

Scope
Volume 13 Number 3 September 2023

352 www.scope-journal.com

Comparative Analysis of Deep Learning Techniques on LOT devices

Moushumi Barman
1
 & Bobby Sharma

2†

1*

Department of CSE, Assam Don Bosco University, Azara, Guwahati, 781017, Assam, India
2
Department of CSE, Assam Don Bosco University, Azara, Guwahati, 781017, Assam, India

*Corresponding author: Moushumi Barman

DOI: 10.54882/13202313202317348

1 Introduction

“Internet” coined by Bob Kahn and Vint Cerf in ARPANET laboratories describes a

broad array of protocols and applications that are constructed on highly developed

and associated computing devices that are able to collaborate on resources and

transmitting information, obliging worldwide spectators all the time. Further, the

spectators grep their focus towards fusion of individual and devices to encounter the

physical world meets artificially created virtual spaces constructing the “Internet of

Things (IoT) nirvana”. In “Internet of Things (IoT)”, “Things” refers to every object

Abstract

With the rapid proliferation of Internet of Things (IoT) devices, the threat

landscape has expanded, posing significant challenges for secu-rity and

privacy. Malware attacks targeting IoT devices have become a pressing

concern, as they can compromise sensitive data, disrupt ser-vices, and even

lead to physical harm. This research paper presents a comparative analysis

of deep learning techniques for detecting mal-ware on IoT devices. The

study focuses on addressing the unique challenges associated with limited

resources, diverse communication protocols, and dynamic environments of

IoT devices. A benchmark dataset comprising real-world IoT network

traffic, encompassing benign and malicious activities, is utilized. Various

deep learning models, including Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), Autoencoders (AE), Multilayer

Perceptron (MLP), and Radial Basis Function Neural Networks (RBFNs),

are implemented and trained on the dataset. Performance evaluation based

on accu-racy, along with computational complexity and resource

consumption, highlights the most effective techniques. The CNN model

identifies malware patterns accurately by exploiting spatial dependencies,

while RNNs capture temporal dependencies effectively. Autoencoders

detect anomalies by reconstructing normal behavior. MLPs and RBFNs pro-

vide additional insights into the dataset and potential attack vectors.

Keywords: Deep Learning, Internet of Things, CNN, Autoencoder, RNN

Scope
Volume 13 Number 3 September 2023

353 www.scope-journal.com

that can establish connection to the Internet from anywhere and at any time, such

objects are denoted as smart object [1]. As we know, everything in this world has

good as well as bad characteristics. Due to the increase in the use of internet, the

chances of attacks in IoT devices also have increased. “Symantec” disclosed the

first IoT malware in November 2013, demonstrating the significance of having

solutions to mitigate this security threat [1].

Malware is a generic phrase for all kinds of venomous software whose objec-

tive is to hack a computer system to violate the security guidelines in terms of

availabilty, confidentiality or integrity [2]. The best-known forms of malware,

viruses and worms, are characterised more by how they spread than by any

particular features. The analysis of IoT malware and the discovery of software

vulnerabilities are important components of modern security research [3].

Our Contribution:

• Designing and implementing a benchmark IoT-23 datasets, where 20 num-bers of

files are considered as a combination of malicious and non malicious record

specifically tailored for IoT devices, encompassing real-world network traffic

with both benign and malicious activities. This dataset takes into account the

diversity of IoT device types, communication protocols, and malware families,

ensuring a comprehensive evaluation.

• Conducting a comparative analysis of various deep learning techniques, including

CNN, RNN, autoencoder, MLP, RBN. This analysis allows for a comprehensive

evaluation of the effectiveness of each technique in detecting malware on IoT

devices.

• Evaluating the performance of the deep learning models based on key metrics

such as accuracy. This assessment provides a quantitative measure of the models’
effectiveness in detecting malware.

• Providing insights into the strengths and weaknesses of different deep learn-ing

techniques, identifying the most promising approaches for malware detection on

IoT devices. These findings contribute to the development of more robust and

efficient malware detection systems for IoT devices, enhancing their security and

mitigating the risks associated with malware attacks.

The rest of the paper is organised as follows: Section2describes the back-ground

and related work to resist malware attacks using machine learning and deep

learning. Section3describes malware attacks IoT devices includes different deep

learning techniques to resist malware attacks on IoT devices. Section4describes

methodology. Section5presents the experimental results and analysis with

Scope
Volume 13 Number 3 September 2023

354 www.scope-journal.com

comparison of previous work and finally a conclusion has been formulated in

Section6.

2 Literature review of the malware detectionapproaches

Researchers used various types of techniques to resist the increasing number of

malware attacks. In paper [4], author proposed a multi-modal deep-learning

techniques to detect android malware using various features. Authors use many

static features to express the characteristics of different apps. Authors retrieved

features from seven distinct types of files and utilized them in their work. Fur-

thermore, authors recommend an efficient feature vector generation technique,

which is suitable for detecting malware that resembles legitimate apps.

