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Introduction:  

Fractional calculus (FC) is one of the branch topics in applied mathematics with several ways to 

determine the powers of operators, whether they be differential or integral, using real or complex 

numbers. Fractional differential equation is useful tool in identifying nonlinear oscillations, along the 

continuous traffic flow procedure, in fluid mechanics. Mathematical bio-medical field, chemistry, and 

numerous additional technical and physical procedures are also simulated using FDEs. Because most 

physical systems in nature are nonlinear, nonlinear problems are essential to mathematicians, 

physicists, and engineers. However, solving nonlinear equations can be challenging and can result in 

fascinating events. In the analysis of complex nonlinear systems, the accurate solutions of the dynamic 

processes hold significant importance. Differential equations for linear and nonlinear systems can be 

solved using numerical, analytical, and semi-analytical methods. Numerous authors demonstrated 

different methods, including Laplace Adomian decomposition method, novel transform, Adomian 

decomposition method, Elzaki substitution method, homotopy perturbation Elzaki transform method, 

Homotopy Perturbation Method with Shehu Transform, Homotopy perturbation method,Homotopy 

analysis method, Sumudu decomposition method, Homotopy analysis transform method, Natural 

Method, differential transform method, Coupled Fractional Complex  Homotopy  perturbation 

method (FCT-HP), Fractional Residual Power Series Algorithm, Generalized differential transform 

method, Variational iteration method, Numerical method with NWS equation etc. 

Abstract 

In this study, applied Modified Adomian Decomposition Elzaki Transformation method (MADETM) on 

time fractional nonlinear Newell–Whitehead–Segal (NWS) equation to obtain the series solution. 

Approximate solutions are quickly converging to exact solutions in numerical. The adopted technique is 

compared with other methods like NHPTM, FCT-HP, VIM respectively to validate the results. The 

graphical presentations shown with the compared methods. The error analysis &statistical analysis is 

performed on NWS equation by considering small sample t-test to identify the significance level. The results 

of hypothesis testing indicated that there is no statistically significant variation in the mean scores between 

the two solutions.  suggesting that there is a meaningful distinction in the outcomes associated with the two 

conditions.  

Keywords: Fractionalpartial differential equation, Newell–Whitehead–Segal (NWS) equation, Modified 

Adomian Decomposition Method 
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The Newell-Whitehead-Segel equation, also known as the NWS equation, is a partial differential equation 

that describes the behaviour of pattern formation in reaction-diffusion systems. It was proposed by 

scientists Robert Newell, John Whitehead, and Lee Segel in 1969. A Newell–Whitehead–Segal (NWS) 

equation comes under the form of nonlinear partial differentiation equation which mostly use in fluid 

mechanics.The equation can be written as: 𝜕𝑢𝜕𝑡 =  𝐷𝛻²𝑢 +  𝑓 (𝑢, 𝑣) 𝜕𝑣𝜕𝑡  =  𝛾𝛻²𝑣 +  𝑔 (𝑢, 𝑣) 
Here𝑢 and 𝑣 represent the concentrations of two interacting chemical substances or variables that diffuse 

through space. 
𝜕𝑢𝜕𝑡  and 

𝜕𝑣𝜕𝑡 are the temporal changes in 𝑢 and 𝑣, respectively. 

The terms 𝐷 and 𝛾represent the diffusion coefficients of the substances. The Laplacian operator 𝛻² 
represents the spatial diffusion of the variables, which determines how they spread out or diffuse over 

time.The functions 𝑓 (𝑢, 𝑣)and 𝑔 (𝑢, 𝑣)represent the reaction terms that describe how the substances 

interact with each other. These functions usually involve non-linearities that can lead to complex pattern 

formation. The NWS equation is often used to model various biological and physical phenomena, such as 

the formation of animal coat patterns, the spatial distribution of chemical substances in biological systems, 

and the behaviour of certain physical systems exhibiting pattern formation. 

Researchers have extensively studied the NWS equation and its solutions to gain insights into the 

mechanisms underlying pattern formation and self-organization in nature. The equation has been a 

valuable tool for understanding how complex patterns can emerge from simple local interactions and 

diffusion processes. 

 

1. Preliminaries and Notations 

The Elzaki transformation, also known as the Elzaki integral transform, is a mathematical technique used 

to solve ordinary form differential equations (ODEs) by transforming them into algebraic equations. It was 

introduced by the Sudanese mathematician Elzaki Ali Elzaki in the 1960s. The Elzaki transformation has 

been successfully applied to various fields of applied science and engineering, encompassing heat 

conduction, fluid dynamical mechanics, and electrical circuits. It provides an alternative approach to 

solving ODEs, particularly when analytical solutions are difficult to obtain using traditional methods. The 

use of the Elzaki transform in solving FPDEs can be particularly advantageous when analytical solutions 

are difficult to obtain using other methods. It provides a framework to transform the problem into an 

algebraic form, which can be tackled using well-established algebraic techniquesin this section, presenting 

some basic definition of Elzaki transform. 

