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1 Introduction 

 

“Internet” coined by Bob Kahn and Vint Cerf in ARPANET laboratories describes a 

broad array of protocols and applications that are constructed on highly developed 

and associated computing devices that are able to collaborate on resources and 

transmitting information, obliging worldwide spectators all the time. Further, the 

spectators grep their focus towards fusion of individual and devices to encounter the 

physical world meets artificially created virtual spaces constructing the “Internet of 

Things (IoT) nirvana”. In “Internet of Things (IoT)”, “Things” refers to every object 

Abstract 

With the rapid proliferation of Internet of Things (IoT) devices, the threat 

landscape has expanded, posing significant challenges for secu-rity and 

privacy. Malware attacks targeting IoT devices have become a pressing 

concern, as they can compromise sensitive data, disrupt ser-vices, and even 

lead to physical harm. This research paper presents a comparative analysis 

of deep learning techniques for detecting mal-ware on IoT devices. The 

study focuses on addressing the unique challenges associated with limited 

resources, diverse communication protocols, and dynamic environments of 

IoT devices. A benchmark dataset comprising real-world IoT network 

traffic, encompassing benign and malicious activities, is utilized. Various 

deep learning models, including Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), Autoencoders (AE), Multilayer 

Perceptron (MLP), and Radial Basis Function Neural Networks (RBFNs), 

are implemented and trained on the dataset. Performance evaluation based 

on accu-racy, along with computational complexity and resource 

consumption, highlights the most effective techniques. The CNN model 

identifies malware patterns accurately by exploiting spatial dependencies, 

while RNNs capture temporal dependencies effectively. Autoencoders 

detect anomalies by reconstructing normal behavior. MLPs and RBFNs pro-

vide additional insights into the dataset and potential attack vectors.  
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that can establish connection to the Internet from anywhere and at any time, such 

objects are denoted as smart object [1]. As we know, everything in this world has 

good as well as bad characteristics. Due to the increase in the use of internet, the 

chances of attacks in IoT devices also have increased. “Symantec” disclosed the 

first IoT malware in November 2013, demonstrating the significance of having 

solutions to mitigate this security threat [1]. 

 

Malware is a generic phrase for all kinds of venomous software whose objec-

tive is to hack a computer system to violate the security guidelines in terms of 

availabilty, confidentiality or integrity [2]. The best-known forms of malware, 

viruses and worms, are characterised more by how they spread than by any 

particular features. The analysis of IoT malware and the discovery of software 

vulnerabilities are important components of modern security research [3]. 

Our Contribution: 

 

• Designing and implementing a benchmark IoT-23 datasets, where 20 num-bers of 

files are considered as a combination of malicious and non malicious record 

specifically tailored for IoT devices, encompassing real-world network traffic 

with both benign and malicious activities. This dataset takes into account the 

diversity of IoT device types, communication protocols, and malware families, 

ensuring a comprehensive evaluation. 

 

• Conducting a comparative analysis of various deep learning techniques, including 

CNN, RNN, autoencoder, MLP, RBN. This analysis allows for a comprehensive 

evaluation of the effectiveness of each technique in detecting malware on IoT 

devices. 

 

• Evaluating the performance of the deep learning models based on key metrics 

such as accuracy. This assessment provides a quantitative measure of the models’ 
effectiveness in detecting malware. 

 

 

• Providing insights into the strengths and weaknesses of different deep learn-ing 

techniques, identifying the most promising approaches for malware detection on 

IoT devices. These findings contribute to the development of more robust and 

efficient malware detection systems for IoT devices, enhancing their security and 

mitigating the risks associated with malware attacks. 

 

The rest of the paper is organised as follows: Section2describes the back-ground 

and related work to resist malware attacks using machine learning and deep 

learning. Section3describes malware attacks IoT devices includes different deep 

learning techniques to resist malware attacks on IoT devices. Section4describes 

methodology. Section5presents the experimental results and analysis with 
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comparison of previous work and finally a conclusion has been formulated in 

Section6. 

 

2 Literature review of the malware detectionapproaches 

 

Researchers used various types of techniques to resist the increasing number of 

malware attacks. In paper [4], author proposed a multi-modal deep-learning 

techniques to detect android malware using various features. Authors use many 

static features to express the characteristics of different apps. Authors retrieved 

features from seven distinct types of files and utilized them in their work. Fur-

thermore, authors recommend an efficient feature vector generation technique, 

which is suitable for detecting malware that resembles legitimate apps. 

