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1. Introduction 

One of the most widely grown root crops in the world, potatoes (Solanum tuberosum) 

are essential to global food security. Its high adaptability, nutritional value, and demand 

across food processing industries make it essential for both subsistence and commercial 

farming. However, potato production is severely threatened by several foliar diseases, 

including Late Blight, Early Blight, Potato Virus Y (PVY), and Black Leg, which 

collectively cause significant yield and economic losses. In many major potato-growing 

regions, these diseases can cause 30–80% yield reduction when early detection and 

management are not implemented [1], [2]. 

Traditional plant disease identification relies on manual inspection, which is labour-

intensive, inconsistent, and prone to human error due to subjectivity and varying levels 

of expertise. In the early phases of disease development, when visual symptoms are 
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modest or resemble environmental stress responses, such methods are frequently 

ineffective for large-scale surveillance and provide limited accuracy [3]. These 

drawbacks emphasize the necessity of automated, intelligent, and real-time disease 

detection systems, particularly those that can function in field settings with 

complicated backgrounds and fluctuating lighting [4]. 

The diagnosis of agricultural diseases has been dramatically enhanced by recent 

developments in Artificial Intelligence (AI), especially Deep Learning (DL) and 

Computer Vision. Because they can automatically learn spatial and textural features, 

Convolutional Neural Networks (CNNs) have become the most potent architecture for 

image-based illness diagnosis [5], [6]. By eliminating manual feature extraction and 

achieving greater generalisation accuracy, CNN-based techniques outperform 

conventional machine learning methods [7]. 

Several researchers have successfully implemented deep learning models for potato 

disease classification in both controlled and field conditions. Transfer learning 

architectures such as ResNet50, VGG16, and Inception variants have achieved accuracy 

above 95% [8]–[10]. Improved performance has also been demonstrated using robust 

preprocessing, augmentation, and illumination normalization techniques [11], [12]. 

More advanced studies introduced texture-enhanced and hybrid CNN architectures to 

distinguish between visually overlapping symptoms, such as those seen in viral and 

fungal infections [13]–[15]. 

Although deep learning-based disease detection has achieved high recognition 

accuracy, challenges remain, including limited dataset variability, computational 

constraints on mobile devices, and symptom similarity during early stages [16], [17]. 

These factors motivate the development of lightweight, field-deployable CNN models 

capable of real-time multi-disease classification. 

In order to overcome these obstacles, the current study suggests a user-interactive 

interface for real-time potato leaf disease diagnostics, an efficient pre-processing 

pipeline, and anoptimized hybrid CNN architecture. To promote sustainable potato 

production, the system aims to improve classification accuracy, reduce misdiagnosis, 

and help farmers make early decisions. 

 

2. Diseases of Potato Leaves and Their Signs 

Potato crops are particularly vulnerable to a range of foliar diseases that affect 

photosynthetic efficiency, canopy development, physiological function, and, ultimately, 

tuber yield. Since these symptoms directly affect the effectiveness of image-based deep 

learning models for feature extraction, it is crucial to understand the symptomatic 

patterns of each disease to design an automated classification system [18]. The four 

main potato illnesses taken into consideration in this study—Late Blight, Early Blight, 

Potato Virus Y (PVY/Mosaic Virus), and Black Leg—as well as the traits of healthy 

leaves, are described in more detail in this section. Figure 1 shows representative 

samples for each class. 
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2.1 Phytophthora infestansor late blight 

The most destructive potato disease in the world, late blight has historically caused 

catastrophic famines. The oomycete Phytophthora infestans, which prefers cool, damp 

conditions, is the source of the illness. Small, pale-green water-soaked patches, usually 

at the tips or margins of leaves, are the first signs. These lesions rapidly enlarge into 

irregular, dark brown necrotic patches with a characteristic "burnt" appearance. 

