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Abstract: One of the most extensively grown crops in the world, potatoes are
essential to food security. However, potato production is severely affected by
several leaf diseases, including Late Blight, Early Blight, Mosaic Virus (PVY),
and Black Leg. Conventional diagnostic techniques rely on manual inspection,
which is labour-intensive, prone to error, and unsuitable for extensive farming
regions. In this paper, a Convolution Neural Network (CNN)-based automated
potato leaf disease detection system based on deep learning and image
processing is presented. A labeled dataset of five classes (Late Blight, Early
Blight, Mosaic Virus, Black Leg, and Healthy) was collected and pre-processed
using advanced augmentation and contrast-enhancement techniques. The
proposed hybrid CNN achieved an overall accuracy of 95.8%, outperforming
SVM, Random Forest, and the baseline CNN. ROC curves, confusion matrix
analysis, and performance metrics confirm the model's robustness. A
lightweight, user-friendly GUI was developed to provide real-time disease
prediction and recommendations for field applications. The system enables
early detection, reduces misdiagnosis, and supports sustainable potato
cultivation.
Keywords: Potato diseases, Late Blight, Early Blight, CNN, Image Processing,
Deep Learning, Precision Agriculture

1. Introduction

One of the most widely grown root crops in the world, potatoes (Solanum tuberosum)
are essential to global food security. Its high adaptability, nutritional value, and demand
across food processing industries make it essential for both subsistence and commercial
farming. However, potato production is severely threatened by several foliar diseases,
including Late Blight, Early Blight, Potato Virus Y (PVY), and Black Leg, which
collectively cause significant yield and economic losses. In many major potato-growing
regions, these diseases can cause 30-80% yield reduction when early detection and
management are not implemented [1], [2].

Traditional plant disease identification relies on manual inspection, which is labour-
intensive, inconsistent, and prone to human error due to subjectivity and varying levels
of expertise. In the early phases of disease development, when visual symptoms are
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modest or resemble environmental stress responses, such methods are frequently
ineffective for large-scale surveillance and provide limited accuracy [3]. These
drawbacks emphasize the necessity of automated, intelligent, and real-time disease
detection systems, particularly those that can function in field settings with
complicated backgrounds and fluctuating lighting [4].

The diagnosis of agricultural diseases has been dramatically enhanced by recent
developments in Artificial Intelligence (AI), especially Deep Learning (DL) and
Computer Vision. Because they can automatically learn spatial and textural features,
Convolutional Neural Networks (CNNs) have become the most potent architecture for
image-based illness diagnosis [5], [6]. By eliminating manual feature extraction and
achieving greater generalisation accuracy, CNN-based techniques outperform
conventional machine learning methods [7].

Several researchers have successfully implemented deep learning models for potato
disease classification in both controlled and field conditions. Transfer learning
architectures such as ResNet50, VGG16, and Inception variants have achieved accuracy
above 95% [8]-[10]. Improved performance has also been demonstrated using robust
preprocessing, augmentation, and illumination normalization techniques [u], [12].
More advanced studies introduced texture-enhanced and hybrid CNN architectures to
distinguish between visually overlapping symptoms, such as those seen in viral and
fungal infections [13]-[15].

Although deep learning-based disease detection has achieved high recognition
accuracy, challenges remain, including limited dataset variability, computational
constraints on mobile devices, and symptom similarity during early stages [16], [17].
These factors motivate the development of lightweight, field-deployable CNN models
capable of real-time multi-disease classification.

In order to overcome these obstacles, the current study suggests a user-interactive
interface for real-time potato leaf disease diagnostics, an efficient pre-processing
pipeline, and anoptimized hybrid CNN architecture. To promote sustainable potato
production, the system aims to improve classification accuracy, reduce misdiagnosis,
and help farmers make early decisions.