 

In paper [5], based on similarities in their behavior, authors proposed a novel 

intelligent malware analysis framework has been created for the dynamic and static 

analysis of malware samples. According to the author, the J48 Deci-sion tree 

performs the best in terms of accuracy and precision. The authors used 220 samples 

of files for analysis. This could be biased because not all features may have been 

taken into account with these samples. 

 

In paper [6], authors used recurrent neural network deep learning tech-niques to 

construct a GRU architecture to identify malware in the Android operating system. 

The comparison between conventional machine learning methods and deep learning 

methodologies is presented to help author select the model that is most effective in 

detecting Android malware. The classifiers proposed by the authors were trained on 

a dataset taken from the CICAnd-Mal2017 dataset; it should be noted that the 

dataset was examined through a static study of actual, real-world examples of 

malicious and non-malicious Android applications. The authors addressed both API 

calls and permissions, as the use of both suggested that it was worth relying more on 

Android malware model identification. 

 

In paper [7], authors proposed DLGraph, based on graph embedding and deep 

learning, is a novel method for malware detection. The proposed deep learning 

architecture (SDAs) consists of two stacked denoising autoencoders. The function 

call graphs of programmes can be learned from a single SDA as 

a latent representation. The other SDA can hold a latent representation of the 

Windows API calls of programmes. The authors used the node2vec method to 

embed a function call graph in a feature space. 

 

In paper [8], the author proposed a deep learning techniques to characterize 

malware and merge information from static and dynamic analysis of Android apps. 

The author has implemented DroidDetector, an online malware detection tool for 

Android that uses Deep Learning to determine whether an app is malicious or not. 
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In paper [9], the author mentioned about the behavior of security threats to the 

cyber-physical system is profiled using IP reputation systems. The poor performance 

of current reputation systems is due to their high administrative costs, false positive 

rate, and long usage times. Earlier open systems used a very small number of data 

sources to estimate the reputation of IP addresses. The authors proposed a novel 

hybrid strategy based on dynamic malware analysis, cyber threat intelligence, 

machine learning (ML), and data forensics to solve the above problem. IP reputation 

is anticipated by author using Big Data forensics in the pre-acceptance phase, and 

the associated zero-day attacks are characterised by behavioural analysis using the 

Decision Tree technique. 

 

In paper [10], using static analysis and recent developments in image-based deep 

learning classification, the author has proposed a novel method for detect-ing Java 

bytecode malware. Jadeite, implemented by the author, extracts the Interprocedural 

Control Flow Graph (ICFG) from a given Java bytecode file, cleans it up, and then 

converts it into an adjacency matrix. Based on this matrix, Jadeite finally creates a 

grayscale image. To determine maliciousness, the author uses an object recognition 

technique in a Deep Convolutional Neu-ral Network (CNN) classifier. In addition, 

Jadeite pulls another set of features from the Java malware programme to improve 

malware classification. The retrieved images and these features are combined, and 

the CNN classifier uses them as inputs. 

 

Dutta et al. introduced an ensemble technique using a meta-classifier (i.e., 

logistic regression) based on the principle of batch generalisation together with deep 

models such as Deep Neural Network (DNN) and Long Short-Term Mem-ory 

(LSTM). A Deep Sparse AutoEncoder (DSAE) is used for the feature engineering 

challenge in the first step of data preprocessing. In the second stage, a stacking 

ensemble learning strategy is used for classification. The effec-tiveness of the 

method described in this study is evaluated on a number of datasets, including 

Internet of Things (IoT) data (IoT-23, LITNET-2020, and NetML-2020) [11]. 

 

Abdalgawad et al. showed that generative deep learning techniques such as 

Adversarial Autoencoders (AAE) and Bidirectional Generative Adversarial 

Networks (BiGAN) can be used to detect intrusions by analysing network data.The 

results of this research show that the models based on GAN are superior in 

classifying and detecting attacks. In addition, an attempt was made to randomise the 

test set to introduce new data, and the model was able to detect it as an 

anomaly[12]. 

 

Banaamah and Ahmad [13] presented a study on the application of deep 

learning techniques to detect intrusions into IoT devices. The author used a 

common dataset called Bot-IoT for IoT intrusion detection. For IoT intrusion 
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detection, the author also used a set of deep learning techniques including 

Convolutional Neural Network, Gated Recurrent Unit, and Long Short Mem-ory 

Neural Network. The author evaluated the proposed model and compared it with 

current methods. The results of the experiments showed the potential usefulness of 

the proposed approach for intrusion detection. 