Under high humidity, a fine, white mycelial growth can be observed on the undersides 

of infected leaves, representing the pathogen's sporulation structures. As disease 

severity increases, affected leaves collapse, shrivel, and detach prematurely, leading to 

complete canopy destruction. Accurate early diagnosis is essential to preventing 

epidemics and significant production losses due to the pathogen's rapid infection cycle 

and spore spread [19], [20], [21]. 

 

2.2 Early Blight (Alternaria solani) 

Early Blight is a common fungal disease caused by Alternaria solani, typically appearing 

first on older leaves due to physiological stress or reduced nutrient mobility. The disease 

begins with small, round, brown spots that gradually expand and develop concentric 

rings, forming the classical “targetspot” pattern.  

This ring-like structure is a key visual feature distinguishing Early Blight from other 

foliar diseases. 

Lesions are often surrounded by chlorotic yellow halos, which result from the plant’s 

hypersensitive response. As disease progression continues, spots coalesce, leading to 

significant foliage deterioration and reduced photosynthetic capacity. Although Early 

Blight progresses more slowly than Late Blight, it remains economically damaging, 

especially under conditions of high temperature, leaf wetness, and nitrogen deficiency 

[22], [23], [24]. 

2.3 Potato Virus Y (PVY / Mosaic Virus) 

Potato Virus Y (PVY) is among the most widespread viral diseases affecting solanaceous 

crops. Unlike fungal infections that produce necrotic lesions, PVY primarily alters 

pigment distribution. Its symptoms include mosaic mottling, alternating patches of 

dark and light green, leaf wrinkling, vein clearing, and upward leaf curling. 

Symptom severity varies with potato cultivar, virus strain, and environmental 

conditions. Mild infections may only show faint mosaic patterns, while severe 

infections lead to pronounced chlorosis, distorted leaves, stunted growth, and reduced 

tuber quality. The non-necrotic nature of PVY makes it visually distinct yet challenging 

for automated systems, as mosaic patterns can be subtle and resemble nutrient stress 

symptoms under field conditions [25], [26], [27]. 

2.4 Black Leg Disease 

Black Leg is a bacterial disease primarily caused by Pectobacterium atrosepticum. 

While its most prominent symptoms appear on stems, leaves often reveal early visual 
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indicators of infection. Initial symptoms include general yellowing (chlorosis), 

downward leaf curling, and loss of turgor.  

As the disease progresses, the edges and tips of leaves may show dark brown to black 

discoloration. 

The bacteria move through the plant's vascular tissues, interfering with the movement 

of nutrients and water, which eventually causes the plant to collapse, wilt its leaves, and 

turn black at the stem. In severe conditions, infected plants exhibit complete canopy 

degeneration. Because leaf symptoms can appear before stem discolouration becomes 

visible, early detection on foliage is crucial for timely disease management and 

prevention of tuber rotting in storage [28], [29]. 

2.5 Healthy Leaves 

Healthy potato leaves present a uniform green colouration with smooth, undamaged 

lamina. Vein patterns are symmetrical, and the leaf surface retains a consistent texture 

without signs of necrosis, chlorosis, mosaic patterns, or deformation. Healthy leaves 

serve as the baseline class for the CNN model, enabling the system to distinguish 

between natural plant conditions and pathological deviations caused by biotic stress. 

Incorporating healthy samples ensures the model does not misclassify normal 

environmental variations, such as slight discoloration due to shading, as disease 

symptoms [30]. 

 
Figure 1: Representative images of potato leaves showing Late Blight, Early Blight, PVY 

(Mosaic Virus), Black Leg Disease, and Healthy conditions 
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3. Hybrid CNN Model and Methodology Framework Suggestions 

The development of an automated potato leaf disease detection system requires a 

carefully engineered methodology that ensures reliability across diverse field 

conditions. The proposed framework follows a multi-stage pipeline integrating image 

acquisition, pre-processing, data augmentation, feature extraction, classification, and 

performance validation. A conceptual overview of the methodology is presented in 

Figure 2, while the following subsections provide deeper technical and scientific detail 

for each stage. 

