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Introduction 

A book on the Vedic Mathematics was first published in 1965 that was propounded by Bharati Krsna 

Tirthaji Maharaja, which is known for short-cut methods to find calculations in mathematics. These sutras 

have applications in many branches of mathematics like Algebra, Arithmetic, Geometry, Calculus, 

Trigonometry, etc.1 Vedic mathematics is mostly based on sixteen sutras and thirteen sub-sutras. Two of 

them known as Ekanyunena Purvena and Ekadhikena Purvena are useful in finding derivative and 

antiderivative of power function of the form xn. The meaning of ‘Ekanyunena Purvena’ is ‘one less than 

the previous one’ and of ‘Ekadhikena Purvena’ is ‘one more than the previous one’. 2, 3, 4, 5, 6, 7, 8 These two 

sutras play an important role in Calculus, in which we study about derivative and antiderivative with their 

applications. Although many other mathematicians contributed in the development of Calculus, the major 

and equal credit goes to Isaac Newton and Gottfried Leibniz. 9, 10 It is said that the idea of differential 

calculus existed in India in about 6th century AD, as the idea of instantaneous velocity was first developed 

during the 1st millennium BC and Indian could solve first order differential equations as early as 6th century 

AD, which was not possible without differential calculus concept. 11 

One of Newton’s central ideas was of power series to represent functions. He provided the power series of 

arcsinx and then for sinx by taking the inverse of the series and so on. The power series of sine, cosine, and 
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arctangent had been developed in India probably in 14th century. 12 The idea of calculus existed in India in 

Vedic period. In Sulva-Sutra, it is seen that derivative and antiderivative existed in India. Tirthaji re-

established these sutras in the form of mathematics formulae. 7, 13 In India it leaped to an amazing height in 

the analytic trigonometry of the Kerala School in the 14th century. The study of infinitesimal changes led to 

the discovery of basic principles of calculus by the time of Bhaskaracharya (1150 AD). 1, 16 

There is a possibility on the transmission of ideas of calculus from India to western countries during 

colonial rule in India, especially from the 16th century onwards, as there is an existence of corridor of 

communication between Kerala and Europe. Taylor’s series expansion known as the heart of the calculus 

existed in India, which preceded Newton and Leibniz by centuries. 14, 15, 16, 17 Madhavacharya (1340-1425) 

is known for his power series expansions of different trigonometric functions and their proof presented in 

Yuktibhasha involves the idea of integration as the limit of a sum and corresponds to the algorithm of 

expansion and term-by-term integration. These were also found in the works of Neelkantha, Jyeshtadeva, 

etc. 1, 16, 17, 18 

 

Preliminary Ideas 

To understand the importance of the two sutras, we should have the following basic concepts of Calculus: 

Power Series: If the power series of a function f(x) has a radius of convergence R > 0 and an interval of 

convergence x0 - R < x < x0 + R, then the series may be differentiated and integrated term-by-term i.e., 

once a function is written in power series, it can be differentiated and integrated quite easily, by treating 

every term separately. We pick up a constant of integration C, that is outside of the series here in the 

antiderivative of f(x). 10, 19, 20, 21 

 

Power Rule of Derivative: If n is any integer, then 𝑑𝑥𝑛𝑑𝑥 = 𝑛𝑥𝑛−1 

This rule is valid for all real numbers. 10 

Derivative Using Vedic Sutra: The derivative of power forms such as x10, x100, x1024 …etc. can be obtained by 
applying the Ekanyunena Purven Sutra. It says that in order to differentiate any variable x in power, 

multiply the index with the variable x and lower the index by 1. 6, 13 i.e., 𝑑(𝑥𝑛)𝑑𝑥 = 𝑛𝑥𝑛−1         (i) 

For example, 𝑑(𝑥5)𝑑𝑥 = 5𝑥5−1 = 5𝑥4 

This can be further differentiated in a similar way to obtain second, third, …, order derivatives. The 

differentiation of the constant term is zero as 𝑑(5)𝑑𝑥 = 𝑑(5𝑥0)𝑑𝑥 = 5. 0. 𝑥0−1 = 0 

 

Power Rule of Antiderivative: If n (≠ -1) is any real number, then ∫ xn dx = xn+1n + 1 + C 

where C is an arbitrary constant of integration, which is generally added after finding antiderivative. This 

exists due to the following derivative formula 𝑑𝑑𝑥 ( 𝑥𝑛+1𝑛 + 1) = 𝑥𝑛 

Here n = -1 will lead to division by zero, so it is excluded from the formula. 10  

 

 

Antiderivative Using Vedic Sutra: The Vedic sutra ‘Ekadhikena Purvena’ gives the antiderivative of a 

function, which contains only powers of x. In finding integration, we use it which means “one more than 
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the previous index to integrate the power term of the function and divide it by coefficient by the new 

index” 7, 13 i.e., ∫ 𝑥𝑛 𝑑𝑥 = 𝑥𝑛+1𝑛 + 1          (ii) 

It is clear that for n = -1, division by zero occurs, which fails the sutra. Therefore we use the above rule for 

all real numbers except n = -1. 