 

To detect malware in IoT devices, Riaz et al. [14] proposed a Deep Learning-

based ensemble classification method called CNN-CNN. A three-step process is 

used: first, data is preprocessed by scaling, normalization, and noise reduction; 

second, features are selected; third, hot coding is used; and finally, an ensemble 

classifier based on CNN and LSTM outputs is used to detect malware. The proposed 

method has not been validated in a real-time environment, and other limitations of 

this research include considering only static malware detection, using numerous 

instances of a single dataset, and excluding CPU and RAM. 

 

3 Malware attacks on IoT Devices 

 

IoT devices are more vulnerable to various threats due to their low power con-

sumption and limited processing power . Occasionally, malware can be installed by 

hackers on edge devices, causing these devices to send faulty or altered information 

to the cloud server via enterprise information systems. In IIoT net-works, this type 

of malware attack usually results in financial and reputational damage [15]. IoT 

malware has several characteristics, including using DDoS attacks, scanning open 

ports for IoT services such as FTP, SSH, or Telnet, and performing a brute force 

attack to gain access to IoT devices. According to author, most of today’s malware 

was created by copying the source code according to instructions found on the 

Internet or by using a different version of the same malicious code by the creator of 

the malware. Smart meters, med-ical devices, public safety sensors, and many other 

connected devices make up the IoT. Many IoT malware families, including Aidra, 

Bashlite, and Mirai, can use scanners to find unprotected ports and default 

credentials on these devices [16]. By starting a short scan phase where TCP SYN 

sends probes to random IPv4 addresses on Telnet TCP ports 2323 and 23, infected 

IoT devices can be identified. When an IoT device responds to the probe, the attack 

moves to the brute force login phase. In this step, an attacker attempts to establish a 

Telnet connection by using a username and password combination from a pre-built 

credentials table. The victim’s IP address and the credentials used are forwarded to a 

collection server if Telnet access is allowed. The tool monitors a command-and-

control server that indicates the intended victim of an attack [17]. Another malware 

that is notorious for causing problems in IoT devices is called Hajime. Hajime 

works similarly to Mirai by spreading through unpro-tected open Telnet ports and 

using the same username and password tables. Unlike Mirai, however, Hajime is 

connected via a peer-to-peer network. The message will eventually propagate to all 
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other peers after the controller has submitted policies to its peer network. This 

makes it harder to take it out with a strong design. 

 

The creation of a security architecture for IoT-based enterprise information 

systems is therefore always the focus of research. Most conventional methods for 

detecting malware in enterprise information systems use feature extraction 

approaches, where relevant features are extracted from the code and analysed to find 

the infection [15]. However, due to the limited power supply and pro-cessing 

capacity of IoT devices, these feature identification approaches do not work 

effectively on IoT devices in enterprise information systems. In addi-tion, 

adversarial attacks, in which attackers alter training patterns so that the malware 

detection system cannot train properly, render traditional malware detection systems 

useless. In the IoT environment of enterprise information systems, static, dynamic, 

and hybrid methods are used for malware detec-tion. Static analysis includes n-

grams, OpCode, and signature-based detection, while dynamic detection involves 

running an application in a virtual environ-ment. For malware detection in IoT 

environment, researchers have presented various machine learning approaches such 

as RNN, LSTM, etc. Currently, cryptographically linked transitions are recorded and 

verified using blockchain technology as the ledger system [17]. Blockchain can 

bring new potential to the Internet of Things in many ways. Its high efficiency, data 

security, credi-bility, and low cost have helped it gain wide appeal in the technology 

sector. Any kind of virus can be detected using blockchain, and it can also be used to 

protect one’s infrastructure from potential threats.The secret to protecting these huge 

application areas is machine learning. A learning machine offers the best chance for 

detection, as traditional malware detection software is unable to meaningfully keep 

up with malware growth. 

 

3.1 Deep Learning Techniques 

 

Deep learning is a type of machine learning that uses many layers to progres-sively 

extract higher-order features from raw input. These neural networks strive to mimic 

how the human brain works, but are far from capable of “learning” from massive 

amounts of data. Additional hidden layers can help optimise and refine accuracy, 

even though a neural network with only one layer can still make approximate 

predictions. 