In paper [5], based on similarities in their behavior, authors proposed a novel

intelligent malware analysis framework has been created for the dynamic and static

analysis of malware samples. According to the author, the J48 Deci-sion tree

performs the best in terms of accuracy and precision. The authors used 220 samples

of files for analysis. This could be biased because not all features may have been

taken into account with these samples.

In paper [6], authors used recurrent neural network deep learning tech-niques to

construct a GRU architecture to identify malware in the Android operating system.

The comparison between conventional machine learning methods and deep learning

methodologies is presented to help author select the model that is most effective in

detecting Android malware. The classifiers proposed by the authors were trained on

a dataset taken from the CICAnd-Mal2017 dataset; it should be noted that the

dataset was examined through a static study of actual, real-world examples of

malicious and non-malicious Android applications. The authors addressed both API

calls and permissions, as the use of both suggested that it was worth relying more on

Android malware model identification.

In paper [7], authors proposed DLGraph, based on graph embedding and deep

learning, is a novel method for malware detection. The proposed deep learning

architecture (SDAs) consists of two stacked denoising autoencoders. The function

call graphs of programmes can be learned from a single SDA as

a latent representation. The other SDA can hold a latent representation of the

Windows API calls of programmes. The authors used the node2vec method to

embed a function call graph in a feature space.

In paper [8], the author proposed a deep learning techniques to characterize

malware and merge information from static and dynamic analysis of Android apps.

The author has implemented DroidDetector, an online malware detection tool for

Android that uses Deep Learning to determine whether an app is malicious or not.

Scope
Volume 13 Number 3 September 2023

355 www.scope-journal.com

In paper [9], the author mentioned about the behavior of security threats to the

cyber-physical system is profiled using IP reputation systems. The poor performance

of current reputation systems is due to their high administrative costs, false positive

rate, and long usage times. Earlier open systems used a very small number of data

sources to estimate the reputation of IP addresses. The authors proposed a novel

hybrid strategy based on dynamic malware analysis, cyber threat intelligence,

machine learning (ML), and data forensics to solve the above problem. IP reputation

is anticipated by author using Big Data forensics in the pre-acceptance phase, and

the associated zero-day attacks are characterised by behavioural analysis using the

Decision Tree technique.

In paper [10], using static analysis and recent developments in image-based deep

learning classification, the author has proposed a novel method for detect-ing Java

bytecode malware. Jadeite, implemented by the author, extracts the Interprocedural

Control Flow Graph (ICFG) from a given Java bytecode file, cleans it up, and then

converts it into an adjacency matrix. Based on this matrix, Jadeite finally creates a

grayscale image. To determine maliciousness, the author uses an object recognition

technique in a Deep Convolutional Neu-ral Network (CNN) classifier. In addition,

Jadeite pulls another set of features from the Java malware programme to improve

malware classification. The retrieved images and these features are combined, and

the CNN classifier uses them as inputs.

Dutta et al. introduced an ensemble technique using a meta-classifier (i.e.,

logistic regression) based on the principle of batch generalisation together with deep

models such as Deep Neural Network (DNN) and Long Short-Term Mem-ory

(LSTM). A Deep Sparse AutoEncoder (DSAE) is used for the feature engineering

challenge in the first step of data preprocessing. In the second stage, a stacking

ensemble learning strategy is used for classification. The effec-tiveness of the

method described in this study is evaluated on a number of datasets, including

Internet of Things (IoT) data (IoT-23, LITNET-2020, and NetML-2020) [11].

Abdalgawad et al. showed that generative deep learning techniques such as

Adversarial Autoencoders (AAE) and Bidirectional Generative Adversarial

Networks (BiGAN) can be used to detect intrusions by analysing network data.The

results of this research show that the models based on GAN are superior in

classifying and detecting attacks. In addition, an attempt was made to randomise the

test set to introduce new data, and the model was able to detect it as an

anomaly[12].

Banaamah and Ahmad [13] presented a study on the application of deep

learning techniques to detect intrusions into IoT devices. The author used a

common dataset called Bot-IoT for IoT intrusion detection. For IoT intrusion

Scope
Volume 13 Number 3 September 2023

356 www.scope-journal.com

detection, the author also used a set of deep learning techniques including

Convolutional Neural Network, Gated Recurrent Unit, and Long Short Mem-ory

Neural Network. The author evaluated the proposed model and compared it with

current methods. The results of the experiments showed the potential usefulness of

the proposed approach for intrusion detection.

To detect malware in IoT devices, Riaz et al. [14] proposed a Deep Learning-

based ensemble classification method called CNN-CNN. A three-step process is

used: first, data is preprocessed by scaling, normalization, and noise reduction;

second, features are selected; third, hot coding is used; and finally, an ensemble

classifier based on CNN and LSTM outputs is used to detect malware. The proposed

method has not been validated in a real-time environment, and other limitations of

this research include considering only static malware detection, using numerous

instances of a single dataset, and excluding CPU and RAM.

