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Introduction 

The problem of deformations due to non-uniform slip profiles is very important. The earlier studies were based 

on uniform slip profile but assumption of uniform slip makes the edge of fault plane discontinuous where the 

stress is very large and displacement is too small, therefore uniform slip models cannot work on near of fault 

plane. There are a large number of phenomena that occur near the field. Chinnery and Petrak (1968) studied 

these phenomena by considering vertical movement associated by strike-slip faulting and the formation of 

secondary faults. To study such kind of phenomena, it is necessary to consider the models of earthquake 

faulting with variable slip. Chinnery and Petrak (1968) also calculated the elastic field for a strike-slip fault by 

taking non-uniform slip that varies exponentially over the face of the fault. Further, Freund and Barnett (1976) 

developed a model of two dimensional dip-slips faulting with variable slip on the fault plane. Yang and Toksoz 

(1981) studied a non-uniform trapezoidal type slip on a strike slip fault under the effect of lateral 

heterogeneities and finite fault scheme. Wang and Wu (1983) obtained analytical expressions for 

displacements and stress fields for the same type of variable slip and compared the corresponding results with 

uniform slip. Singh et al. (1994) studied the problem of static deformation in a homogenous, isotropic, 

perfectly elastic half space caused by a non-uniform slip along vertical strike and dip slip fault. Both faults were 

of infinite length and at finite depth. Rani and Singh (2007) solved the same problem for two welded half-space 

due to a strike slip fault. 

 Further, Chugh et al. (2011) studied static deformation field caused by non-uniform slip profiles along a 

vertical strike-slip fault situated in a homogenous orthotropic elastic layer which is in welded contact with 

orthotropic elastic half-space. They also discussed the same problem when boundary of layer with orthotropic 

half-space is in smooth rigid and rough rigid contact. Sen and Debnath (2012) studied the problem of creeping 

vertical strike-slip fault in a viscoelastic half space and after that Debnath et al. (2012) studied two interacting 

creeping vertical strike-slip fault in the viscoelastic half-space. Sahrawat et al. (2014) studied the dislocation 

problem in a uniform half-space with rigid boundary and Godara et al. (2017) extended this problem from 

uniform to non-uniform half-space.  

Abstract 

Analytical expressions in closed form for displacements caused by non-uniform vertical strike-slip fault in 

a monoclinic half space with traction free and rigid boundary have been obtained. Two types of non-

uniform strike-slip fault have been considered, i.e., Linear and Parabolic. Graphical calculations have 

been done with the help of Matlab software and it has been observed that the displacement does not exist 

when the distance from the fault is zero. We noticed that the displacement has non-uniform pattern in 

monoclinic medium and the magnitude of displacement due to parabolic slip profile is more as 

comparison to linear slip profile. 

Keywords: 1.Monoclinic, 2.Non-Uniform, 3.Strike-slip, 4.Traction  

 



Scope 
Volume 13 Number 01 March 2023 

 

 

281 
www.scope-journal.com 

 

 

Ting (1995) studied an antiplane deformations of anisotropic elastic materials and derived Green’s function for 

infinite half-space and biomaterials by applying antiplane force and screw dislocation. Kumar et al (2003) 

derived static deformation of monoclinic half-space with stress free boundary by a long inclined strike-slip fault 

and Tagra et al (2016) derived deformation of monoclinic half-space with rigid boundary. In this chapter, 

Analytical expressions in closed form for displacements caused by non-uniform vertical strike slip fault in a 

monoclinic half-space have been obtained. Here two cases are considered, in first case boundary of half-space 

is free, means stresses at boundary is zero and in second case, boundary is rigid, means displacement at 

boundary is zero. Here two types of non-uniform slip profiles are considered, namely, linear 

 0B (r) b 1 r / L   and parabolic  2 2

0B (r) b 1 r / L  , where B is the slip at a distance r from the 

surface, b0 is the surface slip and L is the fault depth. In first case, this paper is continuance of the paper of 

Singh et al. (2003) by considering non-uniform vertical strike slip fault instead of uniform inclined strike slip 

fault and generalization of Madan et al. (2005) for linear and parabolic slip profile and in second case, this 

paper is continuance of the work of Malik and Singh (2013) apparently by taking non-uniform vertical strike-

slip fault in a monoclinic half-space with rigid boundary instead of uniform isotropic half-space. 