 
             Figure 2: Workflow of the proposed potato leaf disease detection 

 

3.1 Dataset Collection  

The dataset used to develop the proposed potato leaf disease classification model was 

assembled through a combination of field-based image acquisition, controlled 

laboratory photography, and the integration of publicly available agricultural image 

repositories to ensure high diversity and representativeness [5], [8-9]. Field images were 

captured across multiple potato-growing regions using Smartphone and DSLR cameras 

under naturally varying conditions, including different angles, leaf orientations, light 

intensities, shadow patterns, and background environments such as soil, other crop 

foliage, and farm debris. This variability allows the model to learn the inherent 

complexity and unpredictability of real agricultural settings. To complement field 

images, additional samples were collected in controlled greenhouse environments, 

where symptomatic leaves were photographed against uniform backgrounds and under 

consistent lighting to clearly capture disease-specific characteristics, such as concentric 

lesions, mosaic patterns, chlorotic patches, and edge necrosis. Moreover, open-access 

datasets such as Plant Village and institutional agricultural archives were included to 

increase sample diversity—particularly for less frequently occurring diseases like PVY 

and Black Leg — while ensuring class balance. All images were manually inspected and 

labelled by agricultural experts following established diagnostic guidelines to verify 

ground-truth accuracy. This multilayered data collection approach ensured that the 
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final dataset robustly represented five major classes: Late Blight, Early Blight, PVY 

(Mosaic Virus), Black Leg Disease, and Healthy leaves—and provided sufficient 

variability for training a generalizable deep learning model that performs reliably in 

field conditions. 

 

3.2 Image Pre-processing  

The pre-processing stage provides a crucial foundation for improving the quality, 

consistency, and discriminative power of features in raw potato leaf images before they 

are passed to the deep learning framework. Given that agricultural images often suffer 

from uneven illumination, motion blur, background clutter, and sensor noise, several 

enhancement steps were systematically applied to standardize the dataset. All images 

were resized to 224 × 224 × 3 pixels to ensure compatibility with the CNN input 

requirements while maintaining a balance between spatial resolution and 

computational efficiency. To reduce high-frequency noise caused by environmental 

factors such as wind-induced leaf movement, shadows, or dust, a Gaussian blur filter 

was applied, smoothing out minor pixel-level disturbances without compromising 

lesion edges. Illumination inconsistencies were addressed using histogram equalization 

and CLAHE (Contrast-Limited Adaptive Histogram Equalization) to improve overall 

contrast and enhance subtle disease symptoms such as faint mosaic patterns or early 

chlorotic patches. When necessary, optional colour-based leaf segmentation using HSV 

thresholding was employed to isolate leaf structures from non-informative 

backgrounds. Finally, all pixel values were normalized to the [0, 1] range, ensuring 

numerical stability and faster convergence during training. This comprehensive pre-

processing pipeline significantly enhanced the clarity, uniformity, and discriminative 

strength of the dataset while preserving the essential symptom mological cues used by 

the CNN for classification [6-7]. 

 

3.3 Data Augmentation  

Data augmentation was employed as an essential strategy to increase dataset diversity, 

counter class imbalance, and improve the generalization capability of the CNN, 

particularly under real-world field conditions where leaf appearance varies 

substantially. A combination of geometric and photometric augmentations was applied 

to artificially expand the dataset while simulating common agricultural variations, 

including differences in camera angle, leaf orientation, lighting intensity, and 

environmental interference. Geometric augmentations included rotations up to ±30°, 

horizontal and vertical flipping, translation along the x and y axes, zooming between 

80–120%, and perspective warping, enabling the model to recognize diseases from 

leaves photographed at uneven angles or distances. Photometric transformations, such 

as brightness modulation (±25%), contrast shifting, colour jittering, and saturation 

adjustments, further prepared the model to handle diverse illumination conditions, 

from harsh sunlight to shaded canopy conditions. In addition, shear transformations 
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and random cropping helped the model become invariant to partial occlusions or 

background noise. These augmentations were particularly valuable for minority classes 

such as PVY and Black Leg, where limited real-world data could bias the model. By 

incorporating augmentation in the training pipeline, the model learned a richer 

representation of disease symptoms and achieved improved robustness, stability, and 

adaptability in recognizing potato leaf diseases across heterogeneous environments [11-

12]. 