 

3.1.1 Convolutional Neural Networks 

 

CNNs, often referred to as ConvNets, consist of multiple layers and are mostly 

used for object recognition and image processing. When it was still known as 

LeNet, Yann LeCun created the first CNN in 1988. It was used to decode 

characters such as ZIP codes and numbers.A convolutional layer, a pooling layer, 
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and a fully connected layer (FC) are the three layers that make up a deep learning 

CNN. The first layer is the convolutional layer, while the last layer is the FC layer. 

 

Let’s assume we have a CSV dataset with N samples and D features. Each sample 

can be represented as a row in the dataset, and each feature can be represented as a 

column. Input Layer: The input data from the CSV dataset can be represented as X 

of shape N × D. 

 

Reshape Layer: Since we are dealing with a non-image dataset, we need to 

reshape the input data into a 3D array to simulate imagelike structures. We can 

reshape X to obtain X_reshaped of shape N × W × H, where W represents the 

width and H represents the height of the imagelike structure. 

Convolutional layer: The convolutional layer, the central component of a CNN, is 

where most of the computation takes place. The first convolutional layer may be 

followed by another convolutional layer. A kernel or filter within this layer moves 

over the receptive fields of the image during the convolution process to determine 

if a feature is present.In the convolutional layer, we apply filters to the input data 

to extract features. The output feature maps after convolution can be represented 

as: 

 𝑋_𝑐𝑜𝑛𝑣 = 𝑓_𝑐𝑜𝑛𝑣(𝑋_𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑑, 𝑊_𝑐𝑜𝑛𝑣) + 𝑏_𝑐𝑜𝑛𝑣, 
 

where f_conv represents the convolution operation, W_conv represents the 

convolutional filters (weights), and b_conv represents the biases. 

 

Activation Function: An activation function is applied element-wise to the output 

of the convolutional layer to introduce non-linearity.The output after applying the 

activation function can be represented as: 

 𝑋_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑓_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑋_𝑐𝑜𝑛𝑣), 
 

where f_activation is the chosen activation function. 

 

Pooling layer: The pooling layer sweeps over the input image with a kernel or 

filter, similar to the convolutional layer. Unlike the convolution layer, the pooling 

layer has fewer input parameters, but some information is also lost. On the 

positive side, this layer simplifies the CNN and increases its effectiveness. 

Pooling layers down sample the feature maps, reducing their spatial dimensions 

while preserving important information. The output after pooling can be 

represented as: 

 

 𝑋_𝑝𝑜𝑜𝑙 = 𝑓_𝑝𝑜𝑜𝑙(𝑋_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛), 
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where f_pool represents the pooling operation. 

 

Flatten Layer: The pooled feature maps are flattened into a 1D vector to prepare 

them for fully connected layers.The flattened output can be represented as: 

 𝑋_𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑋_𝑝𝑜𝑜𝑙), 
 

where flatten is the operation that converts a 2D array to a 1D vector. 

Fully Connected layer: Based on the features extracted in the previous layers, 

image categorization in the CNN takes place in the FC layer. Fully connected in 

this context means that each activation unit or node of the subsequent layer is 

connected to each input or node of the previous layer.The flattened feature vector 

is passed through fully connected layers.The output after the fully connected 

layers can be represented as: 

 𝑋_𝑓𝑐 = 𝑓_𝑓𝑐(𝑋_𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑, 𝑊_𝑓𝑐) + 𝑏_𝑓𝑐, 
 

where f_fc represents the fully connected operation, W_fc represents the fully 

connected weights, and b_fc represents the biases. 

 

Output Layer: The output layer typically applies a suitable activation function 

depending on the task. The final output of the CNN can be represented as: 𝑦 = 𝑓_𝑜𝑢𝑡𝑝𝑢𝑡(𝑋_𝑓𝑐), 
 

where f_output is the activation function applied to the output of the fully 

connected layer. 

 

 

3.1.2 Recurrent Neural Networks 

 

An artificial neural network that uses sequential data or time series data is called a 

recurrent neural network (RNN). These deep-learning algorithms are incorporated 

into popular programs such as Siri, Voice Search, and Google Translate, and are 

commonly used for ordinal or temporal queries in language translation, natural 

language processing (NLP), speech recognition, and image captioning. Recurrent 

neural networks (RNNs) use training data to learn, just like feedforward and 

convolutional neural networks (CNNs). They are characterized by their 

"memory," which allows them to influence current input and output by using data 

from previous inputs. The outputs of recurrent neural networks depend on the 

previous parts of the sequence, unlike typical deep neural networks that assume 

that inputs and outputs are independent. Unidirectional recurrent neural networks 
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are not able to consider future events in their predictions, although they would be 

useful for deciding the output of a particular sequence. 