 

  

When Boundary of Half-Space is Stress Free 

According to Maruyama (1966), the field of displacement by a long strike-slip geological fault of arbitrary 
orientation can be written by:  

L

1 2

0

u B(r)G(z , z , r)dr, (1)   

Further, Singh et al (2003) obtained the field of displacement by a long strike-slip geological fault in a 
monoclinic half-space (with free boundary) in which green’s function is in the form  

1 2
1 2 2 2

X Xc
G(z , z ) , (2)

2 M N
   
 

 

where the line source of unit length due to strike-slip fault is placed is placed at z1 = 0 and        z2 = d and dip 

angle θ is arbitrary but in the present problem, line source is placed at origin and fault is vertical, so z2  is also 

zero and dip angle is 90o.  

 

 

 

 

 

 

 

 

 

Fig. 1 Vertical Strike-Slip Fault of length L Situated in a Monoclinic Medium 
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and  

  22 2 2

1 2 1

1
M br az bz c z , (3)

b
   

 
    2 22 2

1 2 2 1 2

1
N br a z 2az bz c z 2az , (4)

b
       

  2 1 2X z 2az . (6)   

So, equation (2) becomes 

 
1 1 2

1 2 2 2

z z 2azc
G(z , z ) . (7)

2π M N
    

   

Linear Slip 

Let the linear slip profile be     

0

r
B(r) b 1 , 0 r L (8)

L

     
 

 

where L is the fault width and b0 is the surface slip. 

The expression for the displacement obtained for equation (1) and (8) is 

L

1 1 2
0 2 2

0

z z 2azr c
u b 1 dr,

L 2π M N
            

       

Solving above integration with help of Wolfram Alpha, we get 

1 10 1 2 1 2 1 2

1 1

b (b aZ bZ ) b aZ bZ aZ bZ
u tan tan

2π b cZ cZ
 

                 
      

 

2 2 2

01 1 2 1 1 2 2

2 2 2

1 2 1

bcZ (b aZ bZ ) c Z (b a(Z 2aZ ) bZ )
log

2b (aZ bZ ) c Z 2π b
            

 

1 11 2 2 1 2 2

1 2 1 2

b a(Z 2aZ ) bZ a(Z 2aZ ) bZ )
tan tan

c(Z 2aZ ) c(Z 2aZ )

                     
  

 
 

 

22 2

1 2 2 1 21 2

22 2

1 2 2 1 2

{b ( a(Z 2aZ ) bZ )} c Z 2aZc(Z 2aZ )
log , (9)

2b ( a(Z 2εZ ) bZ ) c Z 2aZ

          
       

where  
1

1

z
Z

L
  and 

2
2

z
Z

L
 . 

 

1 1X z , (5) 
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Parabolic Slip 

Let the parabolic slip profile be: 

2

0 2

r
B(r) b 1 ,0 r L (10)

L

 
    

 
 

The expression for the displacement obtained for equation (1) and (10) is 

L 2

1 1 2
0 2 2 2

0

z z 2azr c
u b 1 dr,

L 2π M N
            

    
  

Using Wolfram Alpha, the above equation becomes: 

2 2 2 2 2 2 2 10 1 2
1 2 1 1 22

1

b b a Z bZ1
u (b a Z b Z c Z 2a b Z Z ) tan

2π b cZ


            
  

 

2 2 2
1 21 2 1 2 1

1 1 1 2 2 2 2

1 1 2 1

aZ bZ (b aZ bZ ) c Z
tan bcZ c(aZ bZ Z ) log

cZ (aZ bZ ) c Z


                    

  

   22 2 20
1 2 2 1 22

b 1
b a(Z 2aZ ) bZ c (Z 2aZ )

2π b
     

 

      
1 11 2 2 1 2 2

1 2 1 2

b a(Z 2aZ ) b Z a(Z 2aZ ) b Z
tan tan

c Z 2aZ ) c Z 2aZ )

            
 

 1 2 1 2 2c Z 2aZ ( a(Z 2aZ ) bZ )      

2 2 2

1 2 2 1 2
1 22 2 2

1 2 2 1 2

(b a(Z 2aZ ) b Z ) c (Z 2aZ )
log bc(Z 2aZ ) . (11)

( a(Z 2aZ ) bZ ) c (Z 2aZ )

     
         

 

Particular Case 

 

When we put a= 0, then the equations (9) and (11) coincide with the result of displacements of Madan et al. 

