The Usage of Coenzyme Q10 on Skin Aging: A Systematic Review on Animal and Clinical Study

Annisa Ayunita Ramadhani¹, Ismiralda Oke Putranti²

¹Muhammadiyah Hospital of Purbalingga

²Department of Dermatovenereology and Aesthetic, Faculty of Medicine

Universitas Jendral Soedirman

Abstract

Skin aging is a multifactorial problem which involves free radical, cell cycle, and glycation mechanism. Hence, antioxidants become a prominent solution to this problem. Supplementation of Coenzyme Q10 as a promising antioxidant for skin aging has not been widely discussed. Thus, a systematic review was conducted following the 2020 Preferred Reporting Itemsfor Systematic Reviews and Meta-analyses (PRISMA) guideline and critically appraised. Ten studies focusing on efficacy and dose of CoQ10 for skin aging through oral and topical route were included in this systematic review. Studies were categorised into 3 animal study, 3 clinical stand-alone CoQ10 study, and 4 clinical CoQ10 combination study. In this review, it was confirmed that CoQ10 benefits the skin through reduction of wrinkle and fine lines, overall signs of photoaging, and inflammatory cytokines' activity. Further study needs to be conducted on ideal oral and topical dose along with safety and tolerability of topical CoQ10.

Keywords: aging, coenzyme Q10, skin

Introduction

Aging as a time-related deterioration of human physiological function, affects all individuals.¹ In particular skin aging is expressed intrinsically through smooth, thinned, dry skin with prominent expression lines; and expressed extrinsically through photodamage including wrinkles, actinic keratoses, patchy hypopigmentation, and pigmented lesions.²Due to poor hydration, dermis and epidermal junction disintegration, and loss of body mass, aging process occurs. Several endogenous factors including gene mutation, hormonal factor, cell metabolism; and exogenous factors including ultraviolet ray, pollutants, toxins, and chemicals have been reported to speed up skin aging through various mechanisms including free radical, glycation, cell cycle, and others.³

Over the years, therapeutic modalities to improve skin aging has been conducted through photoprotection and administration of a range of antioxidants and retinoids.Coenzyme Q10 (CoQ10) is one of the antioxidants which function to enhance antiaging effect.² Itis a lipid-soluble antioxidant that works on lipoprotein and plasma membrane and also function as an essential component at the mitochondrial electron transport chain. With aging process, biosynthesis of CoQ10 reduced and resulted in increased lipid oxidative damage.⁴ Thus, CoQ10 replenishment through supplementation is needed.As the third most consumed supplement, CoQ10 has been used as treatment in numerous aging diseases such as cardiovascular and kidney diseases, diabetes, metabolic syndromes, neurodegenerative disease and fertility.^{4,5}The supplementation of CoQ10 has been established as a supporting therapy that positively improve disease outcome.⁴ However, application of CoQ10 for skin aging have not been discussed as widely as other type of antioxidants and effective therapeutic dose has not been determined. Thus, this systematic review aimed to determine the efficacy and dosage of CoQ10 adjuvant in prevention against skin aging.

Methods

Study design

This systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and following the Oxford Centre of Evidence-Based Medicine (CEBM) critical appraisal checklist to review the studies included. We aimed to describe the utilization of coenzyme Q10 in various applications in dermatology through this review.

Inclusion and exclusion criteria

To obtain a comprehensive searching result, both animal models and clinical trial results are included, thus any experimental study, case-control, cohort study, and randomized controlled trials (RCTs) are eligible. All studies in English language, published until 19/01/2024, and reported quantitative primary outcome of skin aging, wrinkles, and skin roughness are included. Studies focusing on other subjects and report only qualitative outcomes are excluded.

Search Strategy

Study searching was done by going through electronic journal databases: PubMed, Cochrane Library, Ebsco, and ProQuest using search terms: ("coenzyme Q10" OR "coQ10") AND ("skin" OR "dermatology") AND ("wrinkle" OR "aging"). Additionally, hand searching was conducted with Google Scholar using the same keywords. _____ conducted the search strategy as independent researchers by filtering them with the eligibility criteria for search refining.

