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Introduction:  

               The applying of DTM is effective for solving two-dimensional and three-

dimensional PDEs with initial value problems. It causes scientific findings in the for 

mentioned study fields. It is critical to investigate different techniques for integrating 

these PDEs. [1-5] The DTM is a highly successful and efficient instrument for 

addressing both one-dimensional and multi-dimensional problems. Zhou established 

the notion of DTM initially in 1986 [1]. This method employs a sequential approach to 

generate analytical solutions in the form of polynomials based on the Taylor series 

expansion. Angalgil & Ayazat.al. in [2], used to solved the either liner along with non-

linear differential equations such as the KdV and MKdV equations. Author in [2-4], 

presented, the two-point boundary value problem, while in authors in [5-9] presented 

the linear parabolic-hyperbolic PDE, and the two-dimensional nonlinear Gas dynamic, 

and the Klien-Gordon equations respectively. 

The DTM approach is also used to resolve the three-dimensional linear Helmholtz 

problem in a specific form of results: l ∂z2∂d2 + m ∂z2∂e2 + n ∂z2∂f 2 + λz = A(d, e, f) 

With the initial conditions: z(0, e, f) = a1(e, f) = zd(0, e, f) = a2(e, f) z(d, 0, f) = a3(d, f) = ze(d, 0, f) = a4(d, f) z(d, e, 0) = a5(d, e) = zf(d, e, 0) = a6(d, e) 

Where a1(e, f), a2(e, f), a3(d, f), a4(d, f), a5(d, e), a6(d, e)and l, m, n, λ are given function 

and constant respective. 

Abstract 

       In this work, using the differential transform approach, we get an approximate 

series solution for various partial differential equations in this study. By solving 

higher-order two- and three-dimensional partial differential equations, the DTM 

minimizes the amount of calculus effort. 
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“These equation has wide applications in various filed such as electrical and 

mechanical engineering and physics. The solutions to these problems are 

recommended to the reader (Zwilinger, 1992 Burdenand and Faires, 1993) [4]. Jafari 

and Zabini solved the above equations by homotopy perturbation method and 

homotopy analysis method respectively. [6-8] (Jafari.et.al.2010b and 2010c). In this 

paper we apply DTM for Helmholtz equation and Schrodinger equations”.  
 

Basic Definitions of Multi-dimensional DTM:  

We define - dimensional differential transform and fundamental operation of 

),...,(
21 m

xxxz  as Z(w1, w2 … , wm) = 1w1! w2!, … wm! [δw1+w2+⋯,+wmZ(x1, x2 … , xm)
δx1w1 , δx2w2 , … . , δxmwm , ](0,0,…,0)                 (0.1)  

Where Z(x1, x2 … , xm)is original function and Z(w1, w2 … , wm)is transformed function. 

The differential inverse transform of Z(x1, x2 … , xm) is defined as follows: Z(x1, x2 … , xm) = ∑ ∑ … ∑ Z(w1, w2 … , wm)x1w1 ,∞

wm−0
∞

w2−0
∞

w1−0 x2w2 , … , xmwm              (0.2) 

And from eq. (0.1) and (0.2) we can assume   

Theorem 1: If z(d1, d2 … , dm) = λf (d1, d2 … , dm) then Z(w1, w2 … , wm) = λf (w1, w2 … , wm) 

Where, λ is constant. 

Theorem 2:If  z(d1, d2 … , dm) = ∂f(d1, d2 … , dm)∂p1  then Z(w1, w2 … , wm)= (wi + 1)F (w1, w2, … , (wi + 1), … , wm) 

Theorem 3: If z(d1, d2 … , dm) = d1h1 , d2h2 … dmhm  then Z(w1, w2 … , wm)= δ(w1 − h1)δ(w2 − h2) … δ(wm − hm) 

Where, 

δ(wi − hi) = {10                wi = hi otherwise 

 

Theorem 4:If z(d1, d2 … , dm) =  d1h1 , d2h2 … sin(axi + b) … dmhm  then Z(w1, w2 … , wm) = δ(w1 − w2) … akiwi! sin (wiπ2 + b) … δ(wm − hm) 

 

Theorem 5:If 
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z(d1, d2 … , dm) =  d1h1 , d2h2 … cos(axi + b) … dmhm  then Z(w1, w2 … , wm)= δ(w1 − k2) … akiwi! cos (wiπ2 + b) … δ(wm − hm) 

 

Solving two numerical using DTM: 

Ex. 1] Solve the two-dimensional Schrodinger equations: 𝜕2𝑧𝜕𝑑2 + 𝜕2𝑧𝜕𝑒2 − 4𝑧 = (24𝑑2 − 5𝑑4) 𝑐𝑜𝑠 (𝑒)(1) 