(2005) obtained for orthotropic non-uniform linear and parabolic slip profiles and when we put a = 0, and b 

=1, the displacements (9) and (11) coincide with the result of displacements of Singh and Rani (1996) obtained 

for isotropic non-uniform linear and parabolic slip profiles. 

When Boundary of Half-Space is Rigid 

The field of displacement by a vertical strike-slip geological fault in a monoclinic half-space (with rigid 

boundary) in which green’s function which was derived by tagra et al (2016) is in the form  
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1 2
1 2 2 2

X Xc
G(z , z ) , (12)

2 M N
   
   

 

Linear Slip 

Using (8) and (12) in (1), We obtain displacement for linear slip is  

1 10 1 2 1 2 1 2

1 1

b (b aZ bZ ) b aZ bZ aZ bZ
u tan tan

2π b cZ cZ
 

                 
      

 

2 2 2

01 1 2 1 1 2 2

2 2 2

1 2 1

bcZ (b aZ bZ ) c Z (b a(Z 2aZ ) bZ )
log

2b (aZ bZ ) c Z 2π b
            

 

1 11 2 2 1 2 2

1 2 1 2

b a(Z 2aZ ) bZ a(Z 2aZ ) bZ )
tan tan

c(Z 2aZ ) c(Z 2aZ )

                     
          

 
 

22 2

1 2 2 1 21 2

22 2

1 2 2 1 2

{b ( a(Z 2aZ ) bZ )} c Z 2aZc(Z 2aZ )
log . (13)

2b ( a(Z 2εZ ) bZ ) c Z 2aZ

          
       

 

 

Parabolic Slip 

Using (10) and (12) in (1), We obtain displacement for parabolic slip is 

2 2 2 2 2 2 2 10 1 2
1 2 1 1 22

1

b b a Z bZ1
u (b a Z b Z c Z 2a b Z Z ) tan

2π b cZ


            
  

 

2 2 2
1 21 2 1 2 1

1 1 1 2 2 2 2

1 1 2 1

aZ bZ (b aZ bZ ) c Z
tan bcZ c(aZ bZ Z ) log

cZ (aZ bZ ) c Z


                    

  

  22 2 20
1 2 2 1 22

b 1
b a(Z 2aZ ) bZ c (Z 2aZ ) )

2π b
     


 

      
1 11 2 2 1 2 2

1 2 1 2

b a(Z 2aZ ) b Z a(Z 2aZ ) b Z
tan tan

c Z 2aZ ) c Z 2aZ )

            
 

 1 2 1 2 2c Z 2aZ ( a(Z 2aZ ) bZ )      

2 2 2

1 2 2 1 2
1 22 2 2

1 2 2 1 2

(b a(Z 2aZ ) b Z ) c (Z 2aZ )
log bc(Z 2aZ ) . (14)

( a(Z 2aZ ) bZ ) c (Z 2aZ )

     
         

 

When we put a= 0 in (13) and (14), they represent displacement for linear and parabolic slip profile in an 

orthotropic medium with rigid boundary and coincide with results of Godara et al. (2017).  
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Graphical Observations and Discussion 

In this chapter, we will study the effect of different kind of medium on the displacement due to non-uniform 

slip along a vertical strike slip geological fault. Therefore, we have compared the results of displacements in 

monoclinic medium with the displacements in orthotropic and isotropic medium. For monoclinic medium, we 

assume a = 0.3, b = 1, for orthotropic medium, we take a = 0, b = 2 and for isotropic medium, a = 0, b = 1. 

We have also taken value of Z2 = 1 and values of Z1 from -5 to 5. 

Figure 2 to 5 shows the changes in displacement 

0

2 u

b

 
 
 

 in respect to distance from the geological fault (Z1) 

for non-uniform linear and parabolic slip profiles with the free and rigid boundary of half-space. From table 1 

and figure 2, we observed that from Z1 -5.0 to 2.5, the magnitude of displacement for monoclinic slip is larger 

than orthotropic medium which is larger than isotropic medium. From 2.0 to 1.0, the magnitude of 

displacement of isotropic medium is larger than orthotropic medium and magnitude of displacement of 

orthotropic is larger than monoclinic medium. At Z1 = -0.5, magnitude of displacement of monoclinic is larger 

than isotropic and of isotropic is larger than orthotropic At Z1 = 0.0, the value of displacement does not exist, 

so it is point of discontinuity. 