3 Malware attacks on IoT Devices

IoT devices are more vulnerable to various threats due to their low power con-

sumption and limited processing power . Occasionally, malware can be installed by

hackers on edge devices, causing these devices to send faulty or altered information

to the cloud server via enterprise information systems. In IIoT net-works, this type

of malware attack usually results in financial and reputational damage [15]. IoT

malware has several characteristics, including using DDoS attacks, scanning open

ports for IoT services such as FTP, SSH, or Telnet, and performing a brute force

attack to gain access to IoT devices. According to author, most of today’s malware

was created by copying the source code according to instructions found on the

Internet or by using a different version of the same malicious code by the creator of

the malware. Smart meters, med-ical devices, public safety sensors, and many other

connected devices make up the IoT. Many IoT malware families, including Aidra,

Bashlite, and Mirai, can use scanners to find unprotected ports and default

credentials on these devices [16]. By starting a short scan phase where TCP SYN

sends probes to random IPv4 addresses on Telnet TCP ports 2323 and 23, infected

IoT devices can be identified. When an IoT device responds to the probe, the attack

moves to the brute force login phase. In this step, an attacker attempts to establish a

Telnet connection by using a username and password combination from a pre-built

credentials table. The victim’s IP address and the credentials used are forwarded to a

collection server if Telnet access is allowed. The tool monitors a command-and-

control server that indicates the intended victim of an attack [17]. Another malware

that is notorious for causing problems in IoT devices is called Hajime. Hajime

works similarly to Mirai by spreading through unpro-tected open Telnet ports and

using the same username and password tables. Unlike Mirai, however, Hajime is

connected via a peer-to-peer network. The message will eventually propagate to all

Scope
Volume 13 Number 3 September 2023

357 www.scope-journal.com

other peers after the controller has submitted policies to its peer network. This

makes it harder to take it out with a strong design.

The creation of a security architecture for IoT-based enterprise information

systems is therefore always the focus of research. Most conventional methods for

detecting malware in enterprise information systems use feature extraction

approaches, where relevant features are extracted from the code and analysed to find

the infection [15]. However, due to the limited power supply and pro-cessing

capacity of IoT devices, these feature identification approaches do not work

effectively on IoT devices in enterprise information systems. In addi-tion,

adversarial attacks, in which attackers alter training patterns so that the malware

detection system cannot train properly, render traditional malware detection systems

useless. In the IoT environment of enterprise information systems, static, dynamic,

and hybrid methods are used for malware detec-tion. Static analysis includes n-

grams, OpCode, and signature-based detection, while dynamic detection involves

running an application in a virtual environ-ment. For malware detection in IoT

environment, researchers have presented various machine learning approaches such

as RNN, LSTM, etc. Currently, cryptographically linked transitions are recorded and

verified using blockchain technology as the ledger system [17]. Blockchain can

bring new potential to the Internet of Things in many ways. Its high efficiency, data

security, credi-bility, and low cost have helped it gain wide appeal in the technology

sector. Any kind of virus can be detected using blockchain, and it can also be used to

protect one’s infrastructure from potential threats.The secret to protecting these huge

application areas is machine learning. A learning machine offers the best chance for

detection, as traditional malware detection software is unable to meaningfully keep

up with malware growth.

3.1 Deep Learning Techniques

Deep learning is a type of machine learning that uses many layers to progres-sively

extract higher-order features from raw input. These neural networks strive to mimic

how the human brain works, but are far from capable of “learning” from massive

amounts of data. Additional hidden layers can help optimise and refine accuracy,

even though a neural network with only one layer can still make approximate

predictions.

3.1.1 Convolutional Neural Networks

CNNs, often referred to as ConvNets, consist of multiple layers and are mostly

used for object recognition and image processing. When it was still known as

LeNet, Yann LeCun created the first CNN in 1988. It was used to decode

characters such as ZIP codes and numbers.A convolutional layer, a pooling layer,

Scope
Volume 13 Number 3 September 2023

358 www.scope-journal.com

and a fully connected layer (FC) are the three layers that make up a deep learning

CNN. The first layer is the convolutional layer, while the last layer is the FC layer.

Let’s assume we have a CSV dataset with N samples and D features. Each sample

can be represented as a row in the dataset, and each feature can be represented as a

column. Input Layer: The input data from the CSV dataset can be represented as X

of shape N × D.

Reshape Layer: Since we are dealing with a non-image dataset, we need to

reshape the input data into a 3D array to simulate imagelike structures. We can

reshape X to obtain X_reshaped of shape N × W × H, where W represents the

width and H represents the height of the imagelike structure.

Convolutional layer: The convolutional layer, the central component of a CNN, is

where most of the computation takes place. The first convolutional layer may be

followed by another convolutional layer. A kernel or filter within this layer moves

over the receptive fields of the image during the convolution process to determine

if a feature is present.In the convolutional layer, we apply filters to the input data

to extract features. The output feature maps after convolution can be represented

as:

 𝑋_𝑐𝑜𝑛𝑣 = 𝑓_𝑐𝑜𝑛𝑣(𝑋_𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑑, 𝑊_𝑐𝑜𝑛𝑣) + 𝑏_𝑐𝑜𝑛𝑣,

where f_conv represents the convolution operation, W_conv represents the

convolutional filters (weights), and b_conv represents the biases.