2. Diseases of Potato Leaves and Their Signs

Potato crops are particularly vulnerable to a range of foliar diseases that affect
photosynthetic efficiency, canopy development, physiological function, and, ultimately,
tuber yield. Since these symptoms directly affect the effectiveness of image-based deep
learning models for feature extraction, it is crucial to understand the symptomatic
patterns of each disease to design an automated classification system [18]. The four
main potato illnesses taken into consideration in this study—Late Blight, Early Blight,
Potato Virus Y (PVY/Mosaic Virus), and Black Leg—as well as the traits of healthy
leaves, are described in more detail in this section. Figure 1 shows representative
samples for each class.
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2.1 Phytophthora infestansor late blight

The most destructive potato disease in the world, late blight has historically caused
catastrophic famines. The oomycete Phytophthora infestans, which prefers cool, damp
conditions, is the source of the illness. Small, pale-green water-soaked patches, usually
at the tips or margins of leaves, are the first signs. These lesions rapidly enlarge into
irregular, dark brown necrotic patches with a characteristic "burnt" appearance.
Under high humidity, a fine, white mycelial growth can be observed on the undersides
of infected leaves, representing the pathogen's sporulation structures. As disease
severity increases, affected leaves collapse, shrivel, and detach prematurely, leading to
complete canopy destruction. Accurate early diagnosis is essential to preventing
epidemics and significant production losses due to the pathogen's rapid infection cycle
and spore spread [19], [20], [21].

2.2 Early Blight (Alternaria solani)

Early Blight is a common fungal disease caused by Alternaria solani, typically appearing
first on older leaves due to physiological stress or reduced nutrient mobility. The disease
begins with small, round, brown spots that gradually expand and develop concentric
rings, forming the classical “targetspot” pattern.

This ring-like structure is a key visual feature distinguishing Early Blight from other
foliar diseases.

Lesions are often surrounded by chlorotic yellow halos, which result from the plant’s
hypersensitive response. As disease progression continues, spots coalesce, leading to
significant foliage deterioration and reduced photosynthetic capacity. Although Early
Blight progresses more slowly than Late Blight, it remains economically damaging,
especially under conditions of high temperature, leaf wetness, and nitrogen deficiency

[22], [23], [24].

2.3 Potato Virus Y (PVY / Mosaic Virus)

Potato Virus Y (PVY) is among the most widespread viral diseases affecting solanaceous
crops. Unlike fungal infections that produce necrotic lesions, PVY primarily alters
pigment distribution. Its symptoms include mosaic mottling, alternating patches of
dark and light green, leaf wrinkling, vein clearing, and upward leaf curling.
Symptom severity varies with potato cultivar, virus strain, and environmental
conditions. Mild infections may only show faint mosaic patterns, while severe
infections lead to pronounced chlorosis, distorted leaves, stunted growth, and reduced
tuber quality. The non-necrotic nature of PVY makes it visually distinct yet challenging
for automated systems, as mosaic patterns can be subtle and resemble nutrient stress
symptoms under field conditions [25], [26], [27].

2.4 Black Leg Disease
Black Leg is a bacterial disease primarily caused by Pectobacterium atrosepticum.
While its most prominent symptoms appear on stems, leaves often reveal early visual
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indicators of infection. Initial symptoms include general yellowing (chlorosis),
downward leaf curling, and loss of turgor.

As the disease progresses, the edges and tips of leaves may show dark brown to black
discoloration.

The bacteria move through the plant's vascular tissues, interfering with the movement
of nutrients and water, which eventually causes the plant to collapse, wilt its leaves, and
turn black at the stem. In severe conditions, infected plants exhibit complete canopy
degeneration. Because leaf symptoms can appear before stem discolouration becomes
visible, early detection on foliage is crucial for timely disease management and
prevention of tuber rotting in storage [28], [29].

2.5 Healthy Leaves

Healthy potato leaves present a uniform green colouration with smooth, undamaged
lamina. Vein patterns are symmetrical, and the leaf surface retains a consistent texture
without signs of necrosis, chlorosis, mosaic patterns, or deformation. Healthy leaves
serve as the baseline class for the CNN model, enabling the system to distinguish
between natural plant conditions and pathological deviations caused by biotic stress.
Incorporating healthy samples ensures the model does not misclassify normal
environmental variations, such as slight discoloration due to shading, as disease
symptoms [30].