Actually, in all figures, we noticed that value of displacement at Z1 = 0, does not exist. So, Z1 = 0, is the point 

of discontinuity for all displacement vectors.  

In figure 2, Z1 from 0.5 to 2.5; we notice that magnitude of displacement for monoclinic medium is more than 

isotropic medium and of isotropic medium is more than orthotropic medium. From Z1 2.5 to 5.0, the 

displacement for orthotropic is larger than isotropic and displacement of isotropic is larger than monoclinic 

medium 

One more important thing which we notice in all figures that the displacements in monoclinic medium having 

non-uniform pattern w.r.t. distance from the geological fault while the displacements for orthotropic and 

isotropic medium are uniform in pattern and their graph is anti-symmetric about the origin 

 

Table 1 Graphical data of distance from the fault and displacement for linear slip when boundary of half-

space is stress free. 

Z1 Displacement for 
Monoclinic Medium 

Displacement for 
Orthotropic Medium 

Displacement for Isotropic 
Medium 

-5.0 -0.9041 -0.6970 -0.5412 

-4.5 -0.9026 -0.7433 -0.5878 
-4.0 -0.9349 -0.7916 -0.6411 
-3.5 -0.9437 -0.8390 -0.7015 

-3.0 -0.9399 -0.8798 -0.7680 

-2.5 -0.9079 -0.9020 -0.8358 
-2.0 -0.8146 -0.8831 -0.8904 
-1.5 -0.5897 -0.7840 -0.8932 

-1.0 -0.1054 -0.5513 -0.7551 

-0.5 0.6880 -0.1710 -0.3409 

0.0 Not exist Not exist Not exist 

0.5 0.9160 0.1710 0.3409 

1.0 0.8677 0.5513 0.7551 

1.5 0.7036 0.7840 0.8932 

2.0 0.5266 0.8831 0.8904 
2.5 0.3723 0.9020 0.8358 

3.0 0.2460 0.8798 0.7680 
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Table 2 Graphical data of distance from the fault and displacement for parabolic slip when 

boundary of half-space is stress free. 

 

Z1 Displacement for 

Monoclinic Medium 

Displacement for 

Orthotropic Medium 

Displacement for Isotropic 

Medium 

-5.0 -0.1503 -0.1986 -0.1374 

-4.5 0.0093 -0.2224 -0.1536 

-4.0 0.6637 -0.2525 -0.1741 

-3.5 0.3098 -0.2914 -0.2008 

-3.0 0.4418 -0.3430 -0.2370 

-2.5 0.5480 -0.4134 -0.2882 

-2.0 0.6033 -0.5109 -0.3647 

-1.5 0.5508 -0.6435 -0.4843 

-1.0 0.2671 -0.7987 -0.6697 

-0.5 -0.3678 -0.8501 -0.8614 

0.0 Not exist Not exist Not exist 

0.5 1.2336 0.8501 0.8614 

1.0 1.6744 0.7987 0.6697 

1.5 1.9500 0.6435 0.4843 

2.0 2.1755 0.5109 0.3647 

2.5 2.3797 0.4134 0.2882 

3.0 2.5727 0.3430 0.2370 

3.5 2.7592 0.2914 0.2008 

4.0 2.9415 0.2525 0.1741 

4.5 3.1212 0.2224 0.1536 

5.0 3.2989 0.1986 0.1374 

 

Table 3 Graphical data of distance from the fault and displacement for linear slip when boundary 

of half-space is rigid. 