Suppose a dataset with N samples and D features. Each sample can be represented 

as a row in the dataset, and each feature can be represented as a column.  

Input Layer:The input data from the CSV dataset can be represented as X of shape 

N × D.  

Recurrent Layer:In the recurrent layer, we process the sequential data by 

considering the temporal dependencies between the samples. The output of the 

recurrent layer at each time step can be represented as: 𝐻_𝑡 =  𝑓_𝑟𝑛𝑛(𝑋_𝑡 , 𝐻_𝑡1, 𝑊_𝑟𝑛𝑛)  + 𝑏_𝑟𝑛𝑛 

 

 

where 𝑓_𝑟𝑛𝑛 represents the recurrent operation, 𝑋_𝑡 represents the input at time 

step t,  𝐻_𝑡 represents the hidden state from the previous time step, 𝑊_𝑟𝑛𝑛 

represents the recurrent weights, and 𝑏_𝑟𝑛𝑛  represents the biases. 

 

Output Layer:The output layer transforms the hidden state of the recurrent layer 

into the desired output. It can be represented as: 𝑦_𝑡 = 𝑓_𝑜𝑢𝑡𝑝𝑢𝑡(𝐻_𝑡, 𝑊_𝑜𝑢𝑡𝑝𝑢𝑡) + 𝑏_𝑜𝑢𝑡𝑝𝑢𝑡, 
where 𝑓_𝑜𝑢𝑡𝑝𝑢𝑡 represents the output operation, 𝐻_𝑡 represents the hidden state 

at time step t, 𝑊_𝑜𝑢𝑡𝑝𝑢𝑡 represents the output weights, and 𝑏_𝑜𝑢𝑡𝑝𝑢𝑡 represents 

the biases. 

Time Unrolling:To process the entire sequence, we perform the recurrent layer 

and output layer operations for each time step. 

For t = 1 to T (where T is the sequence length): 

 𝐻_𝑡 = 𝑓_𝑟𝑛𝑛(𝑋_𝑡, 𝐻_𝑡1, 𝑊_𝑟𝑛𝑛,  
 𝑦_𝑡 = 𝑓_𝑜𝑢𝑡𝑝𝑢𝑡(𝐻_𝑡, 𝑊_𝑜𝑢𝑡𝑝𝑢𝑡) +  𝑏_𝑜𝑢𝑡𝑝𝑢𝑡 

 

Final Output:The final output of the RNN can be represented as the sequence of 

output values: 𝑦 = [𝑦_1, 𝑦_2, . . . , 𝑦_𝑇]. 
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3.1.3 Autoencoder 

 

The output layer of a neural network with autoencoder has the same 

dimensionality as the input layer. In other words, there are exactly as many output 

units in the output layer as input units in the input layer. An autoencoder, also 

called a replicator neural network, duplicates data from input to output in an 

unsupervised manner. 

An autoencoder consists of three parts: 

Encoder:A fully interconnected feedforward neural network, called an encoder, 

encodes an input image into a compressed representation in a smaller dimension 

after compressing the input into a latent spatial representation. The original image 

has been distorted in the compressed form. The output of the encoder can be 

represented as: 𝑧 = 𝑓_𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥), 
where x represents the input data and f_encoder is the encoder function. 

Decoder:The decoder is also a feedforward network with a topology similar to 

that of the encoder. This network has the task of translating the input from the 

code back to its original dimension.The output of the decoder can be represented 

as: 𝑥̂ = 𝑓_𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑧), 
 

where 𝑥̂  represents the reconstructed input data and f_decoder is the decoder 

function. 

 

 

Loss Function: The loss function measures the discrepancy between the original 

input data and the reconstructed output data. It quantifies the reconstruction error 

and provides a training signal for the autoencoder to learn meaningful 

representations. 

The loss function can be represented as: 𝐿(𝑥, 𝑥̂), 
where L is a suitable loss function, such as mean squared error (MSE), binary 

cross-entropy, or Kullback-Leibler divergence. 
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Training: During training, the autoencoder aims to minimize the loss function by 

adjusting its parameters (encoder and decoder weights) using techniques like 

gradient descent. The training objective can be represented as: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐿(𝑥, 𝑥̂), 
where the objective is to minimize the discrepancy between the original input data 

and the reconstructed output data. 