 

Definition:   Elzaki Transformation  

The Elzaki Transformation is precisely delineated concerning functions exhibiting exponential traits 

within the predefined set A [1]: 

𝐴 = {𝑓(𝑡): ∃ 𝑀 , 𝑘1, 𝑘2 > 0, |𝑓(𝑡)| < 𝑀𝑒 |𝑡|𝑘𝑗 , 𝑖𝑓 𝑡 ∈ (−1)𝑗  𝑋 [0,∞)} 

 



Scope 

Volume 14 Number 1 March 2024 

 

 

407 www.scope-journal.com 

 

The Elzaki Transformdefined as operator  𝐸(g(𝜏))is, 

 𝐸(g(𝜏)) = 𝑣∫ 𝑔(𝜏)−  𝜏𝑣  𝑑𝜏 = 𝐹 (𝑣)    , 𝜏 > 0∞
0  

Exploring the Elzaki Transformation some function: 𝒇(𝒕) 𝑬(𝒇(𝒕)) 𝟏 𝒗𝟐 𝒕 𝒗𝟑 𝒕𝒏 𝒏! 𝒗𝒏+𝟐 

 

Property: Caputo Fractional Elzaki Transformation 

Introducing the Elzaki Transformation of Caputo Fractional Derivative:  𝐸 [ 𝜕𝛼𝜕𝜏𝛼  𝑔(𝜏)] =  
𝐸 [𝑔 (𝜏)]𝑣𝛼 

 − ∑ 𝑣𝑘−𝛼+2 
𝑛−1𝑘=0 𝑔(𝑘)(0),    𝑛 − 1 < 𝛼 ≤ 𝑛  (1) 

 

1.1. Fundamental Structure of the Modified Adomian Decomposition Elzaki Transformation 

Algorithm (MADETM) for Solving Nonlinear Fractional Differential Equations: 

Let us consider a generic fractional non-linear partial differential equation as presented below: 𝐷𝑡𝛼𝑤(𝑥, 𝑡) + 𝑅[𝑤(𝑥, 𝑡)] + 𝑁[𝑤(𝑥, 𝑡)] = 𝑔(𝑥, 𝑡)(2) 

With initial condition 𝑤(𝑥, 0) = 𝑓(𝑥)(3) 

Where 𝐷𝑡𝛼𝑤(𝑥, 𝑡) is Caputo fractional derivative of the function 𝑤(𝑥, 𝑡) defined as: 

𝐷𝑡𝛼𝑤(𝑥, 𝑡) = 𝜕𝛼𝑤(𝑥, 𝑡)𝜕𝑡𝛼 = {  
  1⌈(𝑛 − 𝛼)∫(𝑡−𝑥)𝑛−𝛼−1 𝜕𝑛𝑤(𝑥, 𝑡)𝜕𝑡𝑛 𝑑𝑡   , 𝑛 − 1 < 𝛼 < 𝑛𝑡

𝑎 𝜕𝑛𝑤(𝑥, 𝑡)𝜕𝑡𝑛 𝛼 = 𝑛 ∈ 𝑁  

The source term is 𝑔(𝑥, 𝑡), the linear differential operator is represented by 𝑅, and the generic nonlinear 

differential operator is represented by 𝑁. 
Taking the Elzaki Transform on both sides of Equation (2)  E[ 𝜕𝛼𝑤(𝑥,𝑡)𝜕𝑡𝛼 ] + 𝐸 [𝑅[𝑤(𝑥, 𝑡)]] + 𝐸 [𝑁[𝑤(𝑥, 𝑡)]] = 𝐸[𝑔(𝑥, 𝑡)](4) 

Using the properties of the Elzaki Transform on Equation (4) 

E [𝑤(𝑥, 𝑡)]𝑣𝛼 −∑𝑣𝑘−𝛼+2 𝑛−1
𝑘=0 𝑤(𝑘)(𝑥, 0) = 𝐸[𝑔(𝑥, 𝑡)] −  𝐸{[𝑅[𝑤(𝑥, 𝑡)]] + [𝑁[𝑤(𝑥, 𝑡)]]} 

𝐸[𝑤(𝑥, 𝑡)] = ∑ 𝑣𝑘+2𝑛−1𝑘=0 𝑤(𝑘)(𝑥, 0) + 𝑣𝛼𝐸[𝑔(𝑥, 𝑡)] − 𝑣𝛼𝐸{[𝑅[𝑤(𝑥, 𝑡)]] + [𝑁[𝑤(𝑥, 𝑡)]]}(5) 

