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1. Introduction 

Due to the development of numerous modulation schemes for communication reasons, the wireless 

communication landscape is getting more complex [1]. The automatic modulation classification approach 

is essential for wireless communication signal analysis and signal processing [2]. This approach has uses in 

the business and military sectors alike. Rapid modulation type identification is essential in software-

defined radio (SDR), where numerous communication streams are used [4, 5]. In these situations, it is 

clear that sophisticated automatic modulation categorization systems are necessary. Additionally, it is 

crucial to determine the source of received wireless signals [6, 7]. 

The two main subcategories of AMC are likelihood-based and feature-based techniques [8]. By contrasting 

the characteristic function of modulation with a predetermined pool of known modulations, the likelihood-

based method [6] establishes the modulation type. It is helpful in situations involving several channels [9] 

where the modulation classification approach is used. However, when dealing with unknown elements like 

signal frequency, channel characteristics, and coding rates [10]. The received signal is put through a 

procedure in the feature-based method where its unique features are retrieved. After being extracted, these 

features are sent to a pattern recognition algorithm to detect the signal's modulation [11, 12]. Many 

conventional pattern recognition algorithms frequently manually retrieve asynchronous delay sampling 

features, higher-order statistics, time-frequency statistics, and other signal attributes [13].  

Modulation classification has evolved significantly due to recent developments in artificial intelligence, 

including a striking rise in the processing power of individual computer processors [15, 16]. To achieve this 

classification, deep learning techniques have emerged as a crucial tool enabling information integration 

and recognition [17]. Multi-layer structures, which characterize deep architectures, allow for extracting 
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additional signal features without requiring laborious manual data feature selection [18]. Currently, 

models like Residual Networks (ResNet-50), VGG-16, Convolutional Neural Networks (CNN), and 

Customized CNN have successfully been used to classify modulations. 

This document's structure is described as follows: The related work is covered in Section 2, the planned 

work is presented in Section 3, the experimental findings and analysis are shown in Section 4, and the 

conclusion is provided in Section 5. 

2. Related Work 

Numerous automated CAD models that use different machine-learning techniques have proven to perform 

well in various applications [18–21]. For instance, Beura et al. [19] developed a CAD model that 

successfully classified data using a back-propagation neural network (BPNN) classifier and discrete 

wavelet transform (DWT) in combination with GLCM features. A different CAD approach was proposed 

in [22], which combines a KNN classifier with DWT and GLCM features. A model by Liu et al. [23] uses 

a support vector machine (SVM) classifier and principal component analysis (PCA) to condense DWT 

features. The development of a discrete curvelet transform (DCT) model in [25] produced admirable 

recognition rates by extracting pertinent features for a KNN classifier using Linear Discriminant Analysis 

(LDA). To achieve better classification with fewer features, Muduli et al. [20] proposed Lifting Wavelet 

Transform (LWT) features paired with PCA and LDA, along with an extreme learning machine (ELM) 

classifier tuned utilizing the moth flame optimization approach.In addition, Khan et al. [26] developed an 

improved CAD model based on a bank of Gabor filters, extracting relevant features using a support vector 

machine (SVM) as a fitness function in particle swarm optimization (PSO), and then improving accuracy 

by using an SVM classifier. 

In medical image processing, features derived from convolutional neural networks (CNNs) based on deep 

learning have recently gained a key role. Many CNN models have proven their skill at feature extraction, 

including VGGNet [30], AlexNet [31], ResNet [32], GoogLeNet [33], and Inception [34]. Wang et al. [35] 

used a two-stage learning technique to create an automated CNN model for detecting Retinopathy of 

Prematurity (ROP), which produced better results. A hybrid CNN model with two phases that includes 

preprocessing and supervised learning was introduced by John et al. [38]. Through a sequence of nonlinear 

transformations, this model learns to represent visual content hierarchically from the raw pixel data of an 

image as its input. 