Study Selection

Study articles were individually screened for titles and abstract to select studies suitable with the requirements. Then, the full-text of each potential studies were screened and appraised, only those which met the eligibility criteria were selected. Any discrepancy between author findings were discussed to reach an agreement.

Data Extraction and Synthesis

In order to extract necessary information from the selected studies, we presented a table with following data: first author and year of publication, type of study, number of samples, gender and mean age (years) (for clinical trial only), form and dose of coenzyme Q10 given, duration of treatment, measuring instruments, relevant statistical results, and the principal outcomes. Based on provided statistical report, studies were critically appraised and effect size were calculated for data synthesis.

Result

In total, we found 244 journal articles from the database. After duplicated articles were removed, there were 240 articles available for title and abstract analysis.Based on title and abstract 13 studies pass through the screening of which five are animal study and eight are clinical study. In the next step, full text from each study was analysed.Two articles from animal study and one article from clinical study were removed from analysis due to full-text unavailability or unrelated content, leaving 10 articles in final analyses.

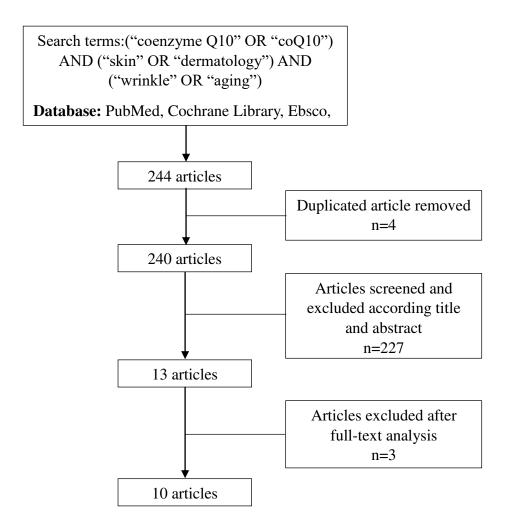


Figure 1. PRISMA diagram of the assessment method

Chosen articles were then analysed for risk of bias with Version 2 of Cochrane Risk of Bias Tool for Randomized Trial (RoB-2) as seen in Table 1. Three of ten articles have moderate risk of bias while the others have low risk of bias. Although these three articles raise some concerns, they are still acceptable and thus not excluded

Type of	Study (year)	D1	D2	D3	D4	D5	Overal
study	Study (year)		D2	D5	D4	D 5	1
	Yadav et al (2015) ⁶	+	+	+	+	+	+
Animal	Nayak et al $(2017)^7$	+	+	+	+	+	+
	Wu et al (2020) ⁸	+	+	+	+	+	+
	Inui et al (2008) ⁹	+	+	?	+	+	?
	Udompataikul (2009) ¹⁰	+	+	+	+	+	+
	Di Cerbo et al (2015) ¹¹	+	+	+	+	+	+
Human	Knott et al (2015) ¹²	?	+	?	+	?	?
	Herndon Jr et al $(2015)^{13}$	+	-	+	?	?	?
	Zmitek et al (2017) ¹⁴	+	+	+	+	+	+
	Zmitek et al (2020) ¹⁵	+	+	+	+	+	+
D1: Risk of bia	s arising from the randomiza	ation pro	cess		+	low risk	c of bias
D2: Risk of bia	as due to deviation from the	?	unclear	risk of			
of assignment t	to intervention)	4	bias				
D3: Missing ou	itcome data	-	high ris	k of bias			
D4: Risk of bia	s in measurement of outcom						
D5: Risk of bia	s in selection of the reported	l result					

Table 1. Version 2 of Cochrane Risk of Bias Tool for Randomized Trial Assessment for Chosen Articles

Due to variation in subject and intervention methods, we divide the articles into three categories. First, intervention conducted through animal study; second, intervention conducted in clinical setting with only CoQ10; and third, intervention conducted in clinical setting with CoQ10 in combination with other pharmaceuticals. Characteristics of studies from each category can be observed in Table 2, Table 3, and Table 4 respectively.