Late Blight Early Blight Potato Virus Y (PVY/
Mosaic Virus)

Black Leg Disease Healthy Leaves

Figure 1: Representative images of potato leaves showing Late Blight, Early Blight, PVY

(Mosaic Virus), Black Leg Disease, and Healthy conditions
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3. Hybrid CNN Model and Methodology Framework Suggestions

The development of an automated potato leaf disease detection system requires a
carefully engineered methodology that ensures reliability across diverse field
conditions. The proposed framework follows a multi-stage pipeline integrating image
acquisition, pre-processing, data augmentation, feature extraction, classification, and
performance validation. A conceptual overview of the methodology is presented in
Figure 2, while the following subsections provide deeper technical and scientific detail
for each stage.

Dataset collection

Y

Image preprocessing

Y

Data augmentation

Y

CNN-based classifi- —»[ Disease ]
L ] classification

Figure 2: Workflow of the proposed potato leaf disease detection

3.1 Dataset Collection

The dataset used to develop the proposed potato leaf disease classification model was
assembled through a combination of field-based image acquisition, controlled
laboratory photography, and the integration of publicly available agricultural image
repositories to ensure high diversity and representativeness [5], [8-9]. Field images were
captured across multiple potato-growing regions using Smartphone and DSLR cameras
under naturally varying conditions, including different angles, leaf orientations, light
intensities, shadow patterns, and background environments such as soil, other crop
foliage, and farm debris. This variability allows the model to learn the inherent
complexity and unpredictability of real agricultural settings. To complement field
images, additional samples were collected in controlled greenhouse environments,
where symptomatic leaves were photographed against uniform backgrounds and under
consistent lighting to clearly capture disease-specific characteristics, such as concentric
lesions, mosaic patterns, chlorotic patches, and edge necrosis. Moreover, open-access
datasets such as Plant Village and institutional agricultural archives were included to
increase sample diversity—particularly for less frequently occurring diseases like PVY
and Black Leg — while ensuring class balance. All images were manually inspected and
labelled by agricultural experts following established diagnostic guidelines to verify
ground-truth accuracy. This multilayered data collection approach ensured that the
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final dataset robustly represented five major classes: Late Blight, Early Blight, PVY
(Mosaic Virus), Black Leg Disease, and Healthy leaves—and provided sufficient
variability for training a generalizable deep learning model that performs reliably in
field conditions.

3.2 Image Pre-processing

The pre-processing stage provides a crucial foundation for improving the quality,
consistency, and discriminative power of features in raw potato leaf images before they
are passed to the deep learning framework. Given that agricultural images often suffer
from uneven illumination, motion blur, background clutter, and sensor noise, several
enhancement steps were systematically applied to standardize the dataset. All images
were resized to 224 x 224 x 3 pixels to ensure compatibility with the CNN input
requirements while maintaining a balance between spatial resolution and
computational efficiency. To reduce high-frequency noise caused by environmental
factors such as wind-induced leaf movement, shadows, or dust, a Gaussian blur filter
was applied, smoothing out minor pixel-level disturbances without compromising
lesion edges. Illumination inconsistencies were addressed using histogram equalization
and CLAHE (Contrast-Limited Adaptive Histogram Equalization) to improve overall
contrast and enhance subtle disease symptoms such as faint mosaic patterns or early
chlorotic patches. When necessary, optional colour-based leaf segmentation using HSV
thresholding was employed to isolate leaf structures from non-informative
backgrounds. Finally, all pixel values were normalized to the [o, 1] range, ensuring
numerical stability and faster convergence during training. This comprehensive pre-
processing pipeline significantly enhanced the clarity, uniformity, and discriminative
strength of the dataset while preserving the essential symptom mological cues used by
the CNN for classification [6-7].