Another CNN-based CAD model was also developed by [39], and it made use of several predefined CNN 

architectures, including ResNet50 [32], InceptionV3 [34], and VGG16 [30]. These models produced better 

results when tested on the INbreast dataset [41] after being trained on the DDSM dataset [40]. A CNN 

model built on the YOLO detector, as given by [42], assessed various learning classifiers on a common 

dataset, including FFCNN, ResNet-50, and InceptionResnet-V2. More recently, [43] proposed a multi-

scale CNN model that included global and local information to create feature maps while utilizing 

DensNet and MobileNet for feature extraction.[44] provided another CNN model that combined features 

from multiple established CNN models and was tested on the DDSM dataset. This CNN model was 

centred on in-depth feature extraction. A CNN model built using textural information from local binary 

patterns (LBP) was also introduced by [45]. A modified deep CNN model using InceptionV3 [34] and 

ResNet50 [32] was created by Rahman et al. [46]. A deep feature-based CNN model was proposed by 

Dhungel et al. [47] in which features were extracted using CNN and then classified using a random forest 

(RF) classifier. Chougrad et al. [48] investigated the best methods for fine-tuning several deep CNN 

models while highlighting the importance of transfer learning. 

CNN has a wide range of applications, mainly because of its inherent feature extraction and 

dimensionality reduction advantages. Inspiring by this, we present a CNN-based strategy. 
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3. Proposed Work 

The authors of this study provide a robust, tailored CNN model for automatically classifying modulations. 

They offer a preprocessing step where the signal is converted into the picture domain using newly 

proposed polar features rather than directly processing the received data using deep learning algorithms. 

This change can improve prediction accuracy significantly and strengthen the model's robustness. 

3.1. Customized CNN Deep Learning Model 

This is a deep learning-focused variation of a convolutional neural network (CNN or ConvNet) that can 

learn directly from data without requiring manual feature extraction. CNNs are excellent at identifying 

patterns in images, allowing them to identify objects, faces, and sceneries with remarkably high accuracy. 

The proposed work is experimented with and RADIOML 2018.01Adataset, where each {modulation 

class, SNR} pair has 4096 training examples [50]. This means that for each combination of modulation 

class and SNR level, we have 4096 I/Q time-series samples. Since each sample represents an I/Q time-

series, we have decided how long these time-series are. The length of these time-series has been considered 

as  input size. The dataset contains I/Q time-series, which typically means two channels: one for the in-

phase component and one for the quadrature component. We have mentioned that there are 24 

modulation classes. The input shape for the proposed model is128×4096×2 (batch size is 128, 4096 

number of samples, channel size is 2).  The 'customized CNN' deep learning model employs several layers 

to accomplish its objectives. It consists of one fully connected layer and four convolutional layers. The first 

layer, designated as "CON_1," uses 64 filters, each 7x7 in size. Then, a max-pooling layer, ReLU 

activation, and batch normalization are used. To shrink the size of the feature map, the pooling layer uses 

a 2x2 filter and a stride of 2. In a similar vein, the second convolutional layer, "CON_2," is made up of 64 

filters that are each 3x3 in size. The following layers, 'CON_3,' 'CON_4,' and 'CON_7,' use 32, 16, and 8 

filters, respectively, and are all 3x3 in size. They all have the same structure as the first convolutional layer. 

The model uses the softmax layer to determine if the news is real or fraudulent once the deep-learned 

characteristics are combined into a single vector within the fully connected layer.The block diagram of the 

custom CNN model is depicted in Figure 1, and the model's setup is detailed in Table 1. 

 

                                        Fig 1 Block Diagram of Proposed method 
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Table 1 displays the suggested configuration of the specially built CNN structure. 𝐿𝑎 𝑆𝑧 𝐹𝑠 𝑁𝑓 Stride 𝐼𝑁 128×4096×2    