Table 2. Characteristics of selected animal study

Study	Number of	Gender	Drug dose	Treat	Outcome
	samples	- animal	(topical)	ment	
				durati	
				on	
Yadav et al	4 for negative	Female –	-	4	CoQ10 application reduced
$(2015)^6$	control	swiss	UV radiation	weeks	skin pinch recovery time
	4 for negative	albino	only		compared to UV treated
	control	mice	+5 mg		group. PN gel showed
	4 gotproniosomal		CoQ10		better reduction of visual
	(PN) gel				skin grading score
	4 got conventional		+5 mg		compared to conventional
	gel		CoQ10		gel.
			Once daily, 5		CoQ10 application
			days a week		increased antioxidant
					activity of superoxide
					dismutase (p<0.01) and

Nayak et al (2017) ⁷	6 for negative controls 6 for positive controls 6 for marketed formulation 6 for free retinaldehyde (RAL) gel 6 for free CoQ10 gel 6 for free CoQ10 gel 6 for free RAL+CoQ10 gel 6 for RAL nanostructured lipid carrier (NLC) gel 6 for CoQ10 NLC gel 6 for RAL+CoQ10 NLC gel	Female – swiss albino mice	- UV radiation only + CoQ10, dosage not disclosed + 0,25 mg RAL + 1 mg CoQ10 + 0,25 mg RAL + 1 mg CoQ10 0,25 mg RAL + 1 mg CoQ10 + 0,25 mg RAL + 1 mg CoQ10 + 0,25 mg RAL + 1 mg CoQ10 + 0,25 mg RAL + 1 mg CoQ10 + 0,25 mg RAL	3 weeks	catalase(p<0.05) while decreasing activity of malondialdehyde (p<0.001) compared to positive control, but not as good as negative control group. PN gel showed better antioxidant activity than conventional gel. Wrinkle reduction potential best observed in RAL+CoQ10 NLC gel and CoQ10 NLC gel All NLC groups showed skin recovery ability and skin epidermal thickness alteration comparable to the negative control group (p>0.05 compared to negative control) RAL+CoQ10 NLC gel was reduces collagen and elastin changes due to UV exposure All NLC groups were able to revert UV-caused photoaging
Wu et al (2020) ⁸	 9 for negative control 9 for positive control 9 for TiO₂suncreen 9 for CoQ10 suncreen 	Female – pathoge n-free Kunmin g mice	- UV-B radiation only +TiO ₂ 50 mg/g +CoQ10 10 mg/g Once daily	8 weeks	CoQ10increasedantioxidantactivityofsuperoxidedismutase(p<0.05)

	proven through significant reduction of MMP-1 mRNA level. (p<0.05) CoQ10 sunscreen reduce photoaging effect proven
	through significant improvement of DNMT1 activity. (p<0.05)

Table 3. Characteristics of selected clinical study with CoQ10 only intervention

Study	Type of study	Number of samples	Gen der	Age	CoQ10 Dose and form	Treat ment durat ion	Randomiz ation	Outcome
Inui et al (2008) ⁹	In vitro + Prospect ive cohort study	31 participants	Fem ale	27-61 years old	1% CoQ10 cream twice daily	5 mont hs	Single- blind	In-vitro experiment showed reduction in UV induced cytokines IL-6 (p<0.05) and MMP-1 (p<0.01) activity in cultured fibroblast treated with 20 uM CoQ10. Reduced wrinkle grade score in treatment group (not significant statistically)
Knott et al (2015) ¹²	Prospect ive cohort study	73 participants, each with 3 test area: untreated, with CoQ10 cream, and with CoQ10 serum	Fem ale	20-66 years old	Cream: 348 uM; Serum: 870 uM Twice daily	2 week s	None	Both groups of CoQ10 therapy significantly increase quinone levels lines (p<0.05) in epidermis end dermis, increase energy metabolism in epidermis (p<0.05), and improve antioxidant properties in stressed skin (p<0.05) Both dose shows similar result

Scope Volume 14 Number 1 March 2024

	RCT	33	Fem	45-60	A: 50	12	Double-	CoQ10
		participants:	ale	years	mg	week	blind	supplementation
		11 – placebo		old	tablet;	s		improves wrinkles
		11 – CoQ10		(52.6 <u>+</u>	B: 150			and fine lines
		(A)		4.2	mg			(p<0.05),
		11 – CoQ10		years	tablet			microrelief lines
		(B)		old)				(p<0.05), skin
					Once			smoothness and
Zmit					daily			firmness (p<0.01).
ek et								Minimal UV
al								induced
(2017								erythema, dermal
$)^{14}$								thickness, skin
								elasticity and
								hydration do not
								improve with
								CoQ10
								supplementation.
								Both dosage
								shows similar
								result.