Activation Function: An activation function is applied element-wise to the output

of the convolutional layer to introduce non-linearity.The output after applying the

activation function can be represented as:

 𝑋_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑓_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑋_𝑐𝑜𝑛𝑣),

where f_activation is the chosen activation function.

Pooling layer: The pooling layer sweeps over the input image with a kernel or

filter, similar to the convolutional layer. Unlike the convolution layer, the pooling

layer has fewer input parameters, but some information is also lost. On the

positive side, this layer simplifies the CNN and increases its effectiveness.

Pooling layers down sample the feature maps, reducing their spatial dimensions

while preserving important information. The output after pooling can be

represented as:

 𝑋_𝑝𝑜𝑜𝑙 = 𝑓_𝑝𝑜𝑜𝑙(𝑋_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛),

Scope
Volume 13 Number 3 September 2023

359 www.scope-journal.com

where f_pool represents the pooling operation.

Flatten Layer: The pooled feature maps are flattened into a 1D vector to prepare

them for fully connected layers.The flattened output can be represented as:

 𝑋_𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑋_𝑝𝑜𝑜𝑙),

where flatten is the operation that converts a 2D array to a 1D vector.

Fully Connected layer: Based on the features extracted in the previous layers,

image categorization in the CNN takes place in the FC layer. Fully connected in

this context means that each activation unit or node of the subsequent layer is

connected to each input or node of the previous layer.The flattened feature vector

is passed through fully connected layers.The output after the fully connected

layers can be represented as:

 𝑋_𝑓𝑐 = 𝑓_𝑓𝑐(𝑋_𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑, 𝑊_𝑓𝑐) + 𝑏_𝑓𝑐,

where f_fc represents the fully connected operation, W_fc represents the fully

connected weights, and b_fc represents the biases.

Output Layer: The output layer typically applies a suitable activation function

depending on the task. The final output of the CNN can be represented as: 𝑦 = 𝑓_𝑜𝑢𝑡𝑝𝑢𝑡(𝑋_𝑓𝑐),

where f_output is the activation function applied to the output of the fully

connected layer.

3.1.2 Recurrent Neural Networks

An artificial neural network that uses sequential data or time series data is called a

recurrent neural network (RNN). These deep-learning algorithms are incorporated

into popular programs such as Siri, Voice Search, and Google Translate, and are

commonly used for ordinal or temporal queries in language translation, natural

language processing (NLP), speech recognition, and image captioning. Recurrent

neural networks (RNNs) use training data to learn, just like feedforward and

convolutional neural networks (CNNs). They are characterized by their

"memory," which allows them to influence current input and output by using data

from previous inputs. The outputs of recurrent neural networks depend on the

previous parts of the sequence, unlike typical deep neural networks that assume

that inputs and outputs are independent. Unidirectional recurrent neural networks

Scope
Volume 13 Number 3 September 2023

360 www.scope-journal.com

are not able to consider future events in their predictions, although they would be

useful for deciding the output of a particular sequence.

Suppose a dataset with N samples and D features. Each sample can be represented

as a row in the dataset, and each feature can be represented as a column.

Input Layer:The input data from the CSV dataset can be represented as X of shape

N × D.

Recurrent Layer:In the recurrent layer, we process the sequential data by

considering the temporal dependencies between the samples. The output of the

recurrent layer at each time step can be represented as: 𝐻_𝑡 = 𝑓_𝑟𝑛𝑛(𝑋_𝑡 , 𝐻_𝑡1, 𝑊_𝑟𝑛𝑛) + 𝑏_𝑟𝑛𝑛

where 𝑓_𝑟𝑛𝑛 represents the recurrent operation, 𝑋_𝑡 represents the input at time

step t, 𝐻_𝑡 represents the hidden state from the previous time step, 𝑊_𝑟𝑛𝑛

represents the recurrent weights, and 𝑏_𝑟𝑛𝑛 represents the biases.

Output Layer:The output layer transforms the hidden state of the recurrent layer

into the desired output. It can be represented as: 𝑦_𝑡 = 𝑓_𝑜𝑢𝑡𝑝𝑢𝑡(𝐻_𝑡, 𝑊_𝑜𝑢𝑡𝑝𝑢𝑡) + 𝑏_𝑜𝑢𝑡𝑝𝑢𝑡,
where 𝑓_𝑜𝑢𝑡𝑝𝑢𝑡 represents the output operation, 𝐻_𝑡 represents the hidden state

at time step t, 𝑊_𝑜𝑢𝑡𝑝𝑢𝑡 represents the output weights, and 𝑏_𝑜𝑢𝑡𝑝𝑢𝑡 represents

the biases.

Time Unrolling:To process the entire sequence, we perform the recurrent layer

and output layer operations for each time step.