 

Z1 Displacement for 

Monoclinic Medium 

Displacement for 

Orthotropic Medium 

Displacement for Isotropic 

Medium 

-5.0 1.1072 0.9690 0.7373 

-4.5 1.1471 1.0430 0.8047 

-4.0 1.1910 1.1247 0.8836 

-3.5 1.2380 1.2133 0.9762 

-3.0 1.2848 1.3055 1.0841 

-2.5 1.3227 1.3928 1.2068 

-2.0 1.3304 1.4565 1.3366 

-1.5 1.2564 1.4586 1.4448 

-1.0 0.9890 1.3281 1.4482 

-0.5 0.3580 0.9478 1.1456 

3.5 0.1442 0.8390 0.7015 
4.0 0.0619 0.7916 0.6411 
4.5 -0.0052 0.7433 0.5878 

5.0 -0.0605 0.6970 0.5412 
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0.0 Not exist Not exist Not exist 

0.5 -1.5243 -0.9478 -1.1456 

1.0 -1.3994 -1.3281 -1.4482 

1.5 -1.1410 -1.4586 -1.4448 

2.0 -0.8909 -1.4565 -1.3366 

2.5 -0.6822 -1.3928 -1.2068 

3.0 -0.5147 -1.3055 -1.0841 

3.5 -0.3809 -1.2133 -0.9762 

4.0 -0.2732 -1.1247 -0.8836 

4.5 -0.1855 -1.0430 -0.8047 

5.0 -0.1131 -0.9690 -0.7373 

 

 

Table 4 Graphical data of distance from the fault and displacement for parabolic slip when boundary of 

half-space is rigid. 

 

Z1 Displacement for 

Monoclinic Medium 

Displacement for 

Orthotropic Medium 

Displacement for Isotropic 

Medium 

-5.0 -0.3753 -0.5256 -0.3850 

-4.5 -0.2351 -0.5749 -0.4241 

-4.0 -0.1028 -0.6333 -0.4716 

-3.5 0.0184 -0.7029 -0.5302 

-3.0 0.1233 -0.7864 -0.6037 

-2.5 0.2029 -0.8862 -0.6975 

-2.0 0.2410 -1.0024 -0.8187 

-1.5 0.2063 -1.1260 -0.9729 

-1.0 0.0388 -1.2138 -1.1458 

-0.5 -0.2909 -1.1029 -1.1945 

0.0 Not exist Not exist Not exist 

0.5 1.8878 1.1029 1.1945 

1.0 2.3249 1.2138 1.1458 

1.5 2.5311 1.1260 0.9729 

2.0 2.6804 1.0024 0.8187 

2.5 2.8180 0.8862 0.6975 

3.0 2.9563 0.7864 0.6037 

3.5 3.0983 0.7029 0.5302 

4.0 3.2444 0.6333 0.4716 

4.5 3.3943 0.5749 0.4241 

5.0 3.5472 0.5256 0.3850 
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Fig. 2 Changes in displacement in respect to distance from the geological fault for non-uniform 

linear slip when boundary of half-space is stress free. 

 
Fig. 3 Changes in displacement in respect to distance from the fault for parabolic slip when 

boundary of half-space is stress free. 
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Fig. 4 Changes in displacement in respect to distance from the fault for linear slip when 

boundary of half-space is rigid. 

 

 
Fig. 5 Changes in displacement in respect to distance from the fault for parabolic slip when 

boundary of half-space is rigid. 
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Figures 6 to 10 show the comparison of displacements when the boundary of half-space is free and rigid in 

linear and parabolic slip profiles. Here we have drawn figure for different kinds of medium. Figure 6 shows the 

changes in displacement in respect to distance from the geological fault for linear slip in monoclinic medium. 

From tables 1, 3 and figure 6, we have observed that form Z1,  -5 to -1, the magnitude of displacement in rigid 

boundary case are more than free boundary case. At Z1 = -0.5, the magnitude of displacement in free boundary 

case is more than the rigid boundary case and Z1 from 0.5 to 5.0, the magnitude of displacement in rigid 

boundary case is more than free boundary case. Figures 7and 8, show anti symmetry about origin and we 

observed that the magnitude of displacements in rigid boundary case are more than the free boundary case.  

Thus, we conclude that in orthotropic and isotropic medium, the linear slip with rigid boundary half-space is 

dominating over the linear slip with free boundary half-space. 

 

 
Fig. 6 Changes in displacement in respect to distance from the geological fault for linear slip in 

monoclinic medium. 
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Fig. 7 Changes in displacement in respect to distance from the geological fault for non-uniform 

linear slip in orthotropic medium. 

 

 
Fig. 8 Changes in displacement in respect to distance from the fault for linear slip in isotropic 

medium. 
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Fig. 9 Changes in displacement in respect to distance from the geological fault for parabolic slip 

in monoclinic medium. 