Table 4. Characteristics of selected clinical study with CoQ10 in combination with other pharmaceuticals

Stud	Туре	Number	gend	Age	CoQ	Other	Tre	Rand	Outcome
У	of	of	er		10	active	atm	0-	
	study	samples			Dose	ingredients	ent	miza	
					and		dur	tion	
					form		atio		
							n		
	RCT	60	Fema	35-60	15	Camellia	12	Doub	Treatment group
		participa	le	years old	mg	sinensis leaf	wee	le-	showed
		nts:		36-60	capsu	extract 150	ks	blind	significant depth
		30 in		(46.23)	le	mg,			of skin
		placebo		years old		demineralis			roughness and
Udo		group		35-59	Once	ed fish			wrinkles
mpat				(43.10)	daily	proteoglyca			(p=0.048)
aikul		30 in		years old		n extract			compared to
et al		supplem				105 mg,			placebo group.
(2009		ent				Dunaliella			Compared to to
$(200)^{10}$		group				<i>salina</i> fresh			baseline, wrinkle
)						cell 75 mg,			depth improved
						zinc 14 mg,			by
						Vitis vinifera			21.22%(p=0.000
						seed extract)
						25 mg			Treatment
						Pinus			participants are

Scope Volume 14 Number 1 March 2024

						<i>pinaster</i> bark			significantly
						extract 20			satisfied with
						mg,			reduction of
						selenium 26			pore size and
						ug, vitamin			wrinkles.
						E 7.36 mg			Winnies.
	RCT	30	Fema	43.6 <u>+</u> 1.2	10	Hydrolysed	2	doubl	Significant
	101	participa	le	years old	mg	collagen 200	wee	e-	improvement in
		nts:		5	capsu	mg,	ks	blind	VAS photoaging
		15 in			le	Pycnogenol	-		score
		placebo			-	15 mg			(p<0.0001),
		group			3	8			facial sebum
		0 1			times				(p<0.0001),
		15 in			a day				hydration
		Viscoder			5				(p<0.0001), and
		m [©] suppl			With				tonicity (p<0.05)
		ement			stand				Supplementatio
Di		group			ardiz				n increased
Cerb					ed				serum
0					diet				fibronectin
(2014									(p<0.001) and
)11									serum
									hyaluronic acid
									(p<0.001); and
									decrease in
									serum
									neutrophil
									elastase 2
									(p<0.001), and
									serum
									carbonylated
									proteins
		27	-	25.40			10		(p<0.0001)
	Prosp	37	Fema	35-60	Dose	Astragalus	12	none	Multidrug
	ective	participa	le	years old	not	membranace	wee		moisturizer
	study	nts		(52.1 <u>+</u>	discl	us root	ks		improves signs
TT				6.4	osed,	extract,			of skin aging
Hern				years)	topic	palmitoyl			(p<0.001) (fine
don In at					al (ail	tripeptide-			lines, wrinkle,
Jr et al					(oil- in	38, ursolic acid, THD			skin clarity, visual
ai (2015					water	acid, THD ascorbate			roughness,
$(2015)^{13}$					moist	ascordate			tactile
)					urize				roughness,
					r)				redness, skin
					twice				tone, and overall
					daily				appearance)
Zmit	RCT	34	Fema	40-65	Wate	Hydrolysed	12	Doub	Dermis density
ek		participa	le	years old	r	fish collagen	wee	le-	(p<0.0001 to
(2020		nts:		(54.4 <u>+</u> 6.	solub	40 mg,	ks	blind	baseline and
(=020				(<u>0 1, 1 (</u> 0)		B,		0	und