For t = 1 to T (where T is the sequence length):

 𝐻_𝑡 = 𝑓_𝑟𝑛𝑛(𝑋_𝑡, 𝐻_𝑡1, 𝑊_𝑟𝑛𝑛,
 𝑦_𝑡 = 𝑓_𝑜𝑢𝑡𝑝𝑢𝑡(𝐻_𝑡, 𝑊_𝑜𝑢𝑡𝑝𝑢𝑡) + 𝑏_𝑜𝑢𝑡𝑝𝑢𝑡

Final Output:The final output of the RNN can be represented as the sequence of

output values: 𝑦 = [𝑦_1, 𝑦_2, . . . , 𝑦_𝑇].

Scope
Volume 13 Number 3 September 2023

361 www.scope-journal.com

3.1.3 Autoencoder

The output layer of a neural network with autoencoder has the same

dimensionality as the input layer. In other words, there are exactly as many output

units in the output layer as input units in the input layer. An autoencoder, also

called a replicator neural network, duplicates data from input to output in an

unsupervised manner.

An autoencoder consists of three parts:

Encoder:A fully interconnected feedforward neural network, called an encoder,

encodes an input image into a compressed representation in a smaller dimension

after compressing the input into a latent spatial representation. The original image

has been distorted in the compressed form. The output of the encoder can be

represented as: 𝑧 = 𝑓_𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥),
where x represents the input data and f_encoder is the encoder function.

Decoder:The decoder is also a feedforward network with a topology similar to

that of the encoder. This network has the task of translating the input from the

code back to its original dimension.The output of the decoder can be represented

as: �̂� = 𝑓_𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑧),

where �̂� represents the reconstructed input data and f_decoder is the decoder

function.

Loss Function: The loss function measures the discrepancy between the original

input data and the reconstructed output data. It quantifies the reconstruction error

and provides a training signal for the autoencoder to learn meaningful

representations.

The loss function can be represented as: 𝐿(𝑥, �̂�),
where L is a suitable loss function, such as mean squared error (MSE), binary

cross-entropy, or Kullback-Leibler divergence.

Scope
Volume 13 Number 3 September 2023

362 www.scope-journal.com

Training: During training, the autoencoder aims to minimize the loss function by

adjusting its parameters (encoder and decoder weights) using techniques like

gradient descent. The training objective can be represented as: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐿(𝑥, �̂�),
where the objective is to minimize the discrepancy between the original input data

and the reconstructed output data.

3.1.4 Multi Layer Perceptron

A neural network with a multi-layer perceptron has a nonlinear mapping between

inputs and outputs A multilayer perceptron consists of an input layer, an output

layer, and one or more hidden layers, each consisting of multiple neurons arranged

one above the other. The neurons in a multilayer perceptron can use any activation

function, unlike the neurons in a perceptron, which must have an activation

function that enforces a threshold, such as ReLU or sigmoid. Similar to the human

brain, a multilayer perceptron consists of interconnected neurons that

communicate with each other. Each neuron is assigned a value. The network

consists of three basic layers:

Let’s consider an MLP with L layers (including the input and output layers) and

denote the number of neurons in each layer as follows:

Input Layer:This is the lowest layer of the network, where an input is made to

produce an output. Input Layer: N_input neurons

Hidden Layer(s): There must be at least one hidden layer in the network. To

produce something useful, the hidden layer(s) perform computations and

operations on the input data.

Hidden Layers: N_1, N_2, ..., N_(L−2) neurons

For the first hidden layer: 𝑎_1 = 𝑓(𝑊_1 ∗ 𝑥 + 𝑏_1),
where a_1 represents the activation values of the neurons in the first hidden layer,

f is the activation function (applied elementwise), W_1 represents the weight

matrix for the connections between the input layer and the first hidden layer, x

represents the input data, and b_1 represents the bias vector for the first hidden

layer.

Scope
Volume 13 Number 3 September 2023

363 www.scope-journal.com

For the subsequent hidden layers (l = 2 to L−2): 𝑎_𝑙 = 𝑓(𝑊_𝑙 ∗ 𝑎_(𝑙 − 1) + 𝑏_𝑙),
where a_l represents the activation values of the neurons in the l-th hidden layer,

W_l represents the weight matrix for the connections between the (l−1)th hidden

layer and the lth hidden layer, and b_l represents the bias vector for the lth hidden

layer.

Output Layer:The neurons of this layer produce information that is meaningful.

Output Layer: N_output neurons

For the output layer: 𝑦 = 𝑓(𝑊_𝑜𝑢𝑡 ∗ 𝑎_(𝐿 − 2) + 𝑏_𝑜𝑢𝑡),
where y represents the output values of the MLP, W_out represents the weight

matrix for the connections between the last hidden layer and the output layer, and

b_out represents the bias vector for the output layer.

• Activation Function: An activation function f is applied element-wise to

the weighted sum of inputs for each neuron in the MLP. Common

activation functions include sigmoid, tanh, ReLU, or softmax (for multi-

class classification).

• Loss Function: The loss function measures the discrepancy between the

MLP’s predicted output and the desired output. The choice of the loss

function depends on the specific problem, such as mean squared error

(MSE) for regression or cross-entropy for classification.