 

3.1.4 Multi Layer Perceptron 

 

A neural network with a multi-layer perceptron has a nonlinear mapping between 

inputs and outputs A multilayer perceptron consists of an input layer, an output 

layer, and one or more hidden layers, each consisting of multiple neurons arranged 

one above the other. The neurons in a multilayer perceptron can use any activation 

function, unlike the neurons in a perceptron, which must have an activation 

function that enforces a threshold, such as ReLU or sigmoid. Similar to the human 

brain, a multilayer perceptron consists of interconnected neurons that 

communicate with each other. Each neuron is assigned a value. The network 

consists of three basic layers: 

Let’s consider an MLP with L layers (including the input and output layers) and 

denote the number of neurons in each layer as follows: 

 

Input Layer:This is the lowest layer of the network, where an input is made to 

produce an output. Input Layer: N_input neurons 

Hidden Layer(s): There must be at least one hidden layer in the network. To 

produce something useful, the hidden layer(s) perform computations and 

operations on the input data. 

Hidden Layers: N_1, N_2, ..., N_(L−2) neurons 

For the first hidden layer: 𝑎_1 = 𝑓(𝑊_1 ∗ 𝑥 + 𝑏_1), 
where a_1 represents the activation values of the neurons in the first hidden layer, 

f is the activation function (applied elementwise), W_1 represents the weight 

matrix for the connections between the input layer and the first hidden layer, x 

represents the input data, and b_1 represents the bias vector for the first hidden 

layer. 
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For the subsequent hidden layers (l = 2 to L−2): 𝑎_𝑙 = 𝑓(𝑊_𝑙 ∗ 𝑎_(𝑙 − 1) + 𝑏_𝑙), 
where a_l represents the activation values of the neurons in the l-th hidden layer, 

W_l represents the weight matrix for the connections between the (l−1)th hidden 

layer and the lth hidden layer, and b_l represents the bias vector for the lth hidden 

layer. 

Output Layer:The neurons of this layer produce information that is meaningful. 

Output Layer: N_output neurons 

For the output layer: 𝑦 = 𝑓(𝑊_𝑜𝑢𝑡 ∗ 𝑎_(𝐿 − 2) + 𝑏_𝑜𝑢𝑡), 
where y represents the output values of the MLP, W_out represents the weight 

matrix for the connections between the last hidden layer and the output layer, and 

b_out represents the bias vector for the output layer. 

• Activation Function: An activation function f is applied element-wise to 

the weighted sum of inputs for each neuron in the MLP. Common 

activation functions include sigmoid, tanh, ReLU, or softmax (for multi-

class classification). 

• Loss Function: The loss function measures the discrepancy between the 

MLP’s predicted output and the desired output. The choice of the loss 

function depends on the specific problem, such as mean squared error 

(MSE) for regression or cross-entropy for classification. 

• Backpropagation and Weight Updates: The backpropagation 

algorithm calculates the gradients of the loss function with respect to the 

weights and biases of the MLP, allowing for weight updates to minimize 

the loss through techniques like gradient descent or its variants. 

 

The weight update process can be represented as: 

𝑊_𝑛𝑒𝑤 = 𝑊 − 𝜂 ∗ ∂𝐿∂𝑊, 
𝑏_𝑛𝑒𝑤 = 𝑏 − 𝜂 ∗ ∂𝐿∂𝑏, 
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where W_new and b_new represent the updated weights and biases, 𝜂  is the 

learning rate, and 
∂𝐿∂𝑊  and 

∂𝐿∂𝑏  represent the gradients of the loss function with 

respect to the weights and biases, respectively. 

3.1.5 Radial Basis Function Networks 

A special type of artificial neural networks used for function approximation 

questions are radial basis function (RBF) networks. RBF networks are three-

layered, use a universal approximation, and learn faster than other neural 

networks. A neural network with radial basis functions usually consists of three 

layers: 

Input layer: Each predictor variable has a single neuron in the input layer. Each 

neuron in the hidden layer receives the value from the input neurons. Categorical 

values are represented by N-1 neurons, where N is the total number of categories. 

By removing the median from the equation and dividing by the inter-quartile 

range, the range of values is standardized. 

The input data can be represented as x, a vector of input features. 

Hidden layer: The number of neurons in the buried layer varies. (The ideal 

number is determined by the training process). A point-centered radial basis 

function is part of each neuron. The number of predictor variables and the number 

of dimensions coincide. For each dimension, the radius or span of the RBF 

function may change. 