Applying inverse Elzaki Transform on Equation (5)  
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𝐸−1[𝐸 (w(x, t))] = 𝐸−1 [∑𝑣𝑘+2 𝑛−1
𝑘=0 𝑤(𝑘)(𝑥, 0) + 𝑣𝛼𝐸[𝑔(𝑥, 𝑡)] −  𝑣𝛼𝐸{[𝑅[𝑤(𝑥, 𝑡)]] + [𝑁[𝑤(𝑥, 𝑡)]]}] 

𝑤(𝑥, 𝑡) = ∑ 𝑡𝑘𝑘! 𝑤(𝑘)(𝑥, 0) 𝑛−1𝑘=0 + 𝐸−1(𝑣𝛼𝐸 [𝑔(𝑥, 𝑡)]) − 𝐸−1(𝑣𝛼𝐸{[𝑅[𝑤(𝑥, 𝑡)]] + [𝑁[𝑤(𝑥, 𝑡)]]})  

     (6) 

By applying MADM on equation the solution in infinite series given below 𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡)∞𝑛=0      (7) 𝑁 [𝑤(𝑥, 𝑡)] = ∑ 𝐴𝑛∞𝑛=0   ; Where 𝐴𝑛 = 1𝑛! [ 𝑑𝑛𝑑𝜆𝑛 [𝑁 ∑ 𝜆𝑖𝑢𝑖∞𝑖=0 ]]𝜆=0  (8) 

The nonlinear terms denoted by 𝑁 are explained for employing the modified Adomian decomposition 

method for solving a nonlinear polynomial system following the utilization of the Elzaki transformation as 

specified below: {𝐴𝑛} = { 𝑁1( 𝑠𝑛) −  𝑁1( 𝑠𝑛−1)}     (9) 

Equation (6) is obtained by substituting Equations (7) and (8) 

∑𝑤𝑛(𝑥, 𝑡)∞
𝑛=0 =  𝑤(𝑥, 0) + 𝐸−1(𝑣𝛼𝐸[𝑔(𝑥, 𝑡)]) − 𝐸−1 (𝑣𝛼  𝐸 {𝑅 [∑𝑤𝑛(𝑥, 𝑡)∞

𝑛=0 ] + [∑𝐴𝑛∞
𝑛=0 ]}) 

Analysing Both Perspectives of the Equation (9) 𝑤0(𝑥, 𝑡) = 𝑤(𝑥, 0) + 𝐸−1(𝑣𝛼𝐸[𝑔(𝑥, 𝑡)]) 𝑤1(𝑥, 𝑡) = −𝐸−1(𝑣𝛼𝐸 {𝑅[𝑤0(𝑥, 𝑡)] + 𝐴0}) 𝑤2(𝑥, 𝑡) = −𝐸−1(𝑣𝛼𝐸 {𝑅[𝑤1(𝑥, 𝑡)] + 𝐴1}) 𝑤𝑛(𝑥, 𝑡) = −𝐸−1(𝑣𝛼𝐸{𝑅[𝑤𝑛−1(𝑥, 𝑡)] + 𝐴𝑛−1})(10) 

The analytic solution 𝑤(𝑥, 𝑡) is finally approximated using truncated series: 𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡)∞𝑛=0          (11)  

 

1.2. Elzaki Transformation Method on NWS Equation 

The operator form of the Newell-Whitehead-Segal (NWS) equation, based on the fractional model is 

define as: 𝑤𝑡𝛼 = 𝑘𝑤𝑥𝑥 + 𝑎𝑤 − 𝑏𝑤𝑞 ,    𝑡 > 0,   0 < 𝛼 ≤ 1  (12)  

With initial Condition 𝑤(𝑥, 0) = 𝑔(𝑥)   (13) 

Where 𝑤𝑡𝛼 = 𝜕𝛼𝑤𝜕𝑡𝛼   , The real numbers a, b, and k > 0 and the positive integer q are given. 

By applying the Elzaki transform (ET) on equation (12), 𝐸[𝑤𝑡𝛼] = 𝐸[𝑘𝑤𝑥𝑥 + 𝑎𝑤 − 𝑏𝑤𝑞] 
𝐸 [𝑤(𝑥, 𝑡)]𝑣𝛼 −∑𝑣𝑘−𝛼+2 𝑛−1

𝑘=0 𝑤(𝑘)(𝑥, 0) = 𝐸{𝑘𝑤𝑥𝑥 + 𝑎𝑤 − 𝑏𝑤𝑞} 
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𝐸[𝑤(𝑥, 𝑡)] = ∑ 𝑣𝑘+2 
𝑛−1𝑘=0 𝑤(𝑘)(𝑥, 0)  + 𝑣𝛼𝐸{𝑘𝑤𝑥𝑥 + 𝑎𝑤 − 𝑏𝑤𝑞}                         (14) 