• Backpropagation and Weight Updates: The backpropagation

algorithm calculates the gradients of the loss function with respect to the

weights and biases of the MLP, allowing for weight updates to minimize

the loss through techniques like gradient descent or its variants.

The weight update process can be represented as:

𝑊_𝑛𝑒𝑤 = 𝑊 − 𝜂 ∗ ∂𝐿∂𝑊,
𝑏_𝑛𝑒𝑤 = 𝑏 − 𝜂 ∗ ∂𝐿∂𝑏,

Scope
Volume 13 Number 3 September 2023

364 www.scope-journal.com

where W_new and b_new represent the updated weights and biases, 𝜂 is the

learning rate, and
∂𝐿∂𝑊 and

∂𝐿∂𝑏 represent the gradients of the loss function with

respect to the weights and biases, respectively.

3.1.5 Radial Basis Function Networks

A special type of artificial neural networks used for function approximation

questions are radial basis function (RBF) networks. RBF networks are three-

layered, use a universal approximation, and learn faster than other neural

networks. A neural network with radial basis functions usually consists of three

layers:

Input layer: Each predictor variable has a single neuron in the input layer. Each

neuron in the hidden layer receives the value from the input neurons. Categorical

values are represented by N-1 neurons, where N is the total number of categories.

By removing the median from the equation and dividing by the inter-quartile

range, the range of values is standardized.

The input data can be represented as x, a vector of input features.

Hidden layer: The number of neurons in the buried layer varies. (The ideal

number is determined by the training process). A point-centered radial basis

function is part of each neuron. The number of predictor variables and the number

of dimensions coincide. For each dimension, the radius or span of the RBF

function may change.

For each neuron in the hidden layer i (with M neurons in total), the output can be

represented as: ℎ_𝑖 = 𝜙(∥ 𝑥 − 𝑐_𝑖 ∥),
where h_i represents the output of the i

th
 hidden neuron, ∥ 𝑥 − 𝑐_𝑖 ∥ represents the

Euclidean distance between the input x and the center c_i of the i-th neuron, and 𝜙

is a radial basis function that determines the activation level based on the distance.

Summation layer:A weight assigned to the neuron is multiplied by the value

obtained from the hidden layer before being passed to summation. Here, the

weighted values are summed, and the result is displayed as the output of the

network. Each target category in a classification problem has a single output,

where the value represents the probability that the evaluated case belongs to that

category.

The output y can be represented as a weighted sum of the hidden layer outputs: 𝑦 = ∑(𝑤_𝑖 ∗ ℎ_𝑖) + 𝑏,

Scope
Volume 13 Number 3 September 2023

365 www.scope-journal.com

where w_i represents the weights associated with each hidden neuron, b represents

the bias term, and the summation is performed over all M hidden neurons.

Training: The training of an RBFN typically involves two steps: center selection

and weight adjustment.

Center Selection: The centers of the radial basis functions can be selected using

techniques like k-means clustering or random sampling from the input data.

Weight Adjustment: The weights and bias terms are adjusted using techniques like

least squares or gradient descent to minimize the discrepancy between the

network’s output and the desired output.

4 Proposed Data Preprocessing

In the implementation of this research, an idea can be depicted from figure1, as a

deep learning architectural model used to build a comprehensive IoT security model

that increases accuracy in identifying security concerns. Figure 2displays the data

pre-processing model in details. The preprocessing of thedatasets is depicted in the

first section of the picture. With the help of CNN, RNN, Autoencoder, MLP, and

RBFN, the subsequent classification phase was carried out. After that, our model

was trained, put to the test, and assessed.

4.1 Dataset IoT-23

IoT-23 is a dataset of network traffic from Internet of Things (IoT) devices. In IoT

devices, it captured 20 malware executions and 3 benign IoT device traffic

captures. With images from 2018 to 2019, it was first published in January 2020.

The Stratosphere Lab, AIC Group, FEL, CTU University, Czech Republic, is

where this Internet of Things network traffic was recorded.Conn.log.labeled files

generated by the execution of the network analyzer Zeek, as well as various

characteristics and information about each of the records are included in the

record in its entire form. pcap files, which are the original network capture files,

are also included.There are 325,307,990 observations altogether in the collection,

of which 294,449,255 are malicious.

Let:

N be the total number of records in the dataset (N = 1,444,674 in this case). x be a

record in the dataset, where each record consists of multiple features and is

represented as a vector.

Scope
Volume 13 Number 3 September 2023

366 www.scope-journal.com

4.2 Data Preprocessing

4.2.1 Data Cleaning and Preparation:

 Drop irrelevant columns (e.g., “tunnel parents”).

 Load each record from the IoT-23 dataset into separate data frames, skipping

the first 10 rows and reading the following 100,000 rows.

 Concatenate the 23 data frames into a single new data frame.

 Convert the data frame to a CSV file, resolving compatibility issues.

 Drop the extra “Unnamed” column generated during conversion.

 Convert string data to integers.