 
Fig. 10 Changes in displacement in respect to distance from the fault for parabolic slip in 

orthotropic medium. 
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Fig. 11 Changes in displacement in respect to distance from the geological fault for parabola type 

slip in isotropic medium. 

 

Figures 12-15 show the variation of displacement with the distance from the fault for a = -0.3, 0, 0.3 and b = 1 

for linear slip and parabolic slip. From table 5 and figure 12, we have observed that at Z1 = -5.0, the magnitude 

of displacement for a = -0.3 is greater than a =0.3 which in turns greater than at a = 0. At Z1 = -4.5, the 

magnitude of displacement for a = -0.3 is greater than a =0 which in turns greater than at a = 0.3. From Z1 = -

4.0 to -1.5, the magnitude of displacement for a = -0.3 greater than at a = 0.3 and it is greater than a = 0. From 

Z1 = -1.0 to 0.5, the magnitude of displacement for a = -0.3 greater than at a = 0 and it is greater than a = 0.3. 

At Z1 = 0.5, the magnitude of displacement for a = 0.3 is greater than a =-0.3 which in turns greater than at a 

= 0. At Z1 = 1.0, the value of displacement for a = 0.3 greater than at a = 0 and magnitude of displacement at 

a= =0 is greater than -0.3. At Z1 = 1.5, the value of displacement for a = 0 greater than at a = 0.3 and 

magnitude of displacement at a= 0.3 is greater than -0.3. At Z1 = 2.0, the value of displacement for a = 0 

greater than at a =- 0.30 and magnitude of displacement at a= -0.3 is greater than 0.3. From Z1 = 2.5 to 5.0, 

the magnitude of displacement for a = -0.3 greater than at a = 0 and it is greater than a = 0.3. 
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Table 5  Graphical data of distance from the fault and displacement for linear slip when boundary 

of half-space is stress free and when         a = 0.3, 0, -0.3 and b = 1. 

 

 

 

 

 

 

Table 6 Graphical data of distance from the fault and displacement for parabolic slip when 

boundary of half-space is stress free and when a = 0.3, 0, -0.3 and b = 1. 

Z1 Displacement for a = 0.3 Displacement for a = 0 Displacement for a = -0.3 

-5.0 -0.9041 -0.5412 0.0605 

-4.5 -0.9026 -0.5878 0.0052 

-4.0 -0.9349 -0.6411 -0.0619 

-3.5 -0.9437 -0.7015 -0.1442 

-3.0 -0.9399 -0.7680 -0.2460 

-2.5 -0.9079 -0.8358 -0.3723 

-2.0 -0.8146 -0.8904 -0.5266 

-1.5 -0.5897 -0.8932 -0.7036 

-1.0 -0.1054 -0.7551 -0.8677 

-0.5 0.6880 -0.3409 -0.9160 

0.0 Not exist Not exist Not exist 

0.5 0.9160 0.3409 -0.6880 

1.0 0.8677 0.7551 0.1054 

1.5 0.7036 0.8932 0.5897 

2.0 0.5266 0.8904 0.8146 

2.5 0.3723 0.8358 0.9079 

3.0 0.2460 0.7680 0.9399 

3.5 0.1442 0.7015 0.9437 

4.0 0.0619 0.6411 0.9349 

4.5 -0.0052 0.5878 0.9205 

5.0 -0.0605 0.5412 0.9041 
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Z1 Displacement for a = 0.3 Displacement for a = 0 Displacement for a = -0.3 

-5.0 -0.1503 -0.1374 -3.2989 

-4.5 0.0093 -0.1536 -3.1212 

-4.0 0.6637 -0.1741 -2.9415 

-3.5 0.3098 -0.2008 -2.7592 

-3.0 0.4418 -0.2370 -2.5727 

-2.5 0.5480 -0.2882 -2.3797 

-2.0 0.6033 -0.3647 -2.1755 

-1.5 0.5508 -0.4843 -1.9500 

-1.0 0.2671 -0.6697 -1.6744 

-0.5 -0.3678 -0.8614 -1.2336 

0.0 Not exist Not exist Not exist 

0.5 1.2336 0.8614 0.3678 

1.0 1.6744 0.6697 -0.2671 

1.5 1.9500 0.4843 -0.5508 

2.0 2.1755 0.3647 -0.6033 

2.5 2.3797 0.2882 -0.5480 

3.0 2.5727 0.2370 -0.4418 

3.5 2.7592 0.2008 -0.3098 

4.0 2.9415 0.1741 -0.1637 

4.5 3.1212 0.1536 -0.0093 

5.0 3.2989 0.1374 0.1503 

 

 

Table 7 Graphical data of distance from the fault and displacement for linear slip when boundary 

of half-space is rigid and when              a = 0.3, 0, -0.3 and b = 1. 

