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1 Introduction 

The working capital of any business can be effectively optimized through inventory 

management, making it a vital aspect of a product-based business. The products in an inventory 

encompass physical resources, unprocessed materials, and finished commodities. The primary 

objective of any inventory system is to devise strategies and policies that minimize the overall 

cost of holding the stock. Information technology plays a pivotal role in aiding decision-making 

through the analysis of optimal ordering or manufacturing policies. Inventory management has 

its share of difficulties, including product damage and obsolescence, leading to shortages.  

 

Abstract 

This study presents a mathematical model for analyzing inventory systems with time-dependent 

deteriorating items and holding costs vary linearly over time. The model accommodates expected 

shortages with a backlog rate that evolves. Demand is characterized by two distinct functions: a time-

dependent quadratic function during periods without shortages and a time-dependent linear function 

during periods with shortages. Computational Algorithm is formulated to obtain the minimal total cost, 

and the convexity of the full cost function is established. Additionally provide a numerical example to 

demonstrate the application of the model. Furthermore, sensitivity analysis of optimal inventory policies is 

conducted, and the impact of decision variable variations are graphically represented using MATLAB. This 

comprehensive framework contributes to a deeper understanding of inventory management under 

fluctuating demand conditions. 
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2. Literature review  

The model developed in this study is based on four lines of inventory theory, which has 

its roots in Harris's (1915) classical economic quantity model. These streams include linear holding 

costs, time-dependent split demand, deteriorating items with expiration dates, and item 

shortages within the inventory cycle. 

2.1 Inventory models for degradation items 

Deterioration is a natural phenomenon in inventory systems and holds significant 

importance. Food products deteriorate due to spoilage or unsafe storage conditions, while fuels 

like petrol, alcohol, and camphor degrade through evaporation. Technology and fashion relate to 

obsolescence, which can be considered deterioration and cause a decline in inventory value, 

especially in clothing and electronic products. Several studies have explored the impact of stock 

deterioration on profitability using different deterioration rates. Whitin (1957) was the pioneer in 

research on inventory degradation, focusing on fashion items. Ghare and Schrader (1963) used an 

exponential decay rate, while Covert and Philip (1973) introduced a two-parameter Weibull-

distributed deterioration. Donaldson (1977) examined the conventional no-shortage inventory 

model for depreciating goods with a linear demand trend. 

Some of the recent studies on inventories with deterioration include Sarkar and Sarkar's 

(2013) survey on time-varying deterioration under stock-associated demand, Khan et al. (2019-

2020) study on variable deterioration rates based on storage length and product lifespan, Abu 

Hashan's (2020) inventory model for deteriorating items with different type of demands, Jani et 

al. (2021) model on food items in India. Shaikh et al.(2021) EOQ system for deteriorating items 

with credit policies; in 2022, Al-Amin Khan et al. proposed inventory management strategies with 

hybrid cash-advance payments for time-dependent demand and deteriorating items. 

2.2 Inventory models for time varying holding cost 

 The holding cost was assumed to be predictable and constant in conventional inventory 

models. In reality, this is not always true in the case of storage of products that are deteriorating 

and perishable, such as foodstuffs, milk, fruit, vegetables, and meat, whose quality declines with 

each passing day and rising holding expenses; hence, it necessitates preserving the items and 

avoiding spoilage. Additionally, because of factors like inflation, bank interest, hiring fees, etc., 

that rise with time, certain factors that influence the holding cost remain constant while others 

change. Hence, Assuming that the holding cost per unit of time changes with time is logical. 