Applying inverse Elzaki Transform on Equation (14) 

𝐸−1[𝐸 [𝑤(𝑥, 𝑡)]] = 𝐸−1 {∑𝑣𝑘+2 𝑛−1
𝑘=0 𝑤(𝑘)(𝑥, 0)  +  𝑣𝛼𝐸[𝑘𝑤𝑥𝑥 + 𝑎𝑤 − 𝑏𝑤𝑞]} 

𝑤(𝑥, 𝑡) = ∑ 𝑡𝑘𝑘! 𝑤(𝑘)(𝑥, 0) 𝑛−1𝑘=0 + 𝐸−1{𝑣𝛼𝐸{𝑘𝑤𝑥𝑥 + 𝑎𝑤 − 𝑏𝑤𝑞}}  (15) 

By applying MADM on equation the solution in infinite series given below 𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡)∞𝑛=0             (16) 

The nonlinear term  𝑤𝑞 is decomposed as:     𝑤𝑞(𝑥, 𝑡) = ∑ 𝐴𝑛∞𝑛=0      (17) 

The Adomian polynomials 𝐴𝑛is represented below. 

𝐴𝑛 = 1𝑛! [ 𝑑𝑛𝑑𝜆𝑛 [𝑁∑𝜆𝑖𝑤𝑖∞
𝑖=0 ]]𝜆=0 

Substituting (16) and (17) in equation (15) ∑ 𝑤𝑛(𝑥, 𝑡)∞𝑛=0 = ∑ 𝑡𝑘𝑘! 𝑤(𝑘)(𝑥, 0) 𝑛−1𝑘=0 + 𝐸−1(𝑣𝛼  𝐸 [𝑘(∑ 𝐴𝑛)∞𝑛=0 𝑥𝑥 + 𝑎(∑ 𝐵𝑛)∞𝑛=0 − 𝑏(∑ 𝐶𝑛)∞𝑛=0 ])  

      (18) 

Using (18), we define the following iterative formula. 𝑤0(𝑥, 𝑡) = 𝐸−1[𝑤(𝑥, 0)] 𝑤1(𝑥, 𝑡) = 𝐸−1 [𝑣𝛼  𝐸 [𝑘(∑ 𝐴0)∞𝑛=0 𝑥𝑥 + 𝑎(∑ 𝐵0)∞𝑛=0 − 𝑏(∑ 𝐶0)∞𝑛=0 ]]  

𝑤2(𝑥, 𝑡) = 𝐸−1 [𝑣𝛼  𝐸 [𝑘(∑𝐴1)∞
𝑛=0 𝑥𝑥 + 𝑎(∑𝐵1)∞

𝑛=0 − 𝑏(∑𝐶1)∞
𝑛=0 ]] 

. 

. 𝑤𝑛(𝑥, 𝑡) = −𝐸−1 [𝑣𝛼  𝐸 [𝑘(∑ 𝐴𝑛−1)∞𝑛=0 𝑥𝑥 + 𝑎(∑ 𝐵𝑛−1)∞𝑛=0 − 𝑏(∑ 𝐶𝑛−1)∞𝑛=0 ]](19) 

 

After identifying these elements, replace them in 𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡)∞𝑛=0 to derive the solution in a 

sequential format. 

2. Applications: 

To illustrate the process of solution of the Modified Adomian Decomposition Elzaki Transformation 

Method (MADSTM), considered the system of nonlinear time fractional PDEs: 

 

Example 3.1)We know that the Newell–Whitehead–Segal (NWS) equation,  𝜕𝛼𝑤𝜕𝑡𝛼 = 𝑘 𝜕2𝑤𝜕𝑥2 + 𝑎𝑤 − 𝑏𝑤𝑞 ,    𝑡 > 0,   0 < 𝛼 ≤ 1 



Scope 

Volume 14 Number 1 March 2024 

 

 

410 www.scope-journal.com 

 

The above NWS equation can be transformed into the non-linear time-fractional Newell-Whitehead-Segel 

equation by changing the values of 𝑏 = 1, 𝑘 = 2, ℎ = −3, 𝑎𝑛𝑑 𝑎 = 2. 
 𝜕𝛼𝑤𝜕𝑡𝛼 = 𝜕2𝑤𝜕𝑥2 + 2𝑤 − 3𝑤2  , 𝑡 > 0,   0 < 𝛼 ≤ 1(20) 

    

With initial condition  𝑢(𝑥, 0) = 𝜂      (21) 

Solution: Using the process of Modified Adomian Decomposition Elzaki Transformation Method 