 

 

Example-1: Find the indefinite integral ∫ 𝑥7 𝑑𝑥 

We have using the above rule ∫ x7 dx = x7+17 + 1 = x88  

Here Ekadhika of index 7 is 7 + 1 = 8 and the coefficient = 8. In it we may add a constant of integration. 

 

 

Methodology 

We know that there are two distinct approaches to integration. Newton followed infinite series solutions 

and evaluated integrals by expressing function in power series using term-by-term integration. Whereas, 

Leibniz accepted solutions in finite terms and worked for closed form expressions for integrals. 

Mathematicians adopted both preferences for representations of antiderivatives and later it was found that 

both give the same result. In the present paper we shall use first Newton’s approach and then will convert 

the result in Leibniz form to justify that “the three rules of derivative and the two rules of antiderivative” of 

power series is sufficient to study the whole derivatives and antiderivative of elementary functions. 

As far as the convergences of the series are concerned, we shall omit this in the present study as we know 

that all elementary functions in series are convergent in their domain and even if we encounter a series, 

which is not convergent, using the concept of the truncation of terms, we can restrict the number of terms 

as per our requirement of accuracy of results to make it convergent using Taylor’s series (or Maclaurin’s 

series). 10 

 

Discussion 

The power rule of derivative is valid for all real numbers n, using it we can find the derivative of the terms 

like 𝑥𝑛 and (𝑥 ± 𝑎)𝑛. But there are functions like ln(x), which cannot be expanded in power series using 

Maclaurin’s theorem. Also the power rule of antiderivative is valid for all real n except n = -1 i.e., using it 

we can find the antiderivative of the terms 𝑥𝑛 and (𝑥 ± 𝑎)𝑛. In other words we cannot find the 

antiderivative of 
1𝑥 and 

1𝑥±𝑎 using power rule antiderivative. Thus we shall face problem in finding 

antiderivative, when a term of the form 𝑥𝑛 or (𝑥 ± 𝑎)𝑛comes for n = -1 in series. So first we solve these 

problems. 

From Calculus we know that d ln(x)dx = 1x = x−1          (iii) 

Taking its antiderivative, we get ∫ 𝑥−1dx = ∫ 𝑑𝑥𝑥 = ln(𝑥)         (iv) 

We shall face one more problem, when we get the term xn multiplied by a constant c like cxn. So another 

derivative formula is needed for the function having a constant as its coefficient like cf(x). For this we shall 

use the linear property of derivative d cf(x)dx = c d f(x)dx            (v) 

Using the three rules of derivative (i, iii, v) and two rules of antiderivative (ii, iv), we can find derivative 

and antiderivative of all most all elementary functions using term by term derivative and antiderivative. 
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But these are possible only if the given elementary functions are expressible in power series using 

Maclaurin’s theorem or Taylor’s theorem for some particular functions. 

For verification let us find derivatives and antiderivatives of some elementary functions using Ekanyunena 

and Ekadhikena Purvena Sutras on each term of their power series as follows: dKdx = dKx0dx = K dx0dx = K. 0. x0−1 = 0 dxdx = 1. x1−1 = 1. x0 = 1 dsinxdx = ddx (x − x33! + x55! − x77! + ⋯ + x2n−1(2n − 1)! + O[x]2n+1) , n ≥ 1 

= 1 − 3x23! + 5x45! − 7x67! + ⋯ + (2n − 1)x2n−2(2n − 1)! + O[x]2n 

= 1 − x22! + x44! − x66! + ⋯ + x2(n−1)(2n − 2)! + O[x]2n = cosx, n ≥ 1 dcosxdx = ddx (1 − x22! + x44! − x66! + ⋯ + x2n(2n)! + O[x]2n+2) , n ≥ 0 

= 0 − 2x12! + 4x34! − 6x56! + ⋯ + 2nx2n−1(2n)! + O[x]2n+1 

= −x + x33! − x55! + ⋯ + x2n−1(2n − 1)! + O[x]2n+1 

= − (x − x33! + x55! − x77! + ⋯ + x2n−1(2n − 1)! + O[x]2n+1) = −sinx, 𝑛 ≥ 1 dtanxdx = ddx ∑(−1)n∞
n=0 T2n+1 x2n+1(2n + 1)! , for |x| < π2 