 Use statistical correlation to filter out data not belonging to the “label” column.

 Drop variables that have no impact on the results.

4.2.2 Creation of Combined Dataset:

 Create the file “iot_23_combined.csv” containing the merged data set.

 The combined dataset contains a total of 1,444,674 records.

4.2.3 Conversion of String Data and Handling Missing Data:

All string data in the dataset is converted into integers.

Missing data is filled in during the conversion process.

Let

 x_converted = ConvertStringToInt(x_cleaned)

The function ConvertStringToInt converts the string data in

x cleaned to integer format and fills in missing data.

4.2.4 Elimination of Columns:

 Based on Figure3, the columns ‘local_orig’ and ‘local_resp’ are

eliminated from the dataset.

 These columns are removed due to a large amount of missing data, and no

correlations were found between them using correlation matrices.

Let

x_cleaned = x without the ’local_orig’ and ’local_resp’ columns.

4.2.5 Data Normalization:

 The final step is the normalization of the data.

 Normalization involves transforming the data to a common scale.

 Neural networks typically require input data to be normalized to avoid

issues with negative values.

 Normalize the data between 0 and 1 to avoid negative values, making it

suitable for neural networks.

Let x_normalized = Normalize(x_final)

The function Normalize transforms each feature in x final to a

normalized value between 0 and 1.

4.2.6 Feature Selection and Classification:

Scope
Volume 13 Number 3 September 2023

367 www.scope-journal.com

 Select the best features for the model. The selection of appropriate features

is crucial for the model’s performance. 19 features were chosen for the

IoT-23 dataset.

 Utilize various neural network models, including CNN, RNN,

autoencoder, MLP, and RBFN, to predict attacks.

 Python, TensorFlow, and Keras are used to implement these models.

Let

x_selected = SelectFeatures(x_normalized)

The function SelectFeatures chooses the 19 best features from x_normalized

based on some criteria.

Classification:

CNN: CNN(x_selected)

RNN: RNN(x_selected)

Autoencoder: Autoencoder(x_selected)

MLP: MLP(x_selected)

RBFN: RBFN(x_selected)

Each function represents the implementation of the respective neural network model using

the selected features.

4.2.7 Training and Testing:

 Splitting the dataset into training and testing sets: Let: x_train, x_test =

SplitDataset(x_selected).

 The function SplitDataset splits the dataset x_selected into training and testing sets,

with a ratio of 80% for training and 20% for testing.

 Training the models: TrainModel(model, x_train)

 The function TrainModel trains a given model using the training set x_train.

Testing the models: TestModel(model, x_test)

 The function TestModel evaluates the performance of a trained model using the testing

set x_test.

Scope
Volume 13 Number 3 September 2023

368 www.scope-journal.com

Fig. 1 Architectural Model

5 Result and Analysis

The experiment results are shown in Table1. The results of each method are

compared, taking into account the accuracy and the time required to perform each

algorithm. Table2shows the results using the data preprocessing tech-nique used in

paper [18]. The preprocessing model method in this paper shows more accuracy rate

for CNN, MLP and RBFN models 0.995,0.99,0.98 respectively whereas RNN

shows same accuracy rate as mentioned in paper [18] and the accuracy rate in

Autoencoder method is differ by 0.042. The cost of time for CNN method is better

as the accuracy rate is also higher. Figure4shows a data comparison result of

proposed work along with paper [18].

Scope
Volume 13 Number 3 September 2023

369 www.scope-journal.com

Fig. 2 Data preprocessing

Table 1 Experiment Results

Methods Implement Accuracy Time Cost (s)

CNN 0.995 7166.996

RNN 0.916 2134.948

Autoencoder(AE) 0.925 393.933

MLP 0.99 898.545

RBFN 0.98 244.314

Table 2 Experiment Results using data preprocessing method mentioned in paper [18]

Methods

Implement Accuracy

Time Cost

(s)

CNN 0.692 7396.231

RNN 0.916 6849.035

Autoencoder(AE) 0.967 346.557

MLP 0.693 705.264

RBFN 0.693 209.286

Scope
Volume 13 Number 3 September 2023

370 www.scope-journal.com

6 Conclusions

In conclusion, our comparative analysis of different deep learning techniques for

malware detection on IoT devices indicates that CNN (Convolutional Neu-ral

Network), RBFN (Radial Basis Function Network), and MLP (Multi-Layer

Perceptron) demonstrate better results compared to Autoencoder and

RNN(Recurrent Neural Network).CNN excels in capturing spatial dependencies and

extracting relevant features from IoT network traffic data, making it highly effective

in detecting malware patterns. RBFN and MLP also show promising results,

indicating their suitability for malware detection on IoT devices.On the other hand,

Autoencoder and RNN yield comparable results, suggesting that these techniques

may have limitations when applied to the specific challenges posed by IoT device

environments.It is important to consider the unique characteristics of the IoT

devices, such as limited resources, diverse communication protocols, and dynamic

environments, when selecting the appropriate deep learning technique. Additionally,

factors like computational efficiency and accuracy trade-offs should be taken into

account. The findings of this research contribute to the advancement of malware

detection systems for IoT devices, helping to enhance their security and mitigate the

risks associated with malware attacks. Future research can focus on refining and

optimizing the identified techniques, as well as exploring novel approaches that

leverage the strengths of CNN, RBFN, and MLP in IoT malware detection.

