Evaluation of Cement Space Reproduction in Copings Fabricated by 3d Printing Technology using Computer Aided Designing: An Invitro Study

¹Chaitra Ashok; ²Vidya K. Shenoy; ³Shobha J Rodrigues; ⁴Cassandra Maria Pereira

- ^{1,4} Postgraduate student, Department of Prosthodontics, A J Institute of Dental Sciences, Mangalore, Karnataka, India
 - ²Head of Department Professor, Department of Prosthodontics, AJ Institute of India, Mangalore, Karnataka, India
- ³Department of Prosthodontics, AJ Institute of Dental Sciences, Mangalore, Karnataka, India

Corresponding Author: Dr Vidya K Shenoy

Structured Abstract

Statement of Problem: Cement space has an important contribution in enhancing the fit of indirect restorations, and although Computer Aided Designing allows precise control of spacer thickness, variations between the design parameters and the actual fit especially in 3D printed copings may influence both clinical performance and casting accuracy. Analysis regarding the fit of 3D printed resin copings and their casted counterparts are lacking, and data on accuracy is needed. Purpose: The purpose of this study was to assess how accurately the programmed cement space values were reproduced by comparing the internal gap measurements of 3Dprinted resin copings with those of cast resin copings. Material and Methods: A typodont maxillary canine was prepared and scanned to design three groups of resin copings with cement spacers of 25μm, 40μm, and 55μm using CAD software. All the copings were 3D printed and half of them were cast into metal using the lost-wax technique. All samples were cemented, sectioned, and evaluated for internal gaps using a scanning electron microscope. Data were analyzed using t-tests, ANOVA, and Tukey's post hoc test (p < 0.05). Results: The mean values of the internal gaps were within permissible clinical limits (<120µm) for all the groups. The measured internal gap values were close to the programmed values (25µm, 40µm, 55µm) in resin copings (p>0.05), but not after casting (p<0.01). The printer consistently maintained uniform cement thickness, demonstrating reliable internal gap reproduction within each group (CV <10%). Conclusions: Within the limitations of the study, 3D printing showed accurate reproduction of cement space thickness in resin copings, while significant discrepancies were found after casting.

Key Words: 3D printed resin copings, cement space thickness reproduction, casted 3D printed resin copings, programmed cement space thickness.

Introduction

The dental field is undergoing a significant paradigm shift, and the primary reason is digitalization. There are two types of digital manufacturing techniques: additive and subtractive. 3D Printing (Micro-stereolithography) 3D Printing is an example of additive manufacturing technique that needs data from CAD software to work. 3DPT can be used to manufacture copings, anatomic crowns, and partial denture frameworks.1 Cement space provides space for the luting cement between the intaglio surface of the crown and the tooth surface, thereby, reducing the stress, increasing retention, and providing a better fit for the final prosthesis.2 Cement space also enhance the marginal adaptation between the prepared tooth and the restoration, reducing the probability of cement dissolution, secondary caries, accumulation of plaque, and periodontal problems.²

There have always been different schools of thought where some researchers feel that providing less cement space improves retention.3 In contrast, others agree that increased cement space thickness improves retention. 4-5A marginal gap as high as 649µm was observed when no die spacer was given.⁶ When the cement space thickness was raised from one to eight layers, the marginal adaptation was substantially enhanced from 479µm to 38µm.45,6An ideal cement space thickness of 25µm has been suggested.7 However, inconsistent results have been reported in the research involving paint-on die spacers available commercially.^{4,8,9}

Computer-aided design (CAD) technology facilitates the design of restorations on a virtual platform and the cement space can be programmed based on individual cases. Literature reveals studies that examine the accuracy of cement space using CAD for subtractive manufacturing. The milling technique involves the use of a specific milling bur of fixed diameter imposing problems like movement constraints which makes accurate reproduction of intricate shapes becomes challenging, limiting the precision of the final restoration.10 However, studies on accuracy of reproduction of die spacer thickness using CAD for 3DPT (additive manufacturing) is sparse. 2,10,11,12

The clinical fit of the definitive restoration may be compromised if the cement space parameters set in the computer-aided design program do not correspond with the internal fit of the 3D-printed resin copings.² Therefore, the purpose of this study was to assess how accurately the programmed cement space values of 25µm, 40µm and 55µm were reproduced in 3D printed resin copings and the cast copings. The null hypothesis is that the programmed cement space would be accurately reproduced in 3D printed resin and the cast copings.

Methodology

A typodont right maxillary canine was prepared to be provided with a porcelain fused to metal crown using the standard protocol. Care was taken that the entire procedure was done using a high-speed air-rotor handpiece with a continuous supply of water coolant. The typhodont model was scanned using an extra oral scanner (Medit T310-MEDIT corp. 8, Yangpyeong-ro 25-gil, Yeongdeungpo-gu, Seoul, Republic of Korea). The scanned image was then imported to the Exocad software version 2.4-7290. Here, the scanned image was modified, and a die was designed. The die was digitized and saved as a Standard Tessellation Language (STL) file and then printed using a 3D printer (Ackuretta Dentiq 120-Taiwan).