= ∑(−1)n∞
n=0 T2n+1 ddx x2n+1(2n + 1)! = ∑(−1)n∞

n=0 T2n+1 x2n(2n)! = (−1)0T1 x00! + (−1)1T3 x22! + (−1)2T5 x44! + (−1)3T7 x66! + O[x]8 = 1 + (−1)(−2) x22! + (−1)2(16) x44! + (−1)3(−272) x66! + O[x]8 = 1 + x2 + 23 x4 + 1745 x6 + O[x]8 = sec2x 

In above series, T2n+1 is known as tangent numbers. This can also be verified using the general series 

expansion as dtanxdx = ddx (𝑥 + 𝑥33 + 2𝑥515 + 17𝑥7315 + 62𝑥92835 + 𝑂[𝑥]11) 

= 1 + 𝑥2 + 2𝑥43 + 119 𝑥6315 + 558 𝑥82835 + 𝑂[𝑥]10 = 1 + 𝑥2 + 2𝑥43 + 17 𝑥645 + 558 𝑥82835 + 𝑂[𝑥]10 = sec2x dsinhxdx = ddx (∑ x2n+1(2n + 1)!∞
n=0 ) , for |x| < ∞ 

= ∑ ddx x2n+1(2n + 1)!∞
n=0 = ∑ (2n + 1) x2n(2n + 1)!∞

n=0 = ∑ x2n(2n)!∞
n=0 = coshx dcoshxdx = ddx (∑ x2n(2n)!∞

n=0 ) , for |x| < ∞ 
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= ∑ ddx x2n(2n)!∞
n=0 = ∑ (2n) x2n−1(2n)!∞

n=1 = ∑ x2n−1(2n − 1)!∞
n=1  

= ∑ x2n+1(2n + 1)!∞
n=0 = sinhx dtanhxdx = ddx (∑ T2n+1∞
n=0

x2n+1(2n + 1)!) , for |x| < π2 

= ddx ∑ T2n+1∞
n=0

x2n+1(2n + 1)! = ∑ T2n+1 ddx∞
n=0

x2n+1(2n + 1)! = ∑ T2n+1∞
n=0

(2n + 1)x2n(2n + 1)! = sech2x dexdx = ddx (1 + x + x22! + x33! + x44! + ⋯ + xnn! + O[x]n+1) 

= 0 + 1 + 2x2! + 3x23! + 4x34! + ⋯ + nxn−1n! + O[x]n = 1 + x1! + x22! + x33! + ⋯ + xn−1(n − 1)! + O[x]n = ex 

etc. Similarly we can find the antiderivative using Vedic sutra as follows ∫ cosx dx = ∫ (1 − x22! + x44! − x66! + ⋯ + x2n(2n)! + O[x]2n+2)  dx 

= x − x32! 3 + x54! 5 − x76! 7 + ⋯ + x2n+1(2n)! (2n + 1) + O[x]2n+3 + K 

= x − x33! + x55! − x77! + ⋯ + x2n+1(2n + 1)! + O[x]2n+3 + K = sinx + K 

where K is a constant of integration. ∫ sinx dx = ∫ (x − x33! + x55! − x77! + ⋯ + x2n+1(2n + 1)! + O[x]2n+3)  dx 

= x22 − x43! 4 + x65! 6 − x87! 8 + ⋯ + x2n+2(2n + 1)! (2n + 2) + O[x]2n+4 + K = −1 + x22 − x43! 4 + x65! 6 − x87! 8 + ⋯ + x2n+2(2n + 1)! (2n + 2) + O[x]2n+4 + (K + 1) 

= − (1 − x22 + x43! 4 − x65! 6 + x87! 8 − ⋯ + x2n+2(2n + 1)! (2n + 2) + O[x]2n+4) + (K + 1) = −cosx + C 

where C = K + 1 is a constant of integration. ∫ coshx dx = ∫ ∑ x2n(2n)!∞
n=0  dx = ∑ ∫ x2n(2n)!  dx∞

n=0 = ∑ x2n+1(2n + 1)(2n)!∞
n=0  

= ∑ x2n+1(2n + 1)!∞
n=0 = sinhx 

∫ sinhx dx = ∫ ∑ x2n+1(2n + 1)!∞
n=0  dx = ∑ ∫ x2n+1(2n + 1)!  dx∞

n=0  

= ∑ x2n+2(2n + 2)(2n + 1)!∞
n=0 = ∑ x2(n+1)(2n + 2)!∞

n=0 = sinhx + K 

∫ ex 𝑑𝑥 = ∫ (1 + x + x22! + x33! + x44! + ⋯ + xnn! + O[x]n+1) 𝑑𝑥 
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= x + x22! + x33! + x44! + ⋯ + xn+1(n + 1)! + O[x]n+2 = 1 + x + x22! + x33! + x44! + ⋯ + xn+1(n + 1)! + O[x]n+2 − 1 + 𝑘 