3.3 Data Augmentation

Data augmentation was employed as an essential strategy to increase dataset diversity,
counter class imbalance, and improve the generalization capability of the CNN,
particularly under real-world field conditions where leaf appearance varies
substantially. A combination of geometric and photometric augmentations was applied
to artificially expand the dataset while simulating common agricultural variations,
including differences in camera angle, leaf orientation, lighting intensity, and
environmental interference. Geometric augmentations included rotations up to +30°,
horizontal and vertical flipping, translation along the x and y axes, zooming between
80-120%, and perspective warping, enabling the model to recognize diseases from
leaves photographed at uneven angles or distances. Photometric transformations, such
as brightness modulation (+25%), contrast shifting, colour jittering, and saturation
adjustments, further prepared the model to handle diverse illumination conditions,
from harsh sunlight to shaded canopy conditions. In addition, shear transformations
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and random cropping helped the model become invariant to partial occlusions or
background noise. These augmentations were particularly valuable for minority classes
such as PVY and Black Leg, where limited real-world data could bias the model. By
incorporating augmentation in the training pipeline, the model learned a richer
representation of disease symptoms and achieved improved robustness, stability, and
adaptability in recognizing potato leaf diseases across heterogeneous environments [11-
12].

3.4 Proposed Hybrid CNN Architecture

The suggested hybrid CNN architecture was painstakingly designed to maintain a
computationally efficient structure suitable for real-time deployment while capturing
intricate spatial, textural, and colour-based features typical of potato leaf disease
symptoms. To extract hierarchical features—from basic edges and colour gradients in
early layers to higher-level lesion morphology and mosaic textures in deeper layers—
the network starts with a series of three convolutional blocks, each with 32, 64, and 128
filters. These blocks use 3x3 kernels and ReLU activations. A 2x2 max-pooling layer that
systematically reduces spatial dimensions, improves translation invariance, and
preserves the most notable characteristics comes after each convolutional block. After
the convolutional and fully connected layers, dropout layers with rates between 0.3 and
0.5 were added to minimise over fitting and stabilise training. These layers randomly
deactivate neurons to promote generalisation rather than memorising training images.
The network can learn high-level representations that include form, colour, and texture
cues by feeding the flattened feature map into two thick layers of 256 and 128 neurons.
Multi-class classification is simplified by the final softmax layer, which produces
probabilities for the five target classes: Black Leg, PVY, Early Blight, Late Blight, and
Healthy. The architecture's hybrid character results from combining deep CNN-driven
representation learning with conventional pre-processing-based feature enhancement,
producing a model that is effective and powerful for real-world agricultural disease

diagnosis. [4], [10], [14-15].

3.5 Training and Validation Strategy

The prepared dataset was split into training (70%), validation (15%), and test (15%)
subsets using random stratified sampling that maintained class proportions across all
splits to ensure reliable performance and objective evaluation. With an initial learning
rate of 0.001, the model was trained using the categorical cross-entropy loss function,
appropriate for multi-class classification, and the Adam optimiser, selected for its
adaptive learning rate and quick convergence. To preserve the best possible balance
between gradient update stability and computing performance, a batch size of 32 was
chosen. To avoid overfitting and dynamically modify learning behaviour, early halting
and learning rate scheduling were used during the model's training from epochs 50-
100. Other regularisation strategies, such as dropout and L2 weight penalties, further
strengthened generalisation. Throughout training, key performance indicators,
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including validation accuracy, loss curves, precision, recall, and Fi-score, were
monitored to assess learning progress and guide hyper parameter tuning. After training,
the final model was evaluated on an unseen test set to determine its real-world
applicability using metrics such as confusion matrices, ROC curves, and per-class
accuracy, providing comprehensive insight into classification behaviour across different
disease categories.