For each neuron in the hidden layer i (with M neurons in total), the output can be 

represented as: ℎ_𝑖 = 𝜙(∥ 𝑥 − 𝑐_𝑖 ∥), 
where h_i represents the output of the i

th
 hidden neuron, ∥ 𝑥 − 𝑐_𝑖 ∥ represents the 

Euclidean distance between the input x and the center c_i of the i-th neuron, and 𝜙 

is a radial basis function that determines the activation level based on the distance. 

Summation layer:A weight assigned to the neuron is multiplied by the value 

obtained from the hidden layer before being passed to summation. Here, the 

weighted values are summed, and the result is displayed as the output of the 

network. Each target category in a classification problem has a single output, 

where the value represents the probability that the evaluated case belongs to that 

category. 

The output y can be represented as a weighted sum of the hidden layer outputs: 𝑦 = ∑(𝑤_𝑖 ∗ ℎ_𝑖) + 𝑏, 
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where w_i represents the weights associated with each hidden neuron, b represents 

the bias term, and the summation is performed over all M hidden neurons. 

Training: The training of an RBFN typically involves two steps: center selection 

and weight adjustment. 

Center Selection: The centers of the radial basis functions can be selected using 

techniques like k-means clustering or random sampling from the input data. 

Weight Adjustment: The weights and bias terms are adjusted using techniques like 

least squares or gradient descent to minimize the discrepancy between the 

network’s output and the desired output. 

 

4 Proposed Data Preprocessing 

 

In the implementation of this research, an idea can be depicted from figure1, as a 

deep learning architectural model used to build a comprehensive IoT security model 

that increases accuracy in identifying security concerns. Figure 2displays the data 

pre-processing model in details. The preprocessing of thedatasets is depicted in the 

first section of the picture. With the help of CNN, RNN, Autoencoder, MLP, and 

RBFN, the subsequent classification phase was carried out. After that, our model 

was trained, put to the test, and assessed. 

 

4.1 Dataset IoT-23 

 

IoT-23 is a dataset of network traffic from Internet of Things (IoT) devices. In IoT 

devices, it captured 20 malware executions and 3 benign IoT device traffic 

captures. With images from 2018 to 2019, it was first published in January 2020. 

The Stratosphere Lab, AIC Group, FEL, CTU University, Czech Republic, is 

where this Internet of Things network traffic was recorded.Conn.log.labeled files 

generated by the execution of the network analyzer Zeek, as well as various 

characteristics and information about each of the records are included in the 

record in its entire form. pcap files, which are the original network capture files, 

are also included.There are 325,307,990 observations altogether in the collection, 

of which 294,449,255 are malicious. 

Let: 

N be the total number of records in the dataset (N = 1,444,674 in this case). x be a 

record in the dataset, where each record consists of multiple features and is 

represented as a vector. 
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4.2 Data Preprocessing 

4.2.1 Data Cleaning and Preparation: 

 Drop irrelevant columns (e.g., “tunnel parents”). 

 Load each record from the IoT-23 dataset into separate data frames, skipping 

the first 10 rows and reading the following 100,000 rows. 

 Concatenate the 23 data frames into a single new data frame. 

 Convert the data frame to a CSV file, resolving compatibility issues. 

 Drop the extra “Unnamed” column generated during conversion. 

 Convert string data to integers. 

 Use statistical correlation to filter out data not belonging to the “label” column. 

 Drop variables that have no impact on the results. 

4.2.2 Creation of Combined Dataset: 

 Create the file “iot_23_combined.csv” containing the merged data set. 

 The combined dataset contains a total of 1,444,674 records. 

 

 

4.2.3 Conversion of String Data and Handling Missing Data: 

All string data in the dataset is converted into integers. 

Missing data is filled in during the conversion process. 

Let 

        x_converted = ConvertStringToInt(x_cleaned) 

The function ConvertStringToInt converts the string data in 

x cleaned to integer format and fills in missing data. 

4.2.4 Elimination of Columns: 

 Based on Figure3, the columns ‘local_orig’ and ‘local_resp’ are 

eliminated from the dataset. 

 These columns are removed due to a large amount of missing data, and no 

correlations were found between them using correlation matrices. 

Let 

x_cleaned = x without the ’local_orig’ and ’local_resp’ columns. 

4.2.5 Data Normalization: 

 The final step is the normalization of the data. 

 Normalization involves transforming the data to a common scale. 

 Neural networks typically require input data to be normalized to avoid 

issues with negative values. 

 Normalize the data between 0 and 1 to avoid negative values, making it 

suitable for neural networks. 

Let x_normalized = Normalize(x_final) 

The function Normalize transforms each feature in x final to a 

normalized value between 0 and 1. 