Scope Volume 14 Number 1 March 2024

	-			
	5	le		p<0.001 to
placebo	old)	CoQ	mg, vitamin	placebo group)
group		10 50	A 920 ug,	and winkle area
17 in		mg	biotin 150	fraction
supplem		syrup	ug	(p<0.0001 to
ent		Once		baseline and
group		daily		p<0.0001 to
				placebo group)
				improved
				significantly
				with
				supplementation
				Dermis
				thickness, skin
				viscoelasticity,
				skin hydration,
				trans epidermal
				water loss, skin
				smoothness and
				microrelief do
				not improve
				significantly.
	placebo group 17 in supplem ent	placebo old) group 17 in supplem ent	placebo group 17 in supplem ent Once	placebo group 17 in supplem ent Once

Discussion and Conclusion

According to our findings, usage of CoQ10 has been assessed for topical application in animal study and for oral and topical application in clinical trials. In addition to chosen studies, multiple in vitro studies had also presented evidence of effectivity of CoQ10 therapy as antioxidant to relief oxidative stress, as treatment for photoaging, and to improve mitochondrial function.¹⁶⁻²⁰

Overall, both oral and topical CoQ10 provide varying degree of improvement of skin aging signs including wrinkles and fine lines. Interestingly, several parameters result from stand-aloneoral CoQ10 therapy are significantly different compared with result in oral combination therapy. Stand-alone oral CoQ10 treatment did not show any improvement in dermis thickness, skin smoothness, elasticity, and hydration while these parameters were improved two studies experimenting on combination therapy with hydrolysed collagen and combination of other antioxidants.^{11,14,15}

Oral CoQ10 supplementation ranges from 15 to 150 mg daily, yet only Zmitek et al (2017) reported dose comparison in which they have two groups of intervention with 50 mg CoQ10 and 150 mg CoQ10 each. According to their result, both groups showed similar improvement within the 12 weeks of therapy.¹⁴ However, it should be noted that their study was only conducted with 11 subjects in each group and do not assess for other dose. Hence, we can only conclude that oral dose of 50 mg CoQ10 can already adequately improve skin aging. We can not conclude whether lower dosesof oral CoQ10 were able to show similar result given that all report for lower doses are in combination with other active ingredients. ^{10,11} In proceeding study, Zmitek et al (2020) experimented with 50 mg CoQ10, this time in combination with hydrolysed fish collagen, vitamin A and C, and biotin. They again, find no significant difference in dermis thickness, skin hydration, and elasticity in this newer study.¹⁵

Three studies reported no treatment side effects for oral consumption of CoQ10 while the other two do not address safety and tolerability of oral CoQ10.^{10,14,15} Yet, this do not impose as a problem as safety and tolerability of CoQ10 is well established. In 2010, a study conducted with a maximum dose of 3600 mg of

daily oral CoQ10 reported to be well tolerated with some gastrointestinal symptoms in healthy subjects and in patient with Huntington's disease.²¹

While all topical therapy regime also reported improved signs of wrinkle and fine lines, some specifically reported other mechanism of aging improvement especially while in combination with other active ingredient including through cytokine activity, reduction of collagen degradation, and other parameters improvement such as skin tone, redness, and clarity.^{6-9,12,13}Each study proposed different doses of CoQ10 in different vehicle. Based on information from PubChem that CoQ10 molecular weight is 863.3 g/mol;²² we calculated that topical dose range varies approximately from 0.1 mg/mL to 10 mg/mL in animal study and from 0.3 mg/mL to 10 mg/mL in clinical trial. Additionally, the vehicle varies in consistency from liquid serum, gel, to emulsion (cream and sunscreen), used different base, and some even with advanced base (proniosomal (PN)gel and nanostructured lipid carrier (NCL) gel). Thus, the studies are incomparable with each other. None of three clinical studies addressed about safety and tolerability of topical CoQ10.^{9,12,13}