3.6 Workflow Summary

The complete workflow of the proposed potato leaf disease detection system integrates
all methodological components into a streamlined pipeline optimized for both
accuracy and practical usability. The process begins with the acquisition of potato leaf
images from diverse fields and controlled environments, followed by pre-processing
steps such as noise reduction, contrast enhancement, resizing, and normalization to
prepare the images for analysis. Augmentation is applied during training to increase
dataset variability and enhance the model's resilience to field-induced distortions.
These processed images are then fed into the hybrid CNN architecture, where multiple
convolutional and pooling operations extract relevant spatial and textural features
indicative of specific disease symptoms. Fully connected layers transform the extracted
features into disease-class probabilities using a softmax classifier. The trained model
undergoes rigorous evaluation on unseen test data to ensure its capability to perform
reliably under real-world agricultural settings. Once validated, the complete system is
integrated into a user-friendly interface, allowing farmers or agricultural practitioners
to upload leaf images and receive instant disease classification results, thereby enabling
timely crop management decisions and improved disease control practices.

4. Model Evaluation (Metrics, ROC, Confusion Matrix, Accuracy Graphs)

A comprehensive evaluation of the proposed hybrid CNN model was conducted to
assess its classification accuracy, robustness, and real-world applicability for automated
detection of potato leaf diseases. The evaluation process used multiple quantitative
metrics, along with visual performance indicators such as ROC curves, confusion
matrices, and learning curves [3]. These assessment tools collectively enabled a granular
understanding of model behaviour across different disease types and helped validate its
suitability for practical deployment under real agricultural conditions.

4.1 Evaluation Metrics

Evaluating the performance of a multi-class deep learning model requires a
comprehensive set of metrics that reflect not only prediction accuracy but also the
model’s capability to distinguish between visually similar disease symptoms under
varying image conditions. In this study, four widely accepted performance evaluation
metrics [6-7]—Accuracy, Precision, Recall, and Fi-Score — were employed to quantify
the reliability and robustness of the proposed hybrid CNN architecture. These metrics
were derived from the confusion matrix, where each classification outcome is evaluated
as True Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN).
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The main statistic used to determine the percentage of correctly identified photos in
the entire dataset is accuracy. However, when the dataset is unbalanced—especially
when some illness classes have substantially fewer samples—relying solely on accuracy
can be deceptive. Precision, Recall, and Fi-score were computed for each class to
address this concern and provide more detailed information about the model's ability
to identify specific illness types.

Precision indicates how many of the model’s predicted disease cases are correct,
making it particularly important for preventing false alarms—especially when disease
identification triggers costly field decisions, such as pesticide spraying or quarantine
measures. Recall, on the other hand, measures the model’s ability to detect all actual
samples of a disease category. A high recall value is essential in agricultural disease
detection applications because undetected diseased plants can accelerate crop damage
and pathogen spread. The Fi-score, which is the harmonic mean of Precision and
Recall, offers a balanced metric that avoids bias toward either over-prediction or under-
detection.

To ensure fairness in evaluation, macro-averaged values were calculated, treating all
classes equally regardless of their sample size. This approach prevents skewed results
often observed in class-imbalanced datasets.

Table 1 summarises the class-wise evaluation results. The proposed model
demonstrated excellent classification performance for Late Blight, Early Blight, and
Healthy leaves, achieving precision and recall values greater than 96%, attributed to the
distinct texture and colour patterns present in these classes. The PVY (Mosaic Virus)
and Black Leg classes achieved slightly lower scores due to partial overlap in early
symptom visual characteristics, yet still maintained competitive and acceptable
classification performance.

Table 1. Class-wise Evaluation Metrics of the Proposed Hybrid CNN Model

Class Label Precision (%) | Recall (%) | F1-Score (%) | Support (Images)
Late Blight 97.8 96.5 97.1 85
Early Blight 96.9 95.8 96.3 82
Mosaic Virus (PVY) 93.4 92.1 92.7 79
Black Leg 92.7 91.4 92.0 76
Healthy 08.2 97.6 97.9 88
Macro Average 95.8 94.7 95.2 —

Overall Accuracy 95.8% — — 410 (Total)

The high aggregated scores across all evaluation metrics indicate that the model is not
only accurate but also stable and reliable across all disease categories. These findings
confirm that the hybrid CNN architecture successfully captured disease-specific visual
cues, including lesion geometry, mosaic texture, chlorosis patterns, and tissue colour
variation. The detailed quantitative assessment reinforces the robustness of the
proposed system and validates its suitability for practical deployment in precision
agriculture applications.