(MADETM) on Example 3.1, we get:  𝑤0(𝑥, 𝑡) = 𝜂 

 𝑤1(𝑥, 𝑡) =     2 𝜂 𝑡𝛼⌈𝛼 + 1 −   3 𝜂2 𝑡𝛼⌈𝛼 + 1  

 𝑤2(𝑥, 𝑡) =   4 𝜂 𝑡2𝛼⌈2𝛼+1 −   18 𝜂2 𝑡2𝛼⌈2𝛼+1 +   18 𝜂3 𝑡3𝛼⌈3𝛼+1                  (22) 

 𝑤3(𝑥, 𝑡) =   8 𝜂 𝑡3𝛼⌈3𝛼 + 1 −   60 𝜂2 𝑡3𝛼⌈3𝛼 + 1 +   144 𝜂3 𝑡3𝛼⌈3𝛼 + 1 −   108  𝜂4 𝑡3𝛼⌈4𝛼 + 1 +   12 𝜂2 𝑡3𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈3𝛼 + 1 −   36 𝜂3 𝑡3𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈3𝛼 + 1+   27 𝜂4 𝑡3𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈3𝛼 + 1  

 𝑤4(𝑥, 𝑡) =    16 𝜂 𝑡4𝛼⌈4𝛼 + 1 −   168 𝜂2 𝑡4𝛼⌈4𝛼 + 1 +   648 𝜂3 𝑡4𝛼⌈4𝛼 + 1 −   1080 𝜂4 𝑡4𝛼⌈4𝛼 + 1 +   648 𝜂5 𝑡4𝛼⌈4𝛼 + 1 −   24 𝜂2 𝑡4𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈4𝛼 + 1+   144 𝜂3 𝑡4𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈4𝛼 + 1 −   270 𝜂4 𝑡4𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈4𝛼 + 1 𝑤(𝑥, 𝑡)=  𝜂 +   2 𝜂 𝑡𝛼⌈𝛼 + 1 −   3 𝜂2 𝑡𝛼⌈𝛼 + 1 +   4 𝜂 𝑡2𝛼⌈2𝛼 + 1 −   18 𝜂2 𝑡2𝛼⌈2𝛼 + 1 +   18 𝜂3 𝑡3𝛼⌈3𝛼 + 1 +   8 𝜂 𝑡3𝛼⌈3𝛼 + 1 −   60 𝜂2 𝑡3𝛼⌈3𝛼 + 1+   144 𝜂3 𝑡3𝛼⌈3𝛼 + 1 −   108  𝜂4 𝑡3𝛼⌈4𝛼 + 1 +   12 𝜂2 𝑡3𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈3𝛼 + 1 −   36 𝜂3 𝑡3𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈3𝛼 + 1+   27 𝜂4 𝑡3𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈3𝛼 + 1 +   16 𝜂 𝑡4𝛼⌈4𝛼 + 1 −   168 𝜂2 𝑡4𝛼⌈4𝛼 + 1 +   648 𝜂3 𝑡4𝛼⌈4𝛼 + 1 −   1080 𝜂4 𝑡4𝛼⌈4𝛼 + 1+   648 𝜂5 𝑡4𝛼⌈4𝛼 + 1 −   24 𝜂2 𝑡4𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈4𝛼 + 1 +   144 𝜂3 𝑡4𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈4𝛼 + 1 −   270 𝜂4 𝑡4𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈4𝛼 + 1+   162 𝜂5 𝑡4𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈4𝛼 + 1 −   48 𝜂2 𝑡4𝛼⌈3𝛼 + 1⌈𝛼 + 1⌈2𝛼 + 1⌈4𝛼 + 1 +   288 𝜂3 𝑡4𝛼⌈3𝛼 + 1⌈𝛼 + 1⌈2𝛼 + 1⌈4𝛼 + 1−   540 𝜂4 𝑡4𝛼⌈3𝛼 + 1⌈𝛼 + 1⌈2𝛼 + 1⌈4𝛼 + 1 +   324 𝜂5 𝑡4𝛼⌈3𝛼 + 1⌈𝛼 + 1⌈2𝛼 + 1⌈4𝛼 + 1 −⋯ +   162 𝜂5 𝑡4𝛼⌈2𝛼 + 1⌈(𝛼 + 1)2⌈4𝛼 + 1−   48 𝜂2 𝑡4𝛼⌈3𝛼 + 1⌈𝛼 + 1⌈2𝛼 + 1⌈4𝛼 + 1 +   288 𝜂3 𝑡4𝛼⌈3𝛼 + 1⌈𝛼 + 1⌈2𝛼 + 1⌈4𝛼 + 1 −   540 𝜂4 𝑡4𝛼⌈3𝛼 + 1⌈𝛼 + 1⌈2𝛼 + 1⌈4𝛼 + 1+   324 𝜂5 𝑡4𝛼⌈3𝛼 + 1⌈𝛼 + 1⌈2𝛼 + 1⌈4𝛼 + 1 