Ali Akbar Shaikh et al. (2019) explored price discount facilities in an EOQ model for 

deteriorating items with partial backlogging. An inventory model with incremental holding cost 

under partial backlogging was developed by Singh and Sharma (2019). Khan et al. investigated an 

inventory system with an expiration date, pricing, and replenishment decisions in 2019 and then 

discussed advanced payment and linearly time-dependent holding costs. Their study was also 

extended to demand dependent on advertisement and selling prices in 2020. Sivashankari and 

Vijayakumar (2023) recently discussed stock-dependent demand effects in EOQ models with 

various holding costs.  
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2.3 Inventory models for shortages  

Another crucial element of the inventory model is the stock-out scenario. When there is still a 

market for a product, the shop periodically runs out of it. The term "inventory backlog" refers to 

the delayed delivery of items to clients. Customers may decide to wait for the delayed delivery or 

go somewhere else in consideration of the retailer's goodwill. The retailer still prepares the stock 

for the waiting customers despite the loss at the next store. As a result, inventory backlog has a 

negative side in that it negatively affects inventory goodwill.  

Shaikh et al. (2018) analyzed an economic order quantity model for degrading 

commodities with trade credit, partial backlog, preservation technologies, and financial factors. 

Further analysis of an EOQ model with backlogging was carried out by Ghandehari and 

Dezhtaherian (2019). In 2021, Saurabh Srivastava and Rajesh Kumar Bajaj explored an optimal 

inventory management system in a fuzzy setup. Senbagam and Kokilamani (2023) proposed 

inventory models with partial back ordering in an imprecise environment. 

 

2.4 Inventory models for time dependent demand 

Numerous topics are covered in these studies, including demand patterns, ramp, time, 

selling price, and combinations of time and demand, as well as linear and quadratic demand 

functions. The cost and quantity of a product directly affect its level of popularity. Customer 

demand declines as prices rise, lengthening the inventory cycle. Hence, maintaining a sizable 

inventory of goods will increase the number of customers. It is important to note that this 

impacts profit margins because significant investment is required. An increase in inventory also 

affects the inventory holding cost, including maintenance and spoilage. Sometimes, depending on 

the socio-economic standing of the local populace, demand may be reduced. This harms 

inventory.  

Ghosh and Chaudhuri's (2004) inventory model includes continuous deterioration, time-

dependent quadratic demand, and shortages in all cycles. Yang 2005 discussed the fluctuation of 

time-dependent demand on degrading goods inventory. Probabilistic demand has gained 

attention in the corporate environment due to uncertainty. Models have been developed to help 

sellers choose optimal ordering tactics and delay spending for shortages. Examples include 

Khanra et al. (2011) model for failing products with time-linked demand, Jaggi et al. (2013) 

imperfect EOQ model, Yadav and Vat's (2014) spoiling goods inventory model, Sharmila and 

Uthayakumar's (2015) EOQ model for quadratic demand and partial backlogging, Ali Akbar 

Shaikh et al.'s (2018) preservation technology model. Tripathi (2018) Time liked the Quadratic 

demand model with salvage values. 

Kumar presented a model for linearly rising deterministic demand and quadratically 

increasing holding costs in 2019. Further, Tripathi (2019) investigated a time-linked demand and 

shortage inventory model for failed goods. Setiawan presented a two-parameter Weibull 

degradation inventory model with quadratic time-sensitive demand and linearly time-dependent 

shortages in 2021. Many researchers, Rahaman (2020), Balarama (2020), Garima (2022), Babangida 

(2022), etc., have all developed Quadratic time-linked demand with various patterns of 

degradations with or without shortages. Priti Chaudhary and Tanuj Kumar (2022) developed an 

Intuitionistic fuzzy inventory model for a quadratic demand rate. Log-gamma-deteriorating items 

with quadratic demand and shortages were investigated by Senbagam and Kokilamani in 2022. 
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Rukonuzzaman et al. (2023) studied mango businesses in Bangladesh to explore quantity-based 

discount frames. 

The demand rate for most products fluctuates with time in a patterned manner, more 

often represented as a function; it may be dependent on stock, time, selling price, and 

advertisement. In this paper, the demand rate is considered time-dependent and split. Split 

patterns of demand are common in the market's newly introduced products. This demand 

frequently occurs due to customer perceptions of products and external factors like 

advertisements. In this context, any trade agreement will result in higher order quantities and 

overall costs if initial demand rises.  