3.4 Proposed Hybrid CNN Architecture  

The suggested hybrid CNN architecture was painstakingly designed to maintain a 

computationally efficient structure suitable for real-time deployment while capturing 

intricate spatial, textural, and colour-based features typical of potato leaf disease 

symptoms. To extract hierarchical features—from basic edges and colour gradients in 

early layers to higher-level lesion morphology and mosaic textures in deeper layers—
the network starts with a series of three convolutional blocks, each with 32, 64, and 128 

filters. These blocks use 3×3 kernels and ReLU activations. A 2x2 max-pooling layer that 

systematically reduces spatial dimensions, improves translation invariance, and 

preserves the most notable characteristics comes after each convolutional block. After 

the convolutional and fully connected layers, dropout layers with rates between 0.3 and 

0.5 were added to minimise over fitting and stabilise training. These layers randomly 

deactivate neurons to promote generalisation rather than memorising training images. 

The network can learn high-level representations that include form, colour, and texture 

cues by feeding the flattened feature map into two thick layers of 256 and 128 neurons. 

Multi-class classification is simplified by the final softmax layer, which produces 

probabilities for the five target classes: Black Leg, PVY, Early Blight, Late Blight, and 

Healthy. The architecture's hybrid character results from combining deep CNN-driven 

representation learning with conventional pre-processing-based feature enhancement, 

producing a model that is effective and powerful for real-world agricultural disease 

diagnosis. [4], [10], [14–15]. 

3.5 Training and Validation Strategy  

The prepared dataset was split into training (70%), validation (15%), and test (15%) 

subsets using random stratified sampling that maintained class proportions across all 

splits to ensure reliable performance and objective evaluation. With an initial learning 

rate of 0.001, the model was trained using the categorical cross-entropy loss function, 

appropriate for multi-class classification, and the Adam optimiser, selected for its 

adaptive learning rate and quick convergence. To preserve the best possible balance 

between gradient update stability and computing performance, a batch size of 32 was 

chosen. To avoid overfitting and dynamically modify learning behaviour, early halting 

and learning rate scheduling were used during the model's training from epochs 50–
100. Other regularisation strategies, such as dropout and L2 weight penalties, further 

strengthened generalisation. Throughout training, key performance indicators, 
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including validation accuracy, loss curves, precision, recall, and F1-score, were 

monitored to assess learning progress and guide hyper parameter tuning. After training, 

the final model was evaluated on an unseen test set to determine its real-world 

applicability using metrics such as confusion matrices, ROC curves, and per-class 

accuracy, providing comprehensive insight into classification behaviour across different 

disease categories. 

3.6 Workflow Summary  

The complete workflow of the proposed potato leaf disease detection system integrates 

all methodological components into a streamlined pipeline optimized for both 

accuracy and practical usability. The process begins with the acquisition of potato leaf 

images from diverse fields and controlled environments, followed by pre-processing 

steps such as noise reduction, contrast enhancement, resizing, and normalization to 

prepare the images for analysis. Augmentation is applied during training to increase 

dataset variability and enhance the model's resilience to field-induced distortions. 

These processed images are then fed into the hybrid CNN architecture, where multiple 

convolutional and pooling operations extract relevant spatial and textural features 

indicative of specific disease symptoms. Fully connected layers transform the extracted 

features into disease-class probabilities using a softmax classifier. The trained model 

undergoes rigorous evaluation on unseen test data to ensure its capability to perform 

reliably under real-world agricultural settings. Once validated, the complete system is 

integrated into a user-friendly interface, allowing farmers or agricultural practitioners 

to upload leaf images and receive instant disease classification results, thereby enabling 

timely crop management decisions and improved disease control practices. 