Despite the limitation, we can conclude that topically applied CoQ10 has better penetration when delivered as a smaller structure such as with PN and NCL compared to when delivered as free structure. This finding is supported by multiple other in vitro studies with similar report. Ayunin et al (2022) reported improvement of anti-aging activity with protransfersome-loaded emulgel whereas Schwarz et al (2013) and Lohan et al (2015) reported improvement on CoQ10 dermal delivery and penetration with ultra-small NLC.²³⁻²⁵ In the past decade, NLC has especially gained a place in the cosmetic industry due to capability to enhance drug penetration, increase skin hydration; in addition to control release of actives, target drugs, and good occlusion; along with its excellent tolerability.²⁶In the future, NLC and other type of more advanced technology can possibly be the way for pharmaceutical company to produce CoQ10 contained topical treatment for global consumer.

Due to limitations presented in available studies, we recommend further experimentation to be conducted to determine ideal CoQ10 usage dose for skin aging orally and topically. In addition, further studies need to also consider safety and tolerability of topical CoQ10.

Conflict of Interest

There was no conflict of interest in the making of this systematic review.

Acknowledgement

References

- 1. Gilbert SF. Developmental Biology. 6th edition. Sunderland (MA): Sinauer Associates; 2000. Aging: The Biology of Senescence. Available from: www.ncbi.nlm.nih.gov
- 2. Puizina-Ivić N, Mirić L, Carija A, Karlica D, Marasović D. Modern approach to topical treatment of aging skin. Coll Antropol. 2010 Sep;34(3):1145-53. PMID: 20977120.
- 3. Chaudhary M, Khan A, Gupta M. Skin Ageing: Pathophysiology and Current Market Treatment Approaches. Curr Aging Sci. 2020;13(1):22-30.
- 4. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q₁₀ Supplementation in Aging and Disease. Front Physiol. 2018 Feb 5;9:44.
- 5. Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020 Mar;19(2):574-594.
- 6. Yadav NK, Nanda S, Sharma G, Katare OP. Systematically optimized coenzyme q10-loaded novel proniosomal formulation for treatment of photo-induced aging in mice: characterization, biocompatibility studies, biochemical estimations and anti-aging evaluation. J Drug Target. 2016;24(3):257-71.