The finest example of fluctuating demand is the split and time-linked demand, 

represented as Phase 1: D(t) = a+bt+ct2
, where a > 0, b  0, and c  0. The demand rate is a rising 

function of time if b > 0 and c > 0. If b > 0 and c < 0, the demand rate slows down. This is referred 

to as an accelerated expansion in demand. If b < 0 and c < 0, then the demand rate will drop 

slowly each time. Phase 2: Demand turns out to be linear. 

2.5 Research questions 

Based on the review outlined above, a list of important research issues has been compiled  

1. How do you cope with periodic fluctuations in demand? 

2. To minimize the retailer's expenses and determine the Economic Order Quantity. 

3. How is this model used in a real-world business setting?  

4. How do you manage the stock-out period of the inventory? 

5. What are the effects of the consumption rate that relies on storage duration at the 

company's ideal inventory? 

6. How does the instant degradation function impact the company's inventory planning? 

Earlier research utilized the demand function over the entire inventory, but this research 

incorporates two different forms of demand, as mentioned above, without shortage and with 

shortage, respectively.        

The primary assumptions used to develop the innovative inventory model are:  

(i)        Two levels of time-varying demand  

(ii)      Partial backlogging is based on the length of the customer’s waiting time. 

(iii)    Time-dependent deterioration. 

(iv)    The holding cost is a linearly time-dependent increasing function. 

Inventory policies are derived for the proposed inventory model to minimize the total 

cost. A numerical example illustrates the solution procedure of the proposed optimization model. 

Also, a sensitivity analysis with the effects of system constraints is discussed. 

3 Formulation of the problem 

3.1 Assumptions 

 The inventory consists of a single item only. 

 The cost to hold a unit product for a unit time duration is proportional to the duration of the 

storage time of that unit:  =  +t,   0, and    0. 

 The degradation rate θ(t) is time-linked; θ(t) = θt, 0 ≤ θ < 1. 

 The planning horizon is infinite. 



Scope 

Volume 14 Number 02 June 2024 

 

 

607 
www.scope-journal.com 

 

 Demand rate (t) is time-dependent and follows a split pattern during a cycle.    

1(t)= α+βt+γt2
, 0 ≤ t < t1 and 2(t)= α+βt, t1 < t ≤ T. 

 The replenishment rate is instantaneous, and the item is replenished periodically (each 

inventory cycle). 

 Deficiencies are allowed and fully backlogged. The backlog rate is a linear function of time. 

 Lead time is zero. 

3.2 Notations  

(t) - Inventory level at instant ‘t’ 
A - Cost of placing an order 

 - The unit cost of a deteriorating item 

 - Shortage cost for backlogged items per unit per cycle 

t1 - Duration of physical stock entering the storage, shortages occurring just after t1 

T - Length of cycle time or scheduled period 

 - Ordering cost 

 - Backorder cost 

 - Holding cost 

 - Degradation cost 

Q - (Q1+Q2) the order size per cycle 

(T,t1) - The total cost of the inventory system 

4 Mathematical Formulation 

Inventory 

 

           Q1 

 

 

 

 

 

                                                                            T       Time 

                                                                      Q2     Back orders   

                                       t                                        Lost Sales     

 

Figure 1. The inventory system 

 

In the beginning, the inventory was solely attributable to customer consumption. 

However, the stock is reduced not only to meet customer demand but also because of 

degradation, and as a result, the inventory amount reaches zero at time t1. This situation can be 

modeled as a differential equation.    

 
1

1 1 1

( )
( ) ( ) ( ),  0 t < t

d t
t t t

dt

      
           (1) 

with the boundary condition 1(t1) = 0 at t = t1. 
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During the interval [t1, T], a stock-out situation arises. Inventory during [t1, T] can be 

represented by the differential equation. 