Therefore,Series representation of the solution 𝑤 (𝑥, 𝑡) is as follows: 𝑤(𝑥, 𝑡) =  𝑤0(𝑥, 𝑡)+𝑤1(𝑥, 𝑡)+𝑤2(𝑥, 𝑡) +  𝑤3(𝑥, 𝑡) +  𝑤4(𝑥, 𝑡) + ⋯……(23) 

In particular when𝛼 = 1 , we get the solution in the form: 𝑤(𝑥, 𝑡) =  𝜂 +   2𝜂𝑡⌈2 −   3 𝜂2𝑡⌈2 +   4 𝜂 𝑡2⌈3 −   18 𝜂2 𝑡2⌈3 +   18 𝜂3 𝑡3⌈4 +   8 𝜂 𝑡3⌈4 −   60 𝜂2 𝑡3⌈4 +   144 𝜂3 𝑡3⌈4 −   108  𝜂4 𝑡3⌈5 +  12 𝜂2 𝑡3⌈3⌈(2)2⌈4 −   36 𝜂3 𝑡3⌈3⌈(2)2⌈4 +   27 𝜂4 𝑡3⌈3⌈(2)2⌈4 +   16 𝜂 𝑡4⌈5 −   168 𝜂2 𝑡4⌈5 +   648 𝜂3 𝑡4⌈5 −   1080 𝜂4 𝑡4⌈5 +   648 𝜂5 𝑡4⌈5 −   24 𝜂2 𝑡4⌈3⌈(2)2⌈5 +
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  144 𝜂3 𝑡4⌈3⌈(2)2⌈5 −   270 𝜂4 𝑡4⌈3⌈(2)2⌈5 +   162 𝜂5 𝑡4⌈3⌈(2)2⌈5 −   48 𝜂2 𝑡4⌈4⌈2⌈3⌈5 +   288 𝜂3𝑡4⌈4⌈2⌈3⌈5 −   540 𝜂4𝑡4⌈4⌈2⌈3⌈5 +   324 𝜂5𝑡4⌈4⌈2⌈3⌈5 −⋯.  

 (24) 

The convergent solution to the classical Newell-Whitehead-Segel equation is achieved rapidly for the given 

equation(20) 

 𝑤(𝑥, 𝑡) = −23𝜂𝑡2𝑡−23+𝜂−𝜂𝑡2𝑡       (25) 

 

Example 3.2) Taking 𝑎 = 0, 𝑏 > 0 𝑎𝑛𝑑 𝑞 = 3, in Equation (12) becomes, 

𝜕𝑤𝜕𝑡 = 𝜕2𝑤𝜕𝑥2 − 𝑏𝑤3                         (26) 

With initial condition w(x, 0) = √2𝑏 ( 2𝑥𝑥2+1) 

Solution: Applying the previously mentioned method to Example 2 

 𝑤0(𝑥, 𝑡) = √2𝑏 ( 2𝑥𝑥2 + 1) 

 𝑤1(𝑥, 𝑡) =   −√2𝑏 12𝑥𝑡(𝑥2 + 1)2 

 𝑤2(𝑥, 𝑡) = √2𝑏 864 𝑥3𝑡4(𝑥2+1)6 − √2𝑏 576 𝑥3𝑡3(𝑥2+1)5 + √2𝑏 72  𝑥𝑡2(𝑥2+1)3   (27) 

. 

. 

Therefore, the solution w (x, t)in series form is given by. 𝑤(𝑥, 𝑡) =  𝑤0(𝑥, 𝑡) +  𝑤1(𝑥, 𝑡) +  𝑤2(𝑥, 𝑡) +  𝑤3(𝑥, 𝑡) + ⋯……. 𝑤 (𝑥, 𝑡) = √2𝑏 ( 2𝑥𝑥2+1) − √2𝑏 12𝑥𝑡(𝑥2+1)2 + √2𝑏 864 𝑥3𝑡4(𝑥2+1)6 −√2𝑏 576 𝑥3𝑡3(𝑥2+1)5 +√2𝑏 72  𝑥 𝑡2(𝑥2+1)3 −⋯.        (28) 

The closed form solution for Equation (28) is precisely determined. 