 

Z1 Displacement for a = 0.3 Displacement for a = 0 Displacement for a = -0.3 

-5.0 1.1072 0.7373 0.1131 

-4.5 1.1471 0.8047 0.1855 

-4.0 1.1910 0.8836 0.2732 

-3.5 1.2380 0.9762 0.3809 

-3.0 1.2848 1.0841 0.5147 

-2.5 1.3227 1.2068 0.6822 

-2.0 1.3304 1.3366 0.8909 

-1.5 1.2564 1.4448 1.1410 

-1.0 0.9890 1.4482 1.3994 

-0.5 0.3580 1.1456 1.5243 

0.0 Not exist Not exist Not exist 

0.5 -1.5243 -1.1456 -0.3580 
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1.0 -1.3994 -1.4482 -0.9890 

1.5 -1.1410 -1.4448 -1.2564 

2.0 -0.8909 -1.3366 -1.3304 

2.5 -0.6822 -1.2068 -1.3227 

3.0 -0.5147 -1.0841 -1.2848 

3.5 -0.3809 -0.9762 -1.2380 

4.0 -0.2732 -0.8836 -1.1910 

4.5 -0.1855 -0.8047 -1.1471 

5.0 -0.1131 -0.7373 -1.1072 

 

Table 8 Graphical data of distance from the fault and displacement for parabolic slip when 

boundary of half-space is rigid and when             a = 0.3, 0, -0.3 and b = 1. 

 

Z1 Displacement for a = 0.3 Displacement for a = 0 Displacement for a = -0.3 

-5.0 -0.3753 -0.3850 -3.5472 

-4.5 -0.2351 -0.4241 -3.3943 

-4.0 -0.1028 -0.4716 -3.2444 

-3.5 0.0184 -0.5302 -3.0983 

-3.0 0.1233 -0.6037 -2.9563 

-2.5 0.2029 -0.6975 -2.8180 

-2.0 0.2410 -0.8187 -2.6804 

-1.5 0.2063 -0.9729 -2.5311 

-1.0 0.0388 -1.1458 -2.3249 

-0.5 -0.2909 -1.1945 -1.8878 

0.0 Not exist Not exist Not exist 

0.5 1.8878 1.1945 0.2909 

1.0 2.3249 1.1458 -0.0388 

1.5 2.5311 0.9729 -0.2063 

2.0 2.6804 0.8187 -0.2410 

2.5 2.8180 0.6975 -0.2029 

3.0 2.9563 0.6037 -0.1233 

3.5 3.0983 0.5302 -0.0184 

4.0 3.2444 0.4716 -0.1028 

4.5 3.3943 0.4241 0.2351 

5.0 3.5472 0.3850 0.3753 
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Fig. 12 Changes in displacement in respect to distance from the fault for linear slip when 

boundary of half-space is stress free. 

 

 
Fig. 13 Changes in displacement in respect to distance from the geological fault for parabola type 

slip when boundary of half-space is stress free. 
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Fig. 14 Changes in displacement in respect to distance from the fault for linear slip when 

boundary of half-space is rigid. 

 

Fig. 15 Changes in displacement in respect to distance from the geological fault for parabola type 

slip when boundary of half-space is rigid. 
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Conclusion 

Displacement field for linear and parabolic strike-slip fault has been calculated by using green function 

approach and two types of boundary condition have been considered on boundary: one is traction free and 

other is rough rigid. It has been observed graphically that displacement does not exist when the distance from 

the fault trace is zero and it is in non-uniform pattern in monoclinic medium while it is in uniform form for 

orthotropic and isotropic medium and also anti-symmetric in nature about the fault trace. One more thing has 

also been noticed that deformation in parabolic strike slip is more as comparison to linear strike-slip fault. 
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