 
2

2 1

( )
( ),  t < t T

d t
t

dt

   
             (2) 

Solution of (1) and (2) are  

2 3 2 3

1 1

1 1
( )

2 3 2 3

t t t t
t t t

     
   

        
     

             

3 4 5 2 2 2 3 2 3 4 5

1 1 1 1 1 1

6 8 10 2 4 6 3 8 15

t t t t t t t t t t t t        
      

              
        

              

1

3 25 6 7 4 2 5 2 5 6 7

2 1 1 1 1 1
7 9

40 48 56 12 16 20 120 24 280

t tt t t t t t t t t t       
                                

(3)     

 2 2

2 1 1
( ) ( )

2
t t t t t

                                                                                                       (4)     

with Q1 = 1(0) and Q2 = 2(T), Q = Q1+Q2 

   
2 3 3 4 5 5 6 7

21 1 1 1 1 1 1 1

1 1 1
=

2 3 6 8 10 40 48 56 2

t t t t t t t t
Q t T t T t

           
                        

        

(5) 

4.1 Various cost functions of this model 

(i) Retailers handle various responsibilities like creating purchase orders, shipping, inspecting, 

processing, storing, and reporting products, considering the total acquisition cost. The cost of 

ordering is . 

With the values of 1(t) and 2(t), deterioration cost, holding cost and shortage costs are found. 

(ii) Number of deteriorating items during [0, t1] is 

 
1 3 4 5 5 6 7

2 21 1 1 1 1 1

1

0

 =
6 8 10 40 48 56

t
t t t t t t

Q t t dt
         
   

          
   

                                 (6) 

(iii) The loss resulting from deterioration, damage, and obsolescence is called the "cost of 

deterioration". It decreases with time between [0, t1], with the initial stock still at the conclusion. 

The cost of deteriorating items is  

 
1 3 4 5 5 6 7

2 1 1 1 1 1 1
1

0

 =
6 8 10 40 48 56

t
t t t t t t

Q t t dt
          

                      
       


              

(7) 

(iv) Retailers have an adequate supply of products on hand to satisfy customer demand, and 

technology saves costs by providing access to store inventory at various times. The cost of holding 

items is 

 
1 2 3 4 4 5 6 6 7 8

21 1 1 1 1 1 1 1 1
1

0

( )
2 3 4 12 15 18 144 168 192

t
t t t t t t t t t

t t dt
             

      
                 

      
  
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t t t t t t      
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         
                                         

(8)                                             
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(v) Shortage costs result from unfulfilled demand and are mathematically represented as . 

      
1

2

1

2 1
( ) 3 2

6

T

t

T t
t dt T t


   


     

          

          (9) 

Thus, the retailer’s total cost per cycle is (T, t1) = ( +  + +)/T 

2 3 4 4 5 6 6 7 8

21 1 1 1 1 1 1 1 1

1

1
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2 3 4 12 15 18 144 168 192

t t t t t t t t t
T t A

T
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       

                   
23 4 5 5 6 7

11 1 1 1 1 1

1
3 2

6 8 10 40 48 56 6

T tt t t t t t
T t

         
                    

      
(10) 

which is a non-linear function. Hence, the non-linear optimization problem can be formulated as 

      Minimize X

T
  . Subject to 0  t1  T                                (11) 

where
2 3 4 4 5 6 6 7 8

21 1 1 1 1 1 1 1 1

2 3 4 12 15 18 144 168 192

t t t t t t t t t
X A

          
                       

                              
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1
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4.2 Computational steps to obtain the optimal Solution 

Step 1: Define the parameters to , , , A, , ,,  and . 

Step 2: Determine the holding, deterioration, and backorder cost. The entire    

   cost of the cycle can be obtained by substituting all cost values in equation (10). 

Step 3: Compute the first-order partial derivatives, 1

1

( , )T t

t




 and 1
( , )T t

T




 for equation  

 (10). 

Step 4: Set 1

1

( , )
0

T t

t





and 1

( , )
0

T t

T





, to obtain the extremum of . 