𝑤 (𝑥, 𝑡) = √2𝑏 ( 2𝑥𝑥2+6𝑡+1)                   (29) 

 

3. Result and Discussion 

In Table 1, result comparison for Exact solution, MADETM and Fractional Complex Transform- He’s 

polynomials method (FCT-HPM) and its relative absolute error shown at 𝜂 = 0.001 𝑎𝑛𝑑𝛼 = 1. In Table 2, 

result comparison for Exact solution, MADETM and Natural Homotopy Perturbation Method (NHPM) 

and its relative absolute error shown at 𝜂 = 0.001 𝑎𝑛𝑑𝛼 = 1. In Table 3, result comparison for Exact 

solution, MADETM and VIM and its relative absolute error shown at 𝑎 = 0, 𝑏 > 0 as x increases up to 1 

and t increases from 0 to 1. 
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Table 1. On comparing the results between Exact solution, MADETM and FCT-HPM [27] for𝜂 =0.001 𝑎𝑛𝑑 𝛼 = 1 and for Example 3.1 

 

 

Table 2. Comparison of results between Exact solution, MADETM and NHPTM [25] at  𝜂 =0.001 𝑎𝑛𝑑 𝛼 = 1 and for Example 3.1 

 

 

Figure1. Graph plot of Exact, MADETM and FCT-HPM and NHPTM at 𝜂. = 0.001 and 𝛼 = 1 or Example 3.1 

 

x 
t 

Exact 

Solution 

Approx. 

Solution by 

MADETM 

Re. Absolute  

  Error 

  Approx. 

Solution by 

FCT- HPM 

[27] 

Re. Absolute  

  Error 

 

 

0.2 

0.16 0.00137635 0.00137632 2.17968E-05 0.00137396 0.001736477 

0.32 0.00189393 0.00189299 0.000496322 0.00187473 0.01013765 

0.48 0.0026054 0.0025978 0.002917019 0.00253977 0.02518999 

0.64 0.00358269 0.00354881 0.009456582 0.0034232 0.04451683 

0.8 0.00492384 0.00481432 0.022242802 0.004599 0.065972899 

0.96 0.00676192 0.00677288 0.001620841 0.0061642 0.088395012 

 

x T 
Exact 

Solution 

Approx. 

Solution by 

MADETM 

Re. Absolute  

  Error 

Approx. 

Solution by 

NTHPM [25] 

Re. Absolute  

  Error 

 

 

0.2 

0.16 0.00137635 0.00137632 2.17968E-05 0.001454302 0.056636902 

0.32 0.00189393 0.00189299 0.000496322 0.002307619 0.218428928 

0.48 0.0026054 0.0025978 0.002917019 0.003755086 0.441270285 

0.64 0.00358269 0.00354881 0.009456582 0.005991837 0.672440848 

0.8 0.00492384 0.00481432 0.022242802 0.009213009 0.871102351 

0.96 0.00676192 0.00677288 0.001620841 0.013613735 1.013294301 
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Table 3.The outcomes comparison between MADETM and VTM [28] for Example 3.2 

x Exact 

Approx. 

Solution by 

MADETM 

Re. Absolute  

  Error 

Approx. 

Solution by 

VTM 

Re. Absolute  

  Error 

2 1.0101525 1.0099788 0.000171954 1.0098764 0.000273325 

4 0.64282435 0.64281907 8.21375E-06 0.64281695 1.15117E-05 

6 0.45134475 0.45134479 8.86241E-08 0.45134464 2.43716E-07 

8 0.34493014 0.34493044 8.69741E-07 0.34493041 7.82767E-07 

10 0.2783885 0.27838877 9.69868E-07 0.27838877 9.69868E-07 

 

 

Figure 2. Comparison between Exact, MADETM and VTM for Example 3.2 

 

4. Analysis and Conclusion: 

The below table presented values of exact and approximate solutions for adopted technique to displays the 

results of calculated performance metrics for different values of 𝑡.  Based on the provided data, there seems 

to in the relationship between the dependent variable . 𝑡 and the independent variable𝑥. The descriptive 

statistics and correlation analysis suggest that ′𝑡′ varies systematically with changes in ′𝑥'.  
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Table 4. MADETM and Exact solutions for example 3.1 with 20 number of observations: 

Samples x t exact MADETM 
Re. Absolute  

  Error 

1 0.2 0.16 0.00137635 0.00137632 2.17968E-05 

2 0.2 0.32 0.00189393 0.00189299 0.000496322 

3 0.2 0.48 0.0026054 0.0025978 0.002917019 

4 0.2 0.64 0.00358269 0.00354881 0.009456582 

5 0.2 0.8 0.00492384 0.00481432 0.022242802 

6 0.2 0.96 0.00676192 0.00677288 -0.001620841 

7 0.2 1.12 0.007223509 0.0071703 7.36604E-03 

8 0.2 1.28 0.008280505 0.008218809 0.007450799 

9 0.2 1.44 0.009337501 0.009267317 0.007516368 

10 0.2 1.6 0.010394498 0.010315826 0.007568601 

11 0.2 1.76 0.011451494 0.011364334 0.007611193 

12 0.2 1.92 0.01250849 0.012412843 0.007646585 

13 0.2 2.08 0.013565486 0.013461351 7.67646E-03 

14 0.2 2.24 0.014622483 0.01450986 0.007702021 

15 0.2 2.4 0.015679479 0.015558369 0.007724133 

16 0.2 2.56 0.016736475 0.016606877 0.007743452 

17 0.2 2.72 0.017793472 0.017655386 0.007760476 

18 0.2 2.88 0.018850468 0.018703894 0.007775591 

19 0.2 3.04 0.019907464 0.019752403 7.78910E-03 

20 0.2 3.2 0.02096446 0.020800911 0.007801248 

 

