors for Example 2 

t Proposed Method Exact Absolute Error 

0.0 0.3166943136905000 0.3166943676407495 0.0000000539502495 

0.1 0.3132658116002000 0.3132658504980633 0.0000000388978633 

0.2 0.3030154836333000 0.3030154228322998 0.0000000608010002 

0.3 0.2860472317263000 0.2860472653048539 0.0000000335785539 

0.4 0.2625311115885000 0.2625311274560331 0.0000000158675331 

0.5 0.2326967637107000 0.2326967838738344 0.0000000201631344 

0.6 0.1968268234783000 0.1968268056929538 0.0000000177853462 

0.7 0.1552481356735900 0.1552481066827563 0.0000000289908337 
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0.8 0.1083227083331800 0.1083227634444646 0.0000000551112846 

0.9 0.0564386382555000 0.0564386024692362 0.0000000357862638 

1.0 0.0000000000000000 0.0000000000000000 0.0000000000000000 

 
Figure 3. Exact and approximate solution for example 2 

 

Example 3. Consider the problem arising in steady-state oxygen diffusion in a spherical cell (Singh 

and Kumar 2014b) 

5)1(')1(5,0)0('

10,
03119.0)(

)(76129.0
))'('( 22

=+=


+

=

uuu

t
tu

tu
ttut

                                                           (28) 

This problem is also a particular of Eq. (1) - Eq. (3). That means  

0.03119u(t)

u(t)0.76129
u(t))f(t, and5b1,a5,a2,α

21 +
=====

 

Since there is no exact solution to this problem, Table 3 lists the absolute residual error along with 

the approximate solution using the proposed method.  The table demonstrates how well the 

approximation fits the given differential equation as compared with (Singh and Kumar 2014b) and 

Figure 4 shows the graph of approximate solution. 

 

Table 3: Quintic B-spline results and absolute residual errors for Example 3 

t Proposed Method Absolute Residual Error 

0.0 0.8284832738671110 .0000000000048907 

0.1 0.8297060896199600 0.0000000000130954 

0.2 0.8333749932953860 0.0000000000013221 

0.3 0.8394898608255860 0.0000000000144343 

0.4 0.8480527132514780 0.0000000000027344 

0.5 0.8590648306050520 0.0000000000191241 

0.6 0.8725281920852540 0.0000000000056047 
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0.7 0.8884451398822570 0.0000000000181770 

0.8 0.9068183380793901 0.0000000000038411 

0.9 0.9276507281761430 0.0000000000165969 

1.0 0.9509456827908310 0.0000000000014442 

 

 
Figure 4. Approximate solution for example 3 

Example 4. Consider the problem arising in the distribution of heat sources in the human head 

(Duggan and Goodman 1986) 

0)1(')1(2,0)0('

10,))'('( )(22

=+=
−= −

uuu

tettut tu

                                                         (29) 

This problem is also a particular of Eq. (1) - Eq. (3). That means  
)(

21
u(t))f(t, and0b1,a2,a2,α tue−−=====

 
Since there is no exact solution to this problem, Table 4 lists the absolute residual error along with 

the approximate solution using the proposed method. The table demonstrates how well the 

approximation fits the given differential equation as compared with (Singh and Kumar 2014b) and 

Figure 5 shows the graph of approximate solutions. 

 

Table 4: Quintic B-spline results and absolute residual errors for Example 4 

t Proposed Method Absolute Residual Error 

0.0 0.2707362706946570 0.0000076472474255 

0.1 0.2694577343898710 0.0000087187338805 

0.2 0.2656153095373430 0.0000004402308103 

0.3 0.2591936707452740 0.0000089784525717 

0.4 0.2501643551645480 0.0000001791309878 

0.5 0.2384857808655290 0.0000028924677682 

0.6 0.2241052734435516 0.0000089889558170 

0.7 0.2069564526020600 0.0000098918597821 

0.8 0.1869558637840680 0.0000027894342962 

0.9 0.1640051347248120 0.0000019795197907 
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1.0 0.1379877451258660 0.0000008236639641 

 

 
Figure 5. Approximate solution for example 4 

 

6. Conclusion 

This paper introduces the quintic B-spline collocation method in order to approximate the solution 

of a class of non-linear singular boundary value problems with Neumann and Robin boundary 

conditions that arise in various models.  Using L’Hopital’s rule, we first modify the problem at the 

singular point in order to solve the given class of second order differential equations. Then, we 

transform the problem to apply the proposed method. With quintic B-spline approaches systems of 

nonlinear equations are generated, and these systems can be handled with appropriate methods 

with little difficulty in terms of computation and time. The method yields uniform convergence; as 

demonstrated by the numerical results. Furthermore, the spline function that is generated by this 

method can be utilized to find the solution at any point in the range. Four widely applicable 

problems in different models are solved using the proposed approach in order to test the method’s 

accuracy. The proposed method produced numerical results in Example 1 and Example 2 that are 

better than (Singh and Kumar 2014b) in terms of maximum absolute error and in good agreement 

with the exact solutions found in the literature. The proposed approach yields better absolute 

residual error in Example 3 and Example 4 that their solutions are not known than (Singh and 

Kumar 2014b), demonstrating how well the approximation satisfies the given non-linear singular 

boundary value problems. The proposed method overcomes the major limitation of existing 

numerical methods in the literature, which is that they require a significant amount of 

computational cost for nonlinear singular boundary value problems by calculating unknown 

constants in a series of difficult transcendental equations and extracting extra terms from the 

approximate solution (Singh and Kumar 2014b; Singh, Kumar, and Nelakanti 2013). In addition to 

handling singularities, the proposed method manages larger domains and offers solutions for 

problems with strong non-linearity. 
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