4. Model Evaluation (Metrics, ROC, Confusion Matrix, Accuracy Graphs) 

A comprehensive evaluation of the proposed hybrid CNN model was conducted to 

assess its classification accuracy, robustness, and real-world applicability for automated 

detection of potato leaf diseases. The evaluation process used multiple quantitative 

metrics, along with visual performance indicators such as ROC curves, confusion 

matrices, and learning curves [3]. These assessment tools collectively enabled a granular 

understanding of model behaviour across different disease types and helped validate its 

suitability for practical deployment under real agricultural conditions. 

4.1 Evaluation Metrics 

Evaluating the performance of a multi-class deep learning model requires a 

comprehensive set of metrics that reflect not only prediction accuracy but also the 

model’s capability to distinguish between visually similar disease symptoms under 

varying image conditions. In this study, four widely accepted performance evaluation 

metrics [6-7]—Accuracy, Precision, Recall, and F1-Score — were employed to quantify 

the reliability and robustness of the proposed hybrid CNN architecture. These metrics 

were derived from the confusion matrix, where each classification outcome is evaluated 

as True Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN). 
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The main statistic used to determine the percentage of correctly identified photos in 
the entire dataset is accuracy. However, when the dataset is unbalanced—especially 
when some illness classes have substantially fewer samples—relying solely on accuracy 
can be deceptive. Precision, Recall, and F1-score were computed for each class to 
address this concern and provide more detailed information about the model's ability 
to identify specific illness types. 
Precision indicates how many of the model’s predicted disease cases are correct, 
making it particularly important for preventing false alarms—especially when disease 
identification triggers costly field decisions, such as pesticide spraying or quarantine 
measures. Recall, on the other hand, measures the model’s ability to detect all actual 
samples of a disease category. A high recall value is essential in agricultural disease 
detection applications because undetected diseased plants can accelerate crop damage 
and pathogen spread. The F1-score, which is the harmonic mean of Precision and 
Recall, offers a balanced metric that avoids bias toward either over-prediction or under-
detection. 
To ensure fairness in evaluation, macro-averaged values were calculated, treating all 
classes equally regardless of their sample size. This approach prevents skewed results 
often observed in class-imbalanced datasets. 
Table 1 summarises the class-wise evaluation results. The proposed model 
demonstrated excellent classification performance for Late Blight, Early Blight, and 
Healthy leaves, achieving precision and recall values greater than 96%, attributed to the 
distinct texture and colour patterns present in these classes. The PVY (Mosaic Virus) 
and Black Leg classes achieved slightly lower scores due to partial overlap in early 
symptom visual characteristics, yet still maintained competitive and acceptable 
classification performance. 

Table 1. Class-wise Evaluation Metrics of the Proposed Hybrid CNN Model 

Class Label Precision (%) Recall (%) F1-Score (%) Support (Images) 

Late Blight 97.8 96.5 97.1 85 

Early Blight 96.9 95.8 96.3 82 

Mosaic Virus (PVY) 93.4 92.1 92.7 79 

Black Leg 92.7 91.4 92.0 76 

Healthy 98.2 97.6 97.9 88 

Macro Average 95.8 94.7 95.2 — 

Overall Accuracy 95.8% — — 410 (Total) 

 

The high aggregated scores across all evaluation metrics indicate that the model is not 
only accurate but also stable and reliable across all disease categories. These findings 
confirm that the hybrid CNN architecture successfully captured disease-specific visual 
cues, including lesion geometry, mosaic texture, chlorosis patterns, and tissue colour 
variation. The detailed quantitative assessment reinforces the robustness of the 
proposed system and validates its suitability for practical deployment in precision 
agriculture applications. 