Con_1 𝐶𝐿 + 𝐵𝑁 + 𝑅𝐸𝐿𝑈 7 × 7 6 1 × 1 𝑀𝑃𝐿 _1  2 × 2 4 2 × 2 

Con_2 𝐶𝐿 + 𝐵𝑁 + 𝑅𝐸𝐿𝑈 3 × 3 6 1 × 1 𝑀𝑃𝐿 _2  2 × 2 4 2 × 2 

Con_3 𝐶𝐿 + 𝐵𝑁 + 𝑅𝐸𝐿𝑈 3 × 3 3 1 × 1 𝑀𝑃𝐿 _3  2 × 2 2 2 × 2 

Con_4 𝐶𝐿 + 𝐵𝑁 + 𝑅𝐸𝐿𝑈 3 × 3 1 1 × 1 𝑀𝑃𝐿 _4  2 × 2 6 2 × 2 

Con_5 𝐶𝐿 + 𝐵𝑁 + 𝑅𝐸𝐿𝑈 3 × 3 8 1 × 1 

Fully 

Connected 

 Op Size = 24    

OP Classification layer Soft Max   

 𝐿𝑎 = 𝐿𝑎𝑦𝑒𝑟, 𝑆𝑧 = 𝑆𝑖𝑧𝑒 , 𝐼𝑁 = 𝐼𝑛𝑝𝑢𝑡, 𝐹𝑠 = 𝐹𝑖𝑙𝑡𝑒𝑟 𝑆𝑖𝑧𝑒 , 𝑁𝑓 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑖𝑙𝑡𝑒𝑟 𝐶𝐿 = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ,  𝐵𝑁 = 𝐵𝑎𝑡𝑐ℎ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ,  𝑅𝐸𝐿𝑈 = 𝑅𝑒𝑙𝑢 , 𝑀𝑃𝐿 _ = max − 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟𝑠 

,  OP= output 

3.1.1. Convolution Neural network 

Convolution neural network (CNN) have revolutionized computer vision tasks, achieving state-of-the-art 

results in image classification, object detection, segmentation, and more. Ongoing research focuses on 

improving efficiency, interpretability, and adaptability to various domains and data types, making CNNs a 

pivotal area of study in deep learning. Researchers continue to explore novel architectures and techniques 

to further advance the field [49]. 

3.1.2. Convolution Layer 

In CNN structures, convolutional layers are assembled to construct deep networks, enabling the automatic 

acquisition of hierarchical features from unprocessed data. As you delve deeper into the network, these 

acquired features become progressively more sophisticated and abstract, facilitating the effective execution 

of tasks such as image classification, object detection, and segmentation by CNNs[49]. 

3.1.3 Pooling Layer 

After convolution, pooling layers down sample feature maps to reduce computational complexity and 

make the network translation-invariant. Max-pooling and average-pooling are common techniques. 

Pooling layers making the network more robust to variations in the input[49].  

3.1.4 Activation Function 

Activation functions are crucial to give the model non-linear features and enable it to capture intricate 

interactions between input and output data. The choice of activation function depends on the specific task 

and network architecture. ReLU is a common default choice due to its simplicity and effectiveness in 

training deep networks, but it's important to experiment with different activation functions to find the one 

that works best for your problem. Activation functions play a critical role in enabling CNNs to learn 

complex representations and make them capable of handling a wide range of tasks.This encourages output 

sparsity while simultaneously introducing non-linearity. 
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Activation functions are crucial to give the model non-linear features and enable it to capture intricate 

interactions between input and output data. We have used the Rectified Linear Unit (ReLU) activation 

function in this instance. ReLU is the preferred option for activation in CNNs because it substitutes zeros 

for all negative output values. This encourages output sparsity while simultaneously introducing non-

linearity [49]. 

 

3.1.5 Stride 

Stride is an important hyperparameter to consider when designing a CNN architecture, as it influences the 

network's receptive field, computational efficiency, and the ability to capture different scales of features. 

The choice of stride should align with the specific requirements of the task at hand and the architectural 

design goals [49]. 

 

3.1.6 Fully Connected Layer 

Fully connected layers are typically found at the end of a CNN architecture, after several convolutional 

and pooling layers. They play a crucial role in mapping the learned features to the final output, making 

them suitable for tasks like image classification, where the network needs to make a decision based on the 

extracted features. However, for some tasks and architectures, fully connected layers may be replaced or 

supplemented with other types of layers, such as Global Average Pooling or attention mechanisms [49]. 