= 1 + x + x22! + x33! + x44! + ⋯ + xn+1(n + 1)! + O[x]n+2 + K = ex + K 

Following the same procedures and the following expansion of other functions in series as x cotx = 1 − ∑(−1)n−122nB2n x2n(2n)!∞
n=1 , for |x| < 𝜋 

secx = ∑(−1)nE2n x2n(2n)!∞
n=0 , for |x| < π2 

x cscx = 1 + ∑(−1)n−12(22n−1 − 1)B2n x2n(2n)!∞
n=1 , for |x| < 𝜋 

x cothx = 1 + ∑ 22nB2n x2n(2n)!∞
n=1 , for |x| < 𝜋 

sechx = ∑ E2n x2n(2n)!∞
n=0 , for |x| < π2 

x cschx = 1 − ∑ 2(22n−1 − 1)B2n x2n(2n)!∞
n=1 , for |x| < 𝜋 

etc. we can verify their derivatives and antiderivatives using ekanyunena and ekadhikena purvena sutras. 
10, 22, 23, 24 In the above expansions B2n and E2n are called Bernoulli numbers and Euler numbers 

respectively. The values for the tangent numbers, the Bernoulli numbers and the Euler numbers are as 

follows for 𝑛 ≤ 8 in the following table-1: 22, 24 

 

Table-1 

Natural Numbers Tangent Numbers Bernoulli Numbers Euler Numbers 

n T2n+1 B2n E2n 

0 1 1 1 

1 -2 1/6 -1 

2 16 -1/30 5 

3 -272 1/42 -61 

4 7936 -1/30 1385 

5 -353792 5/66 -50521 

6 22368256 -691/2730 2702765 

7 -1903757312 7/6 -199360981 

8 209865342976 -3617/510 19391512145 

 

For those functions, whose expansion is not so easy to remember, their power series representation can be 

found using Mathematica as: 

Input Function Output Power Series In[1]: Series[Tan[𝑥], {𝑥, 0,10}] Out[1]: 𝑥 + 𝑥33 + 2𝑥515 + 17𝑥7315 + 62𝑥92835 + 𝑂[𝑥]11 In[2]: Series[Sec[𝑥], {𝑥, 0,10}] Out[2]: 1 + 𝑥22 + 5𝑥424 + 61𝑥6720 + 277𝑥88064 + 50521𝑥103628800 + 𝑂[𝑥]11 In[2]: Series[Sec(2)[𝑥], {𝑥, 0, 5}] Out[3]: 1 + x2 + 23 x4 + 1745 x6 + O[x]8 
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Limitations 

We stated earlier that mathematicians expressed different preferences finite vs. infinite series for 

representations of derivatives and antiderivatives. So there is no harm to follow either one but the problem 

starts when after operations applied, the new series is not an expression of any known elementary 

functions. Because every finite or infinite series can’t be a series expansion of an elementary function 

neither can be expressed in closed form of elementary functions. For example, ∫ 𝑒𝑥𝑥 dx = ∫ 1𝑥 (1 + 𝑥 + 𝑥22! + 𝑥33! + ⋯ + 𝑥kk! + O[x]k+1) dx 

= ∫ (1𝑥 + 1 + 𝑥2! + 𝑥23! + ⋯ + 𝑥k−1k! + O[x]k) dx 

= ln(x) + 𝑥 + 𝑥22! 2 + 𝑥33! 3 + ⋯ + 𝑥kk! k + O[x]k+1 + K 

This series can’t be denoted by an elementary function. That’s why it is known as a nonelementary 

function or nonelementary integral. 26 Thus term-wise derivative and antiderivative terminate at this point. 

Modern techniques of integration also don’t solve these problems. 

 

 

Conclusion 

Following the above results we conclude that to study the derivative of elementary functions, following 

three derivative formulae 𝑑𝑑𝑥 𝑥𝑛 = 𝑛𝑥𝑛−1, 𝑑𝑑𝑥 [𝑐𝑓(𝑥)] = 𝑐 𝑑𝑑𝑥 [𝑓(𝑥)], 𝑑𝑑𝑥 ln (𝑥) = 1𝑥 

are sufficient and to study the antiderivative of elementary functions following two formulae ∫ 𝑥𝑛 𝑑𝑥 = 𝑥𝑛+1𝑛 + 1 , ∫ 1𝑥 𝑑𝑥 = ln(𝑥). 
are sufficient. In these five formulae, the Vedic Mathematics Ekanyunena Purvena and Ekadhikena 

Purvena Sutras play an important role. Perhaps this might have been the prime reason that ancient Indian 

mathematicians didn’t think for another rules of derivative and antiderivative as per the requirement in 

then and at that time related to solving techniques of real world problems. 

 

 

Future Scope of Research 

The limitation of the lack of notation of the functions creates opportunity for new research. As has been 

discussed in the limitations section that mathematics world lacks notations of many infinite series. Which 

indicate that the scope of research is available for new functions originated from nonelementary integrals. 
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