4.2. Confusion Matrix and ROC Curve Analysis 

To further assess the classification capability of the proposed hybrid CNN model 

beyond numerical evaluation metrics, confusion matrix analysis and interpretation of 
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the Receiver Operating Characteristic (ROC) curve were conducted. These graphical 

validation approaches provide deeper insights into model behaviour by examining 

misclassification patterns and threshold-based discrimination performance across all 

disease categories. 

4.2.1. Confusion Matrix Analysis 

The confusion matrix represents a structured visualization of correctly and incorrectly 
classified samples for all five classes—Late Blight, Early Blight, Mosaic Virus (PVY), 
Black Leg, and Healthy. It provides a breakdown of model predictions in terms of True 
Positives (TP), False Positives (FP), False Negatives (FN), and True Negatives (TN). An 
ideal classifier would produce a confusion matrix with high values on the diagonal and 
minimal off-diagonal entries. 
Figure 3 illustrates the confusion matrix generated from the test dataset, where darker 
diagonal cells indicate stronger correct classification. The results reveal that the model 
demonstrates high recognition accuracy for most classes, particularly Late Blight, Early 
Blight, and Healthy categories due to their distinct visual patterns such as necrotic 
patches, concentric rings, and uniform texture. Minor misclassifications were observed 
in the Mosaic Virus and Black Leg categories, which can be attributed to overlapping 
symptom characteristics such as chlorosis and texture similarity during early disease 
progression. The percentage values represent the class-wise prediction accuracy for 
each cell in the confusion matrix. Each percentage indicates the proportion of samples 
(within that actual class) that were predicted in the corresponding category. In other 
words, these values normalize the confusion matrix row-wise and help interpret how 
well the model performed for each class relative to the total number of samples in that 
class. 
These misclassification patterns, although limited, emphasize the need for further 
dataset Expansion and class-specific feature enhancement in future improvements. 

 
Figure 3: Confusion Matrix analysis Table 
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4.2.2 ROC Curve and AUC Interpretation 

The Receiver Operating Characteristic (ROC) curve provides a threshold-based 

diagnostic interpretation of the classifier's performance by plotting the True Positive 

Rate (TPR) against the False Positive Rate (FPR) for each class. The Area under the 

Curve (AUC) quantifies the overall reparability between classes and indicates how 

effectively the model distinguishes diseased from healthy samples. 

Figure 4 presents the ROC curves generated for all five classes. Each class-specific ROC 

curve lies close to the upper-left corner of the graph, demonstrating intense model 

discrimination. The calculated AUC values ranged from 0.96 to 0.99, confirming highly 

reliable classification, even when disease symptoms visually overlap. The highest AUC 

was observed for the Healthy class, followed closely by Late Blight and Early Blight, due 

to their strong symptomatic signatures. Comparatively, Mosaic Virus and Black Leg 

exhibited slightly lower AUC values, reflecting their ambiguous symptom boundaries in 

early-stage samples—an inherent challenge in plant pathology datasets. 

 
Figure 4: ROC curves of all five disease classes with corresponding AUC values 

The combined results from the confusion matrix and ROC analysis demonstrate that 

the model is highly capable of differentiating potato leaf diseases, with minimal 

confusion between visually similar categories. The strong AUC values further validate 

the robustness and generalization ability of the proposed hybrid CNN architecture. 

These outcomes support the model’s suitability for real-time deployment in precision 

agriculture systems, where early disease detection accuracy is crucial to preventing 

large-scale crop damage. 

The graphical evaluation outcomes confirm that the proposed system performs reliably 

across varying visual conditions and disease progression stages, reinforcing confidence 

in its applicability for practical field use. 
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5. Results and Discussion 

A labelled dataset with five image categories—Late Blight, Early Blight, Mosaic Virus 

(PVY), Black Leg, and Healthy leaves—was used to thoroughly assess the effectiveness 

of the suggested hybrid CNN architecture for potato leaf disease classification. To 

evaluate the model's ability to learn and generalize, the dataset was divided into subsets 

for training (70%), validation (15%), and testing (15%). To minimize overfitting and 

improve robustness, the CNN model was trained for 50 epochs using the Adam 

optimizer with categorical cross-entropy loss. Data augmentation methods included 

rotation, flipping, brightness modification, and zooming. 