4.2. Confusion Matrix and ROC Curve Analysis
To further assess the classification capability of the proposed hybrid CNN model
beyond numerical evaluation metrics, confusion matrix analysis and interpretation of

695 | www.scope-journal.com



Scope
Volume 15 Number o4 December 2025

the Receiver Operating Characteristic (ROC) curve were conducted. These graphical
validation approaches provide deeper insights into model behaviour by examining
misclassification patterns and threshold-based discrimination performance across all
disease categories.

4.2.1. Confusion Matrix Analysis

The confusion matrix represents a structured visualization of correctly and incorrectly
classified samples for all five classes—Late Blight, Early Blight, Mosaic Virus (PVY),
Black Leg, and Healthy. It provides a breakdown of model predictions in terms of True
Positives (TP), False Positives (FP), False Negatives (FN), and True Negatives (TN). An
ideal classifier would produce a confusion matrix with high values on the diagonal and
minimal off-diagonal entries.

Figure 3 illustrates the confusion matrix generated from the test dataset, where darker
diagonal cells indicate stronger correct classification. The results reveal that the model
demonstrates high recognition accuracy for most classes, particularly Late Blight, Early
Blight, and Healthy categories due to their distinct visual patterns such as necrotic
patches, concentric rings, and uniform texture. Minor misclassifications were observed
in the Mosaic Virus and Black Leg categories, which can be attributed to overlapping
symptom characteristics such as chlorosis and texture similarity during early disease
progression. The percentage values represent the class-wise prediction accuracy for
each cell in the confusion matrix. Each percentage indicates the proportion of samples
(within that actual class) that were predicted in the corresponding category. In other
words, these values normalize the confusion matrix row-wise and help interpret how
well the model performed for each class relative to the total number of samples in that
class.

These misclassification patterns, although limited, emphasize the need for further
dataset Expansion and class-specific feature enhancement in future improvements.

Late Blight

JEarly Blight

PVY

Black Leg

Healthy

Figure 3: Confusion Matrix analysis Table
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4.2.2 ROC Curve and AUC Interpretation

The Receiver Operating Characteristic (ROC) curve provides a threshold-based
diagnostic interpretation of the classifier's performance by plotting the True Positive
Rate (TPR) against the False Positive Rate (FPR) for each class. The Area under the
Curve (AUC) quantifies the overall reparability between classes and indicates how
effectively the model distinguishes diseased from healthy samples.

Figure 4 presents the ROC curves generated for all five classes. Each class-specific ROC
curve lies close to the upper-left corner of the graph, demonstrating intense model
discrimination. The calculated AUC values ranged from 0.96 to 0.99, confirming highly
reliable classification, even when disease symptoms visually overlap. The highest AUC
was observed for the Healthy class, followed closely by Late Blight and Early Blight, due
to their strong symptomatic signatures. Comparatively, Mosaic Virus and Black Leg
exhibited slightly lower AUC values, reflecting their ambiguous symptom boundaries in
early-stage samples—an inherent challenge in plant pathology datasets.

ROC Curves for Disease Classes

1.0

0.8 4

True Positive Rate
bt
P

=
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—@— Healthy (AUC = 0.99)
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=#— Early Blght (AUC = 0.97)
. —— PYY Mosaic Virus (AUC = 0.98}
0.0 4 —— Black Leq (AUC = 0.96)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4: ROC curves of all five disease classes with corresponding AUC values

The combined results from the confusion matrix and ROC analysis demonstrate that
the model is highly capable of differentiating potato leaf diseases, with minimal
confusion between visually similar categories. The strong AUC values further validate
the robustness and generalization ability of the proposed hybrid CNN architecture.
These outcomes support the model’s suitability for real-time deployment in precision
agriculture systems, where early disease detection accuracy is crucial to preventing
large-scale crop damage.