Step 5: Ensure the optimality conditions  
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Step 6: The Hessian matrix of second derivatives  
2 2

1 1

2

1

1 2 2

1 1

2

1 1

( , ) ( , )

( , )
( , ) ( , )

X T t X T t

T t T
H T t

X T t X T t

T t t

 
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
 
  

 

Determining the convexity of the function X(T, t1) establishes the concavity of the 

nonlinear function (10). The optimal values for the retailer’s total cost and economic 

order quantity are also computed. 
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4.3 Hypothetical outcome 

This section establishes the hypothetical outcome of a function of the form 
 
 

( )
f x

x
g x

  .  

Theorem 1  

The overall minimum value of the total cost function (T, t1) occurs at the point       (t1*, T*) if the 

total cost function (T, t1) is a strictly pseudo-convex function in t1 and T. 

Proof: 

From the retailer’s total cost function (10), for convenience, let us take the following auxiliary 

functions: 
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and g(T, t1) =T >0.  

The task requires proving that f(T, t1) is a non-negative, differentiable, and strictly joint convex 

function. The second-order partial derivatives of f(T, t1) about t1 and T  is determined are  
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The first principal minor |H11| is a more significant zero. Also, the second principal minor 
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is more effective than zero. 

The Hessian matrix for f(T, t1) is positive-definite, making it a non-negative, 

differentiable, and convex function. The total cost function per unit time, (T, t1), is a pseudo-

convex function with only one minimum value due to the positive, differentiable concave 

function g(T, t1). As a result, at the point (T*, t1*), the objective function (T, t1) achieves its 
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minimum. 

In the presented inventory model, the total cost function exhibits high nonlinearity, 

making it challenging to directly find the optimum values of decision variables. Therefore, the 

computational algorithm outlined in the study is employed to obtain the optimal solution by 

substituting numerical values for all parameters in the total cost function, excluding decision 

variables. This approach allows for practical results that reflect real-world business environments. 

By following the computational algorithm, the optimal solution can be derived 

iteratively, considering the numerical values of demand, ordering cost, backlog parameter, and 

others. This iterative process enables retailers to determine the most cost-effective inventory 

management strategies based on the specific characteristics of their business operations. 

Ultimately, by utilizing numerical values in the total cost function and following the 

computational algorithm, retailers can obtain practical and actionable insights into optimizing 

inventory decisions, enhancing overall efficiency, and maximizing profitability in dynamic 

business environments. 

5 Numerical illustration and Sensitivity Analysis 

To illustrate and validate the proposed model to represent reality, appropriate numerical 

data is considered, and the optimal values are found. A sensitivity analysis of all input parameters 

are carried out.  

5.1 Numerical Example 

Consider the values  = 2000 units per year,  = 200 units per year,  = 20 units per year, 

A = $200 per order,  = $2 per year,  = $0.05 per year,  = $20 per unit,          = $5 per year and  

= 0.01. The optimal values obtained for the above data for the total cost function (10), is 

determined as (Total cost) = $1084.50, t1 = 0.2585,             T = 0.3637 and Q = 741units per cycle in 

appropriate units.  

5.2 Sensitivity Analysis 

Table 1. Sensitivity analysis for all input parameters 

Parameter Changes  in 

parameter 

Value 

t1 T Q  ($) 

 

1600 0.2864 0.4032 661.6407 974.34 

1800 0.2714 0.3819 702.1892 1030.53 

2000 0.2585 0.3637 740.8846 1084.51 

2200 0.2473 0.3478 777.4129 1135.69 

2400 0.2374 0.3339 812.5609 1184.72 

 

100 0.2611 0.3637 741.5671 1079.01 

150 0.2598 0.3655 741.2244 1081.77 

200 0.2585 0.3637 740.8846 1084.51 

250 0.2573 0.3620 740.4661 1087.21 

300 0.2561 0.3603 740.1553 1089.89 
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 