The training accuracy improved gradually, as shown in Figure 5(a), and by the last 

epoch, it was almost 98%. Strong generalization and controlled overfitting were 

indicated by the validation accuracy's comparable trend. Interestingly, the difference 

between training and validation accuracy stayed small after about the 20th epoch, 

indicating better model stability. The related loss curves in Figure 5(b) further 

demonstrate the model's successful convergence, with both the training and validation 

losses gradually declining over the course of the epochs. 

More performance visualisations were examined to understand the classifier's 

behaviour better. The confusion matrix in Figure 3, which illustrates class-wise 

prediction accuracy and error distribution, was used to conduct a thorough 

performance study. The matrix makes it easy to see how many samples of each class 

were correctly identified as well as the locations of misclassifications. 

According to the confusion matrix, the model achieved very high accuracy across all 

disease categories. The Healthy class had the highest correct classification rate, with 86 

samples correctly classified (97.7%), reflecting the distinct visual uniformity of healthy 

potato leaves. Similarly, Late Blight and Early Blight also achieved strong results with 82 

(96.5%) and 79 (96.3%) correct classifications, respectively. These high accuracies are 

attributed to the strong symptomatic signatures of fungal diseases, such as necrotic 

patches, water-soaked lesions, and concentric ring formations that the CNN learns 

efficiently. 

The performance was competitive for bacterial and viral illnesses. While the Black Leg 

class had 70 accurate predictions (92.1%), the PVY class had 73 valid classifications 

(92.4%). These somewhat lower levels are in line with the visual uncertainty that exists 

in the early stages of symptom development, when the color distribution or leaf texture 

of Black Leg chlorosis and PVY-induced mosaic patterns may overlap. The few off-

diagonal values in the matrix indicate that these modest differences occasionally led to 

misunderstandings between the two classes. 

Despite these minor overlaps, the hybrid CNN achieved 95.8% accuracy, confirming its 

reliability in real-world classification tasks. The strong diagonal dominance of the 

confusion matrix further signifies the robustness of the feature-learning process and 

the effectiveness of the pre-processing pipeline, including contrast enhancement, noise 
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suppression, and normalisation, which helped the model adapt to varying field 

conditions. 

The performance of the proposed hybrid CNN model was further evaluated using ROC 

analysis to assess the classifier's discriminative capability across all disease categories. 

The ROC curves for the five classes are presented in Figure 4, and the corresponding 

AUC values demonstrate strong reparability for each disease type. 

The Healthy class exhibited the highest AUC value of 0.99, indicating near-perfect 

discrimination between healthy and diseased leaf samples. This superior performance 

can be attributed to the distinct, uniform green texture of healthy leaves, which creates 

a clear contrast against infected samples. Similarly, the Late Blight class showed an AUC 

of 0.98, confirming the model’s ability to capture the characteristic necrotic and water-

soaked lesions that develop prominently on infected leaves. 

Early Blight achieved an AUC of 0.97, reflecting reliable detection of concentric ring 

structures and chlorotic zones commonly associated with this fungal disease. The PVY 

Mosaic Virus and Black Leg classes showed slightly lower, yet still strong, AUC values of 

0.96, primarily due to the visual similarity of early-stage symptoms. Both diseases may 

exhibit overlapping patterns such as mild mosaic discoloration, chlorosis, or subtle 

textural changes, which occasionally challenge the model’s boundary definition. 

Nevertheless, the high and consistent AUC values across all classes confirm that the 

hybrid CNN can effectively differentiate even visually similar disease categories. 