The graphical evaluation outcomes confirm that the proposed system performs reliably
across varying visual conditions and disease progression stages, reinforcing confidence
in its applicability for practical field use.
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5. Results and Discussion

A labelled dataset with five image categories—Late Blight, Early Blight, Mosaic Virus
(PVY), Black Leg, and Healthy leaves—was used to thoroughly assess the effectiveness
of the suggested hybrid CNN architecture for potato leaf disease classification. To
evaluate the model's ability to learn and generalize, the dataset was divided into subsets
for training (70%), validation (15%), and testing (15%). To minimize overfitting and
improve robustness, the CNN model was trained for 50 epochs using the Adam
optimizer with categorical cross-entropy loss. Data augmentation methods included
rotation, flipping, brightness modification, and zooming.

The training accuracy improved gradually, as shown in Figure 5(a), and by the last
epoch, it was almost 98%. Strong generalization and controlled overfitting were
indicated by the validation accuracy's comparable trend. Interestingly, the difference
between training and validation accuracy stayed small after about the 20th epoch,
indicating better model stability. The related loss curves in Figure 5(b) further
demonstrate the model's successful convergence, with both the training and validation
losses gradually declining over the course of the epochs.

More performance visualisations were examined to understand the -classifier's
behaviour better. The confusion matrix in Figure 3, which illustrates class-wise
prediction accuracy and error distribution, was used to conduct a thorough
performance study. The matrix makes it easy to see how many samples of each class
were correctly identified as well as the locations of misclassifications.

According to the confusion matrix, the model achieved very high accuracy across all
disease categories. The Healthy class had the highest correct classification rate, with 86
samples correctly classified (97.7%), reflecting the distinct visual uniformity of healthy
potato leaves. Similarly, Late Blight and Early Blight also achieved strong results with 82
(96.5%) and 79 (96.3%) correct classifications, respectively. These high accuracies are
attributed to the strong symptomatic signatures of fungal diseases, such as necrotic
patches, water-soaked lesions, and concentric ring formations that the CNN learns
efficiently.

The performance was competitive for bacterial and viral illnesses. While the Black Leg
class had 70 accurate predictions (92.1%), the PVY class had 73 valid classifications
(92.4%). These somewhat lower levels are in line with the visual uncertainty that exists
in the early stages of symptom development, when the color distribution or leaf texture
of Black Leg chlorosis and PVY-induced mosaic patterns may overlap. The few off-
diagonal values in the matrix indicate that these modest differences occasionally led to
misunderstandings between the two classes.

Despite these minor overlaps, the hybrid CNN achieved 95.8% accuracy, confirming its
reliability in real-world classification tasks. The strong diagonal dominance of the
confusion matrix further signifies the robustness of the feature-learning process and
the effectiveness of the pre-processing pipeline, including contrast enhancement, noise
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suppression, and normalisation, which helped the model adapt to varying field
conditions.

The performance of the proposed hybrid CNN model was further evaluated using ROC
analysis to assess the classifier's discriminative capability across all disease categories.
The ROC curves for the five classes are presented in Figure 4, and the corresponding
AUC values demonstrate strong reparability for each disease type.

The Healthy class exhibited the highest AUC value of 0.99, indicating near-perfect
discrimination between healthy and diseased leaf samples. This superior performance
can be attributed to the distinct, uniform green texture of healthy leaves, which creates
a clear contrast against infected samples. Similarly, the Late Blight class showed an AUC
of 0.98, confirming the model’s ability to capture the characteristic necrotic and water-
soaked lesions that develop prominently on infected leaves.

Early Blight achieved an AUC of 0.97, reflecting reliable detection of concentric ring
structures and chlorotic zones commonly associated with this fungal disease. The PVY
Mosaic Virus and Black Leg classes showed slightly lower, yet still strong, AUC values of
0.96, primarily due to the visual similarity of early-stage symptoms. Both diseases may
exhibit overlapping patterns such as mild mosaic discoloration, chlorosis, or subtle
textural changes, which occasionally challenge the model’s boundary definition.
Nevertheless, the high and consistent AUC values across all classes confirm that the
hybrid CNN can effectively differentiate even visually similar disease categories.