16 0.2586 0.3638 740.9254 1084.48 

18 0.2586 0.3637 740.8901 1084.49 

20 0.2585 0.3637 740.8846 1084.51 

22 0.2585 0.3637 740.8405 1084.52 

24 0.2585 0.3637 740.7954 1084.53 

A 

160 0.2320 0.3262 663.2425 968.57 

180 0.2457 0.3456 703.2108 1028.11 

200 0.2585 0.3637 740.8846 1084.51 

220 0.2707 0.3809 776.5187 1138.22 

240 0.2823 0.3974 810.8642 1189.61 

 

1.8 0.2756 0.3768 768.0866 1045.31 

1.9 0.2668 0.3701 753.9879 1065.37 

2.0 0.2585 0.3637 740.8846 1084.51 

2.1 0.2509 0.3579 728.7705 1102.80 

2.2 0.2437 0.3525 717.5234 1120.30 

 

0.03 0.2588 0. 3639 741.2698 1084.18 

0.04 0.2587 0.3638 741.1113 1084.35 

0.05 0.2585 0.3637 740.8846 1084.51 

0.06 0.2584 0.3636 740.6633 1084.67 

0.07 0.2583 0.3635 740.4509 1084.83 

 

10 0.2598 0.3648 742.9931 1082.88 

15 0.2591 0.3643 741.9717 1083.70 

20 0.2585 0.3637 740.8846 1084.51 

25 0.2579 0.3632 739.7166 1085.31 

30 0.2574 0.3627 738.7454 1086.11 

 

3 0.2370 0.3875 810.8827 993.23 

4 02498 0.3767 767.7577 1047.39 

5 0.2585 0.3637 740.8846 1084.51 

6 0.2649 0.3548 722.3449 1111.59 

7 0.2698 0.3482 708.8014 1132.23 

 

0.005 0.2598 0.3648 742.9633 1082.86 

0.010 0.2585 0.3637 740.8846 1084.51 

0.015 0.2573 0.3627 738.7503 1084.13 

0.020 0.2561 0.3616 736.5673 1087.74 

0.025 0.2550 0.3607 734.5800 1089.33 
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5.3 Graphical Representation of the Total cost with various parameters 
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inventory system () are revealed to be decreasing. It is represented in figures (5a) and (5b). 

Therefore, the inventory manager is advised to use various successful strategies, such as 

bringing technical development or finance, to decrease the ordering cost. 

 If the holding cost () for a unit product increases per unit of time, then the inventory is 

depleted due to the deterioration and demand of the item (t1), cycle length (T), and order 

quantity during the cycle (Q) decrease. The inventory total cost () increases, as shown in 

figures (6a) and (6b). This strategy assists the manager in significantly lowering the total 

carrying cost. 

  If the cost per unit of holding reduces due to time variation, then the inventory exhausted 

time (t1), length of the cycle (T), and replenishment order quantity (Q) grow, and the total 

inventory cost () decreases in figures (7a) and (7b). The inventory manager can use space-

reducing strategies to reduce the holding or flexible holding costs. 

  If the unit cost of purchase declines, then the value of stock in time (t1), cycle length (T), and 

order quantity (Q) are susceptible, while the total cost of inventory () is less sensitive, which 

is given in figures (8a) and (8b). The purchase cost is low so the manager can maximize the 

storage capacity of products in the warehouse. 

 If the stock out cost () increases, then the cycle time of the inventory (T) and order quantity 

(Q) decrease, the time when goods run out (t1), and the inventory cost () increases in figures 

(9a) and (9b). This calls for the manager to opt for buffer stock. 

 When the parameters , , and  are raised,  then the stock in time (t1), cycle length (T), and 

order quantity (Q) decrease, and the total cost of the inventory increases, as represented in 

the figures (2a), (2b), (3a), (3b), (10a) and (10b), respectively. 

 When the parameter  increases, then the inventory exhausted time (t1), length of the cycle 

(T), and replenishment order quantity (Q) moderately diminish, and the total inventory cost 

() is slightly sensitive, as shown in figures (4a) and (4b). 