The ROC curves in Figure 4 also reveal minimal overlap among the class-wise plots, 

indicating that the model maintains robust threshold sensitivity over a wide range of 

decision boundaries. This further supports the classifier's reliability in real-world 

applications, where lighting, image quality, and leaf orientation may vary. 

In addition to deep learning evaluation, the proposed model was compared with four 

conventional machine-learning methods and a baseline deep-learning method to 

examine relative performance trends. These include Probabilistic Classifier (PBC), 

Support Vector-based Margin Classifier (MKC), Ensemble Tree-Based Model (ETM), 

and a Baseline CNN. As shown in Table 2, the conventional classifiers produced 

moderate results, with the PBC achieving the lowest accuracy due to its inability to 

model complex nonlinear patterns of leaf symptoms. The MKC and ETM performed 

better but still lagged behind the CNN-based methods. 

The Baseline CNN exhibited improved accuracy through convolutional feature 

extraction but lacked the pre-processing-driven enhancements and optimized 

architecture of the proposed system. In contrast, the Hybrid CNN delivered the highest 

accuracy (95.8%), precision (95.8%), recall (94.7%), and F1-score (95.2%). These 

improvements are attributed to advanced data augmentation, targeted pre-processing 

(contrast enhancement and noise suppression), and an optimized multi-layer CNN 

architecture that effectively captured spatial and textural disease features. 

The strong numerical and graphical results demonstrate that the proposed hybrid CNN 

model is highly capable of identifying potato leaf diseases in diverse field conditions. 
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These experimental results not only validate the architecture's efficiency but also 

confirm its potential for real-world agricultural deployment via mobile or GUI-based 

systems. 

 
Fig.5 (a) Training& Validation Accuracy Curve     Fig.5 (b) Training & Validation Loss Curve 

Table 2. Comparative Evaluation of Model Performance 

Model 
Precision 

(%) 

Recall 

(%) 

Accuracy 

(%) 

F1-

Score 

Probabilistic Classifier (PBC)[7] 82.4 81.1 84.3 0.79 

Margin-Based Kernel Classifier 

(MKC) [5],[7] 
88.7 87.9 89.5 0.84 

Ensemble Tree-Based Model 

(ETM) [12],[23] 
87.3 86.8 88.6 0.83 

Baseline CNN [6],[8] 86.5 85.2 87.1 0.85 

Proposed Hybrid CNN 95.8 94.7 95.8 0.95 

 

6. Conclusion 

This study presented a robust hybrid CNN-based framework for automated detection 

and classification of major potato leaf diseases using image processing and deep 

learning techniques. The proposed system was evaluated on a multi-class dataset 

comprising five disease categories—Late Blight, Early Blight, Mosaic Virus (PVY), Black 

Leg, and Healthy leaves—and demonstrated strong performance across all evaluation 

metrics. The model achieved an overall accuracy of 95.8%, supported by high class-wise 

prediction scores observed in the confusion matrix, where all classes recorded 

accuracies above 92%, with Healthy and Late Blight samples showing the highest 

correct classification rates. 

The ROC analysis further confirmed the model's discriminative strength, with AUC 

values ranging from 0.96 to 0.99 across all classes. These results indicate that the 
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system can reliably distinguish between visually similar diseases, even under variable 

imaging conditions. The integration of pre-processing operations, such as contrast 

enhancement and noise reduction, with an optimised convolutional structure led to 

stable convergence during training and strong generalization to unseen samples. 

Collectively, the findings demonstrate that the hybrid CNN architecture is highly 

capable of supporting real-time disease diagnosis in precision agriculture. Its high 

accuracy, robustness to similarity in symptom patterns, and consistent performance 

across evaluation metrics make it suitable for deployment in mobile-based decision-

support systems, field-monitoring tools, and automated disease-management 

platforms. Future work may extend this approach by incorporating larger, more diverse 

datasets, integrating attention-based architectures, or exploring multimodal inputs, 

such as hyper spectral imaging, to further enhance disease discrimination at early 

symptom stages. 
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