With the initial condition z (0, e) =0, 𝑧𝑑(0, e) =0       (2) 

The exact solution can be expressed as z (d, t) =𝑑4𝑐𝑜𝑠 (𝑒) 

Taking the differential transform of (1) (𝑤1 + 2)(𝑤1 + 1)𝑍(𝑤1 + 2, 𝑤2) +  (𝑤2 + 2)(𝑤2 + 1)𝑍(𝑤1, 𝑤2 + 2) −  4𝑍(𝑤1, 𝑤2, 𝑤3)= 24𝛿(𝑤1 − 2) 1𝑤2! 𝑐𝑜𝑠 (𝑤2𝜋2 ) − 5𝛿(𝑤1 − 4) 1𝑤2! 𝑐𝑜𝑠 (𝑤2𝜋2 )       (3)         
 

From the initial condition given by eq. (2)  

Z (0,𝑤2)=0 

Z (1,𝑤2) =0,                       𝑤2 = 0,1,2, …(4) 

Put eq. (3) into eq. (4) 

The systematic technique yields the following results 

Z (𝑤1, 𝑤2)  = { 1𝑤2! 𝑐𝑜𝑠 (𝑤2𝜋2 )                              , 𝑖𝑓 𝑤1 = 4   0                                        , 𝑜. 𝑤.  

We obtained the series solution as 

Z (d, e) = ∑ ∑ 𝑍(𝑤1, 𝑤2)𝑑𝑤1𝑒𝑤2 = ∞𝑤2=0∞𝑤1=0 𝑑4 𝑐𝑜𝑠(𝑒) 

Which is the exact answer. 

 

Ex. 2] Solve three-dimensional Helmholtz equations: 𝜕2𝑧𝜕𝑑2 + 𝜕2𝑧𝜕𝑒2 − 𝜕2𝑧𝜕𝑓2 − 8𝑧 = (24𝑑2 − 8𝑒4) 𝑐𝑜𝑠 (𝑒)𝑠𝑖𝑛 (𝑓) (5) 

With the initial condition z (0, e, r) =0, 𝑧𝑝 (0, e, f) =0           (6) 

The exact solution can be expressed as z (d, t) =𝑑4𝑐𝑜𝑠 (𝑒)𝑠𝑖𝑛 (𝑓) 

Taking the differential transform of (5) (𝑤1 + 2)(𝑤1 + 1)𝑍(𝑤1 + 2, 𝑤2, 𝑤3) +  (𝑤2 + 2)(𝑤2 + 1)𝑍(𝑤1, 𝑤2 + 2, 𝑤3)−  (𝑤3 + 2)(𝑤3 + 1)𝑍(𝑤1, 𝑤2, 𝑤3 + 2) −    8𝑍(𝑤1, 𝑤2, 𝑤3)= 24𝛿(𝑤1 − 2) 1𝑤2! 𝑐𝑜𝑠 (𝑤2𝜋2 ) 1𝑤3! 𝑠𝑖𝑛 (𝑤3𝜋2 )− 8𝛿(𝑤1 − 4) 1𝑤2! 𝑐𝑜𝑠 (𝑤2𝜋2 ) 1𝑤3! 𝑠𝑖𝑛 (𝑤3𝜋2 )                        (7)        
From the initial condition given by eq. (6)  

Z (0,𝑤2, 𝑤3)=0 

Z (1,𝑤2,𝑤3) =0,                       𝑤2,𝑤3 = 0,1,2, …(8) 

Put eq. (7) into eq. (8) 
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The systematic technique yields the following results 

Z (𝑤1, 𝑤2, 𝑤3) =0   ,                                                            if 𝑤1 ≠8 &𝑤2, w3=0, 1, 2… 

Z (8,w2, w3) = 
1w2! cos (w2π2 ) 1w3! sin (w3π2 )Ifw2, w3=0, 1, 2... 

We obtained the series solution as 

Z (d, e, f) = ∑ ∑ ∑ Z(w1, w2, w3)∞w3=0 dw1ew2f w3 = ∞w2=0∞w1=0 d4 cos(e) sin(f) 

Which is the exact answer. 

 

Conclusion:  

              Partial differential equations in two-dimensional and three-dimensional both 

linear and nonlinear, have been solved effectively using the DTM. The example 

demonstrates that the current technique’s results are great agreement with the exact 

answer. It appears that DTM is very effective and potent approach to locating 

mathematical solution to a large range of linear and nonlinear problems. 
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