 

3.1.7 Soft Max Layer 

The softmax layer is a critical component in CNNs for tasks involving multiple classes. It transforms the 

network's output into a meaningful probability distribution, allowing the model to make informed 

decisions about which class the input belongs to. During training, the network learns to adjust its 

parameters to produce the correct class probabilities that match the true labels in the training data [49]. 

3.2. Data Sets 

In this initial phase, the authors evaluate the modulation recognition challenge employing a distinct 

dataset, and RADIOML 2018.01A, encompassing 24 modulation scheme classes [50]. The aim is to 

conduct a comparative analysis between the proposed research and existing methodologies utilizing these 

datasets. The datasets were generated through the utilization of GNU Radio, encompassing both analogue 

and digital modulation techniques.In the dataset, there are 24 different modulation classes observed across 

26 signal-to-noise ratio (SNR) levels. These SNR levels span from -20dB to +30dB, increasing in steps of 

2dB. Each combination of modulation class and SNR level is represented by 4096 training examples. 

Consequently, the entire dataset contains a grand total of 2.56 million labeled I/Q time-series 

examples.The 24 modulation categories encompass a wide variety of modulation styles, and you can find 

specific information about them in Table 2. 
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Table 2 . Dataset description of the proposed model 

Deepsig.io RADIOML 2018.01A 

Class Signal SNR 

 

24 Modulations 

 Number of Modulation 24 

 Samples as floating In phase and Quadrature 

phase (1024,2) frame shape 

 Total number of signal 2,555,904  

 

 

      26 SNR/Modulation 

 

4. Result and Discussion 

From the experimental evaluation, we have observed that the proposed customized CNN model provides 

better classification results than existing models.It has also been observed that compared to traditional 

models. The hyperparameters for different classifiers have been described in Table 3. The classification 

result of the proposed model-based accuracy and loss concerning a number of epochs is shown in Figure 2 

– 3.During the experiment, the proposed customized CNN Model simulation ondetails performance with 

other pre-trained models, such as VGG 16. Resnet 50, Inception V3 by using different classifiers such as 

Extreme Learning Machine (ELM), Support Vector Machine (SVM), and K-Nearest Based Neighbours 

(K-NN). From the experiment outcomes, it is evident that the Customized CNN model delivers superior 

accuracy at 95.16 % compared to other pre-existing models shown in Table 4. 

Table  3. Hyperparameters of proposed Customized CNN model 

Hyperparameters Values 

Learning Rate 0.001 

Batch Size 128 

Number of Epochs 100 

Optimizer SGD 

Loss Function CatagoricalCross-entropy 

Dropout Rate 0.2 

Activation Function ReLU 
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Fig 2  Accuracy Model of Customized CNN 

 

Fig 3. Loss Model of Customized CNN 
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Table 2 Performance Analysis of proposed model with existing models. 

                           Classification Method              Accuracy 

MCNet +stochastic gradient descent optimizer [30] 58.8 

CLDNN +LSTM [31] 46.4 

ResNet +SVM [32] 59.4 

 

 

VGG16  

KNN  

Existing method 

74.22 

SVM 79.42 

BPNN 88.26 

MFOP-ELM 91.70 

 

 

Resnet 50 

KNN  

 

Existing method 

76.52 

SVM 78.42 

BPNN 89.56 

             MFOP-ELM 93.65 

 

 

Inception V3 

KNN  

 

Existing method 

86.54 

SVM 88.36 

BPNN 92.38 

              MFOP-ELM 94.19 

Customized CNN CNN Proposed 

method 

95.16 

 

4. Conclusion 

This paper presents a novel hybrid model designed to facilitate efficient and accurate modulation 

classification in wireless communication. Leveraging established deep learning architectures like the 

Customized CNN, we meticulously fine-tune model parameters, including input weights and biases, to 

achieve optimal performance. Our experimental results, conducted on widely recognized benchmark 

dataset, demonstrate promising outcomes, with the proposed model achieving an impressive accuracy rate 

of 95.16%. Moving forward, our research agenda aims to explore innovative deep learning techniques to 

further enhance the model's capabilities, while also delving into alternative optimization methods for 

continued refinement. 
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