Fig. 3 Correlation between all the files

Scope
Volume 13 Number 3 September 2023

371 www.scope-journal.com

Table 3 Results Comparison with Paper[18]

Methods

Implement Accuracy(Own)

Accuracy

(Paper[[18]])

CNN 0.995 0.692

RNN 0.916 0.916

Autoencoder(AE) 0.925 0.967

MLP 0.99 0.693

RBFN 0.98 0.693

Fig. 4 Comparative analysis of proposed work results with paper [18]

References

[1] Buyya, R., Dastjerdi, A.V. (eds.): Internet of Things: Principles and

Paradigms. Elsevier, 50 Hampshire Street, 5th Floor, Cambridge, MA 02139,

USA (2016)

[2] Creutzburg, R. (ed.): Handbook of Malware. Technische Hochschule

Brandenburg, Germany (2016)

[3] Zhang, Z.K., Cho, M.C.Y., Wang, C.W. C.W.and Hsu, Chen, C.K., Shieh, S.:

IoT security: ongoing challenges and research opportunities. In 2014 IEEE 7th

international conference on service-oriented computing and applications 230–
234. November 2014 (2014)

[4] Kim, T., Kang, M. B.and Rho, Sezer, S., Im, E.G.: A multimodal deep

learning method for android malware detection using various features. IEEE

Transactions on Information Forensics and Security 14(3), 773–778 (2018)

[5] Sethi, K., Chaudhary, S.K., Tripathy, B.K., Bera, P.: A novel malware analysis

framework for malware detection and classification using machine learning

Scope
Volume 13 Number 3 September 2023

372 www.scope-journal.com

approach. In Proceedings of the 19th international conference on distributed

computing and networking, 1–4 January 2018 (2018)

[6] Sabhadiya, J. S.and Barad, Gheewala, J.: Android malware detection using

deep learning. In 2019 3rd International Conference on Trends in Electronics

and Informatics (ICOEI), IEEE 1254–1260 April 2019 (2019)

[7] Jiang, T. H.and Turki, Wang, J.T.: DLGraph: Malware detection using deep

learning and graph embedding. In 2018 17th IEEE international conference on

machine learning and applications (ICMLA), 1029–1033 December 2018

(2018)

[8] Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android malware characteriza-tion

and detection using deep learning. Tsinghua Science and Technology 21(1),

114–123 (2016)

[9] Usman, N., Usman, F. S.and Khan, Jan, A. M.A.and Sajid, Alazab, M.,

Watters, P.: Intelligent dynamic malware detection using machine learning in

ip reputation for forensics data analytics. Future Generation Computer

Systems 118, 124–141 (2021)

[10] Obaidat, I., Sridhar, K.M. M.and Pham, Phung, P.H.: Jadeite: A novel image-

behavior-based approach for java malware detection using deep learning.

Computers & Security 113, 102547 (2022)

[11] Dutta, V., Chora´s, M., Pawlicki, M., Kozik, R.: A deep learning ensemble for

network anomaly and cyber-attack detection. Sensors 20(16), 4583 (2020).

[12] Abdalgawad, A. N.andSajun, Kaddoura, Y., Zualkernan, I.A., Aloul, F.:

Generative deep learning to detect cyberattacks for the IoT-23 dataset. IEEE

Access 10, 6430–6441 (2021).

[13] Banaamah, A.M., Ahmad, I.: Intrusion Detection in IoT Using Deep Learning.

Sensors 22, 8417 (2022).

[14] Riaz, S., Latif, S., Usman, S.M., Ullah, S.S., Algarni, A.D., Yasin, A., Anwar,

A., Elmannai, H., Hussain, S.: Malware Detection in Internet of Things (IoT)

Devices Using Deep Learning. Sensors 22, 9305 (2022).

[15] Gaurav, A., Gupta, B.B., Panigrahi, P.K.: A comprehensive survey on

machine learning approaches for malware detection in iot-based enter-prise

information system. Enterprise Information Systems 17(3), 439–463 (2023)

[16] Ngo, Q.D., Nguyen, V.H. H.T.and Le, Nguyen, D.H.: A survey of iot malware

and detection methods based on static features. ICT Express 6(4), 280–286

(2020)

[17] Clincy, V., Shahriar, H.: IoT malware analysis. In 2019 IEEE 43rd annual

computer software and applications conference (COMPSAC) 920–921. July

2019 (2019)

[18] Liang, Y., Vankayalapati, N.: Machine Learning and Deep Learning Methods

for Better Anomaly Detection in IoT-23 Dataset Cybersecu-rity. Preprint.

Available online: https://github. com/yliang725/Anomaly-Detection-IoT23

(2022)