Additionally, the hypothesis testing provides insights into the nature of this relationship.               𝐻0 ∶ The solutions exhibit no significant difference. 𝐻𝐴 ∶ A significant difference exists between the solutions. 

Based on the above assumption for the statistical observations are as follows:  

The p-value, being less than 0.0001, signifies an exceedingly strong level of statistical significance 

according to conventional criteria. Its Confidence Interval: The mean of MADETM with Exact solution = 

0.00008291570, 95% confidence interval difference: 0.00005735939 to 0.00010847201 

T=6.7907, Degree of freedom =19, Standard error of difference=0.000 

Group  MADETM Exact Equation 

Mean 0.0109229970 0.01084008000 

SD 0.00625751807 0.00620776354 

SEM 0.00139922375 0.00138809813 

N 20 20 
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Table 5. MADETM and Exact solutions for example 3.2 with 20 number of observations: 

sample x Exact 

Approximate 

Solution 

 by ETM 

Re. Absolute  

  Error 

Approximate 

Solution 

 by VIM 

1 2 1.0101525 1.0099788 0.000171954 1.0098764 

2 4 0.64282435 0.64281907 8.21375E-06 0.64281695 

3 6 0.45134475 0.45134479 8.86241E-08 0.45134464 

4 8 0.34493014 0.34493044 8.69741E-07 0.34493041 

5 10 0.2783885 0.27838877 9.69868E-07 0.27838877 

6 12 0.017101385 0.017171767 -0.004115573 0.017212894 

7 14 -0.159040836 -0.158935102 0.000664823 -0.158873286 

8 16 -0.335183057 -0.335041971 -0.000420922 -0.334959466 

9 18 -0.511325278 -0.51114884 -0.00034506 -0.511045646 

10 20 -0.687467499 -0.687255709 -0.000308073 -0.687131826 

11 22 -0.86360972 -0.863362578 0.000286173 -0.863218006 

12 24 -1.039751941 -1.039469447 0.000271694 -1.039304186 

13 26 -1.215894162 -1.215576316 -0.000261409 -1.215390366 

14 28 -1.392036383 -1.391683185 -0.000253728 -1.391476546 

15 30 -1.568178604 -1.567790054 -0.000247772 -1.567562726 

16 32 -1.744320825 -1.743896923 0.000243018 -1.743648906 

17 34 -1.920463046 -1.920003792 0.000239137 -1.919735086 

18 36 -2.096605267 -2.096110661 -0.000235908 -2.095821266 

19 38 -2.272747488 -2.27221753 -0.000233179 -2.271907446 

20 40 -2.448889709 -2.448324399 -0.000230843 -2.447993626 

 

The P value is less than 0.0001. By conventional criteria, this difference is extremely statistically 

significant. The Confidence Interval: The mean of MADETM with Exact solution = 0.00022946600, 95% 

confidence interval difference: 0.00013091751 to 0.00032801449 

Indeterminate values: T= 4.87535, Degree of freedom =19, Standard error of difference=0.000 

Group  MADETM Exact Equation 

Mean -0.77530914350 -0.77553860950 

SD 1.04275900519 1.04296893345 

SEM 0.23316800198 0.23321494336 

N 20 20 

 

In this study, successfully applied semi analytical technique on fractional order NWS equationusing 

modified Adomain Decomposition Elzaki Transformation method. In the calculation part up to 4th 

iterations approximate solution are carried out. Approximate solutions are rapidly converging to exact 

solutions for then said problems. For the example 3.1, obtained results are compared with FCT-HP 

method and NHPM method to identify the accuracy of results. In example 3.2, results are compared with 

VIM method to find out the accuracy. Relative absolute error is also measured for NWS equation at 

various conditions. The graph is plotted to analyse the results obtained. To validate the result for selected 

applications employed an independent samples t-test to assess the significance of the observed differences 

between Exact solution and Approximate solution. The t-test was chosen due to its appropriateness for 
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comparing means between two independent groups, aligning with our research design.  

The t-test results revealed a significant disparity in the mean scores between the two factors, implying a 

meaningful divergence in the outcomes linked to the two conditions. 
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