4.2.6 Feature Selection and Classification: 
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 Select the best features for the model. The selection of appropriate features 

is crucial for the model’s performance. 19 features were chosen for the 

IoT-23 dataset. 

 Utilize various neural network models, including CNN, RNN, 

autoencoder, MLP, and RBFN, to predict attacks. 

 Python, TensorFlow, and Keras are used to implement these models. 

Let 

x_selected = SelectFeatures(x_normalized) 

The function SelectFeatures chooses the 19 best features from x_normalized 

based on some criteria. 

Classification: 

CNN: CNN(x_selected) 

RNN: RNN(x_selected) 

Autoencoder: Autoencoder(x_selected) 

MLP: MLP(x_selected) 

RBFN: RBFN(x_selected) 

Each function represents the implementation of the respective neural network model using 

the selected features. 

 

4.2.7 Training and Testing: 

 Splitting the dataset into training and testing sets: Let: x_train, x_test = 

SplitDataset(x_selected). 

 The function SplitDataset splits the dataset x_selected into training and testing sets, 

with a ratio of 80% for training and 20% for testing. 

 Training the models: TrainModel(model, x_train) 

 The function TrainModel trains a given model using the training set x_train. 

 

Testing the models: TestModel(model, x_test) 

  The function TestModel evaluates the performance of a trained model using the testing 

set x_test. 
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Fig. 1 Architectural Model 

 

5 Result and Analysis 

 

The experiment results are shown in Table1. The results of each method are 

compared, taking into account the accuracy and the time required to perform each 

algorithm. Table2shows the results using the data preprocessing tech-nique used in 

paper [18]. The preprocessing model method in this paper shows more accuracy rate 

for CNN, MLP and RBFN models 0.995,0.99,0.98 respectively whereas RNN 

shows same accuracy rate as mentioned in paper [18] and the accuracy rate in 

Autoencoder method is differ by 0.042. The cost of time for CNN method is better 

as the accuracy rate is also higher. Figure4shows a data comparison result of 

proposed work along with paper [18]. 
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Fig. 2 Data preprocessing 

 

Table 1 Experiment Results 

 

Methods Implement Accuracy Time Cost (s) 

   

CNN 0.995 7166.996 

RNN 0.916 2134.948 

Autoencoder(AE) 0.925 393.933 

MLP 0.99 898.545 

RBFN 0.98 244.314 

   

 

 

Table 2 Experiment Results using data preprocessing method mentioned in paper [18] 

 

 

Methods 

Implement Accuracy 

Time Cost 

(s) 

   

CNN 0.692 7396.231 

RNN 0.916 6849.035 

Autoencoder(AE) 0.967 346.557 

MLP 0.693 705.264 

RBFN 0.693 209.286 
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6 Conclusions 

 

In conclusion, our comparative analysis of different deep learning techniques for 

malware detection on IoT devices indicates that CNN (Convolutional Neu-ral 

Network), RBFN (Radial Basis Function Network), and MLP (Multi-Layer 

Perceptron) demonstrate better results compared to Autoencoder and 

RNN(Recurrent Neural Network).CNN excels in capturing spatial dependencies and 

extracting relevant features from IoT network traffic data, making it highly effective 

in detecting malware patterns. RBFN and MLP also show promising results, 

indicating their suitability for malware detection on IoT devices.On the other hand, 

Autoencoder and RNN yield comparable results, suggesting that these techniques 

may have limitations when applied to the specific challenges posed by IoT device 

environments.It is important to consider the unique characteristics of the IoT 

devices, such as limited resources, diverse communication protocols, and dynamic 

environments, when selecting the appropriate deep learning technique. Additionally, 

factors like computational efficiency and accuracy trade-offs should be taken into 

account. The findings of this research contribute to the advancement of malware 

detection systems for IoT devices, helping to enhance their security and mitigate the 

risks associated with malware attacks. Future research can focus on refining and 

optimizing the identified techniques, as well as exploring novel approaches that 

leverage the strengths of CNN, RBFN, and MLP in IoT malware detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Correlation between all the files 
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Table 3 Results Comparison with Paper[18] 

 

 

Methods 

Implement Accuracy(Own) 

Accuracy 

(Paper[[18]]) 

   

CNN 0.995 0.692 

RNN 0.916 0.916 

Autoencoder(AE) 0.925 0.967 

MLP 0.99 0.693 

RBFN 0.98 0.693 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Comparative analysis of proposed work results with paper [18] 
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