The inventory model presented in this study offers valuable understanding for retailers 

aiming to optimize inventory management strategies, especially for products with fluctuating 

demand dynamics. The sensitivity analysis highlighted the significance of demand parameter ‘’, 
ordering cost, and backlog parameter in influencing retailer expenses. By optimizing these 

parameters, retailers can effectively manage their inventory costs and improve overall 

profitability. 

A key feature of this model is its consideration of two-phased demand, which accurately 

reflects real-world scenarios where demand patterns fluctuate over time. This aspect proves 

particularly useful for managing seasonal product sales, where demand may vary significantly 

throughout the year. By incorporating two-phased demand, the model provides a more accurate 

representation of demand dynamics, enabling retailers to adjust their inventory strategies 

accordingly. 

This model's demand parameter ‘’ is stable; it allows retailers to prioritize their focus on 

other key parameters to optimize inventory management and minimize costs effectively, 

especially during shortage periods. 
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5.5 Managerial Insides of this model 

 The developed mathematical model provides optimal ordering policies considering time-

dependent deterioration, linearly varying holding costs, and split demand patterns. 

Implementing these optimal ordering strategies can lead to significant cost savings for 

businesses. 

 By considering split demand patterns, the model can effectively address seasonal fluctuations 

in demand. Businesses can adjust their inventory levels and order quantities based on the 

varying demand patterns throughout the year, thereby reducing excess inventory during low-

demand periods and minimizing stockouts during peak seasons. 

 The sensitivity analysis in the study highlights the impact of various parameters, such as 

ordering costs, holding costs, and shortage costs, on the total inventory cost. Managers can 

use this information to identify cost drivers and implement strategies to minimize holding 

costs through efficient inventory management practices and to mitigate shortage costs by 

maintaining optimal inventory levels. 

 Incorporating time-dependent deterioration and linear backlog rates into the inventory 

model enables businesses to manage perishable or deteriorating goods better while 

addressing backlog situations effectively. This ensures that inventory is utilized efficiently, 

reducing losses due to product deterioration and minimizing revenue loss from unfulfilled 

customer demand. 

 The sensitivity analysis provides valuable insights into how changes in input parameters 

affect inventory-related decisions and overall costs. Managers can use this analysis to evaluate 

the impact of different scenarios and make informed decisions to optimize inventory 

management practices. 

 The computational algorithm developed in the study offers a systematic approach to obtain 

optimal inventory policies. Businesses can leverage computational tools like MATLAB to 

implement the algorithm and derive optimal solutions for inventory management challenges. 

Overall, the research provides valuable insights and practical recommendations for 

retailers to optimize their inventory management practices, leading to improved profitability and 

competitiveness in the market. 

6 Conclusions 

This research focuses on developing a mathematical model for an inventory system where 

the demand occurs in a phased manner, split into quadratic and linear demand based on 

customer behavior and deterioration. This is a unique and innovative attempt to develop an 

inventory system reflecting modern-day demand patterns. 

The developed model considers seasonal demand fluctuations and aims to minimize 

overall costs and optimize order quantities. The model is exact, and it reflects time-varying 

markets such as those for seasonal goods whose demand pattern exhibits a nonlinear behavior 

initially and steadies later on with a linear trend. The demand fluctuation can be accounted for in 

real life for products like packed drinks, notebooks, air conditioners, etc.  

The effectiveness of the Algorithm devised to derive an analytical solution to the EOQ 

problem is evident from the optimal solutions obtained for an inventory system represented by 

the numerical parameters depicting reality. The numerical solution is supplemented with the 

graphical representation of the optimal solution.  
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Minimizing retailer expenses by understanding cycle time and zero inventory periods is a 

significant outcome. The research also reveals the emphasis on managing stock-out periods, 

consumption rates, and the impact of degradation functions in effective inventory planning. 

Overall, this research enables the application of the model to real-world scenarios, and 

the use of sensitivity analysis contributes to the practicality and robustness of the proposed 

strategy.  

Further vistas of research in this direction include incorporating uncertainty by 

introducing fuzzy-related demand functions, trade credit and quantity discounts.  
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