The ROC curves in Figure 4 also reveal minimal overlap among the class-wise plots,
indicating that the model maintains robust threshold sensitivity over a wide range of
decision boundaries. This further supports the classifier's reliability in real-world
applications, where lighting, image quality, and leaf orientation may vary.

In addition to deep learning evaluation, the proposed model was compared with four
conventional machine-learning methods and a baseline deep-learning method to
examine relative performance trends. These include Probabilistic Classifier (PBC),
Support Vector-based Margin Classifier (MKC), Ensemble Tree-Based Model (ETM),
and a Baseline CNN. As shown in Table 2, the conventional classifiers produced
moderate results, with the PBC achieving the lowest accuracy due to its inability to
model complex nonlinear patterns of leaf symptoms. The MKC and ETM performed
better but still lagged behind the CNN-based methods.

The Baseline CNN exhibited improved accuracy through convolutional feature
extraction but lacked the pre-processing-driven enhancements and optimized
architecture of the proposed system. In contrast, the Hybrid CNN delivered the highest
accuracy (95.8%), precision (95.8%), recall (94.7%), and Fi-score (95.2%). These
improvements are attributed to advanced data augmentation, targeted pre-processing
(contrast enhancement and noise suppression), and an optimized multi-layer CNN
architecture that effectively captured spatial and textural disease features.

The strong numerical and graphical results demonstrate that the proposed hybrid CNN
model is highly capable of identifying potato leaf diseases in diverse field conditions.
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These experimental results not only validate the architecture's efficiency but also
confirm its potential for real-world agricultural deployment via mobile or GUI-based
systems.
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Table 2. Comparative Evaluation of Model Performance

Model Precision Recall Accuracy F1-

(%) (%) (%) Score

Probabilistic Classifier (PBC)[7] 82.4 81.1 84.3 0.79

Margin-Based Kernel Classifier 28 g g g
7 7. . 0.

(MKC) [51,[7] ? 9> 4

Ensemble Tree-Based Model 873 36.8 88.6 0.83
(ETM) [12],[23]

Baseline CNN [6],[8] 86.5 85.2 87.1 0.85
Proposed Hybrid CNN 95.8 94.7 95.8 0.95

6. Conclusion

This study presented a robust hybrid CNN-based framework for automated detection
and classification of major potato leaf diseases using image processing and deep
learning techniques. The proposed system was evaluated on a multi-class dataset
comprising five disease categories—Late Blight, Early Blight, Mosaic Virus (PVY), Black
Leg, and Healthy leaves—and demonstrated strong performance across all evaluation
metrics. The model achieved an overall accuracy of 95.8%, supported by high class-wise
prediction scores observed in the confusion matrix, where all classes recorded
accuracies above 92%, with Healthy and Late Blight samples showing the highest
correct classification rates.

The ROC analysis further confirmed the model's discriminative strength, with AUC
values ranging from 0.96 to 0.99 across all classes. These results indicate that the
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system can reliably distinguish between visually similar diseases, even under variable
imaging conditions. The integration of pre-processing operations, such as contrast
enhancement and noise reduction, with an optimised convolutional structure led to
stable convergence during training and strong generalization to unseen samples.
Collectively, the findings demonstrate that the hybrid CNN architecture is highly
capable of supporting real-time disease diagnosis in precision agriculture. Its high
accuracy, robustness to similarity in symptom patterns, and consistent performance
across evaluation metrics make it suitable for deployment in mobile-based decision-
support systems, field-monitoring tools, and automated disease-management
platforms. Future work may extend this approach by incorporating larger, more diverse
datasets, integrating attention-based architectures, or exploring multimodal inputs,
such as hyper spectral imaging, to further enhance disease discrimination at early
symptom stages.
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