- Nayak K, Katiyar SS, Kushwah V, Jain S. Coenzyme Q10 and retinaldehyde co-loaded nanostructured lipid carriers for efficacy evaluation in wrinkles. J Drug Target. 2018 Apr;26(4):333-344.
- 8. Wu H, Zhong Z, Lin S, Qiu C, Xie P, Lv S, Cui L, Wu T. Coenzyme Q₁₀ Sunscreen Prevents Progression of Ultraviolet-Induced Skin Damage in Mice. Biomed Res Int. 2020 Aug 19;
- 9. Inui M, Ooe M, Fujii K, Matsunaka H, Yoshida M, Ichihashi M. Mechanisms of inhibitory effects of CoQ10 on UVB-induced wrinkle formation in vitro and in vivo. Biofactors. 2008;32(1-4):237-43.
- Udompataikul M, Sripiroj P, Palungwachira P. An oral nutraceutical containing antioxidants, minerals and glycosaminoglycans improves skin roughness and fine wrinkles. Int J Cosmet Sci. 2009 Dec;31(6):427-35.
- 11. Di Cerbo A, Laurino C, Palmieri B, Iannitti T. A dietary supplement improves facial photoaging and skin sebum, hydration and tonicity modulating serum fibronectin, neutrophil elastase 2, hyaluronic acid and carbonylated proteins. J PhotochemPhotobiol B. 2015 Mar;144:94-103.
- 12. Knott A, Achterberg V, Smuda C, Mielke H, Sperling G, Dunckelmann K, Vogelsang A, Krüger A, Schwengler H, Behtash M, Kristof S, Diekmann H, Eisenberg T, Berroth A, Hildebrand J, Siegner R, Winnefeld M, Teuber F, Fey S, Möbius J, Retzer D, Burkhardt T, Lüttke J, Blatt T. Topical treatment with coenzyme Q10-containing formulas improves skin's Q10 level and provides antioxidative effects. Biofactors. 2015 Nov-Dec;41(6):383-90..
- Herndon JH Jr, Jiang L, Kononov T, Fox T. An Open Label Clinical Trial of a Multi-Ingredient Anti-Aging Moisturizer Designed to Improve the Appearance of Facial Skin. J Drugs Dermatol. 2015 Jul;14(7):699-704. PMID: 26151786.
- Žmitek K, Pogačnik T, Mervic L, Žmitek J, Pravst I. The effect of dietary intake of coenzyme Q10 on skin parameters and condition: Results of a randomised, placebo-controlled, double-blind study. Biofactors. 2017 Jan 2;43(1):132-140. doi: 10.1002/biof.1316. Epub 2016 Aug 22. PMID: 27548886.
- 15. Žmitek K, Žmitek J, RoglButina M, Pogačnik T. Effects of a Combination of Water-Soluble CoenzymeQ10 and Collagen on Skin Parameters and Condition:Results of a Randomised, Placebo-Controlled,Double-Blind Study. Nutrients. 2020 Feb 27;12(3):618.
- 16. Ryu KA, Park PJ, Kim SB, Bin BH, Jang DJ, Kim ST. Topical Delivery of Coenzyme Q10-Loaded Microemulsion for Skin Regeneration. Pharmaceutics. 2020 Apr 7;12(4):332.
- Muta-Takada K, Terada T, Yamanishi H, Ashida Y, Inomata S, Nishiyama T, Amano S. Coenzyme Q10 protects against oxidative stress-induced cell death and enhances the synthesis of basement membrane components in dermal and epidermal cells. Biofactors. 2009 Sep-Oct;35(5):435-41.
- Schniertshauer D, Gebhard D, Bergemann J. Age-Dependent Loss of Mitochondrial Function in Epithelial Tissue Can Be Reversed by Coenzyme Q₁₀. J Aging Res. 2018 Sep 5;2018:6354680.
- Marcheggiani F, Kordes S, Cirilli I, Orlando P, Silvestri S, Vogelsang A, Möller N, Blatt T, Weise JM, Damiani E, Tiano L. Anti-ageing effects of ubiquinone and ubiquinol in a senescence model of human dermal fibroblasts. Free RadicBiol Med. 2021 Mar;165:282-288.
- Zhang M, Dang L, Guo F, Wang X, Zhao W, Zhao R. Coenzyme Q(10) enhances dermal elastin expression, inhibits IL-1α production and melanin synthesis in vitro. Int J Cosmet Sci. 2012 Jun;34(3):273-9.
- 21. Huntington Study Group Pre2CARE Investigators; Hyson HC, Kieburtz K, Shoulson I, McDermott M, Ravina B, de Blieck EA, Cudkowicz ME, Ferrante RJ, Como P, Frank S, Zimmerman C, Cudkowicz ME, Ferrante K, Newhall K, Jennings D, Kelsey T, Walker F, Hunt V, Daigneault S, Goldstein M, Weber J, Watts A, Beal MF, Browne SE, Metakis LJ. Safety and tolerability of high-dosage coenzyme Q10 in Huntington's disease and healthy subjects. Mov Disord. 2010 Sep 15;25(12):1924-8. d
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 5281915, Ubidecarenone; [cited 2024 Feb. 3]. Available from: pubchem.ncbi.nlm.nih.gov

- 23. Ayunin Q, Miatmoko A, Soeratri W, Erawati T, Susanto J, Legowo D. Improving the anti-ageing activity of coenzyme Q10 through protransfersome-loaded emulgel. Sci Rep. 2022 Jan 18;12(1):906.
- 24. Schwarz JC, Baisaeng N, Hoppel M, Löw M, Keck CM, Valenta C. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int J Pharm. 2013 Apr 15;447(1-2):213-7.
- 25. Lohan SB, Bauersachs S, Ahlberg S, Baisaeng N, Keck CM, Müller RH, Witte E, Wolk K, Hackbarth S, Röder B, Lademann J, Meinke MC. Ultra-small lipid nanoparticles promote the penetration of coenzyme Q10 in skin cells and counteract oxidative stress. Eur J Pharm Biopharm. 2015 Jan;89:201-7.
- 26. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009 Jan 21;366(1-2):170-84.