Using the scanned data, three different copings of o.5mm overall thickness was designed in the Exocad software (*Dental CAD 2.4 Plovdiv, Exocad* GmbH, *Germany*)

- Group 1: A cement space gap of 25μm was given.
- Group 2: A cement space gap of 40µm was given.
- Group 3: A cement space gap of 55µm was given.

12 resin copings were printed in each group making a total of 36 copings. Out of the 12 resin copings in each group, six were casted to Chromium-Cobalt (Cr-Co) alloy using the lost wax casting technique, further dividing the groups into group A (pre-cast) and B (post-cast).

All the copings were converted to STL format and then imported into the printing software (Alpha3D. Version 1.5, Alpha3D, 2021, Taiwan) and arranged on the virtual platform. A total of 36 resin samples (12 per group), were printed using the 3DPT.

Six samples from each group were invested in casting rings with a phosphate-bonded investment material (Varseo Vest C&B, BEGO, Germany), carried out by a single experienced technician in accordance with the manufacturer's instructions. Induction casting technique was employed for casting. The copings were then finished under standard protocol. The copings were finally abraded with 50-micron Al₂O₃ at a pressure of 325kPa.

The 18 resin samples and the 18 Cr-Co copings were luted on the dies using a resin cement (3M™ RelyX™ U200 Automix Self-Adhesive Resin Cement, Minnesota, U.S). After loading the copings with the resin, it was placed on the die with a rocking motion and was kept under a constant deadweight load of 6.1kg for 7mintill the setting process to complete.¹⁴Residual cement was removed using a fine micro brush. Specimens were cut in the bucco-lingual plane using a low-speed diamond disc under wet conditions.

The internal gap, as defined by Holmes et al., refers to the perpendicular measurement extending from the intaglio surface of the casting to the axial wall of the preparation. 16,17 The internal gap of the pre-cast and post-cast specimens were analyzed at five locations per section using a scanning electron microscope (Ultra55 FE-SEM Carl Zeiss EDS, FELMI ZFE, Austria). This gives a total of 10 points per die. Overall, 360 measurements were acquired for the entire study. The internal gap images were gathered from a Scanning electron microscope at 200x magnification.

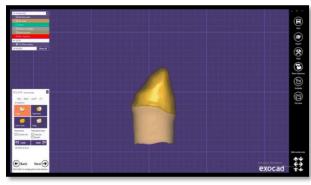


Figure 1: Coping design in Exocad

Figure 2: Cemented resin coping

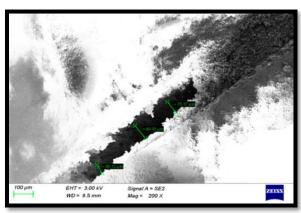


Figure 3: SEM image of group 2A copings

Figure 4: SEM image of group 3B

Statistical Analysis:

The data analysis was performed using a statistical software (IBM SPSS Statistics Version 30.0.0.0, NY). Descriptive statistics in the form of frequency distribution and percentage was used to describe the data. The programmed values were compared with the mean internal gap using a one-sample t-test. One way ANOVA test was applied for the mean measured cement thickness comparisons across six groups. Tukey's post hoc test was done to determine which comparison group is statistically significant. Paired t-tests were done for intergroup comparisons. Results were presented using tables and graphs. The level of significance was set at P < 0.05.

Results

The average internal gap measurements of the pre-cast (group 1A, 2A and 3B) and the post-cast groups (group 1B, 2B and 3B) is represented in Table1 and Graph 1.

Measurement precision within each group was assessed using the coefficient of variation (Table-1). A lower CV signifies higher precision. Conventionally, a CV of 10% or less is considered indicative of high precision.² According to Table-1 group 3B has shown highest precision and group 2A is the least precise. However, all the groups fall well under the 10% CV with group 2A going slightly above the margin. The finding reflects the printer's ability to maintain uniform internal gaps across specimens in the group. Table-2 presents the results of the one-sample t-test. Within the pre-cast group, p-values greater than 0.05 denotes the absence of a statistically significant difference between the sample mean and the programmed mean. Conversely, post-cast group shows p-values < 0.001, indicating a statistically significant difference.

Intra group and inter group comparisons using ANOVA test (Table-3) concluded that there are significant differences (p<0.001) in cement thickness between the groups. This indicates that there is a statistically significant difference in mean cement thickness in at least few of the six groups. Among all groups, 3D printed resin copings (1A, 2A, 3A) demonstrated cement thickness closest to their programmed values. In contrast, metal copings (especially 25µm, 40µm, and 55µm) exhibited notably higher values, suggesting deviation from the intended cement spacer thickness. Based on mean values alone, the resin groups outperformed the metal groups in replicating the programmed spacer thickness.

Pairwise comparisons of all the groups done using the Tukey HSD post-hoc test (Table-4) indicates significant differences in cement thickness among most groups, except for 1B vs 2A (p = 0.963) and 2B vs 3B (p = 0.007), which are not statistically different. Group 1A (Resin at 25 µm) demonstrates the smallest deviation from the programmed thickness and is significantly thinner than all other groups. In contrast, Group 3B (Metal at 55 µm) shows the greatest deviation, reflecting a larger cement space compared to the resin groups.

Table-5 indicates that there is a very weak negative correlation (-.192)between the two variables belonging to groups 1A and 1B, strong positive correlation (.873) between groups 2A and 2B and moderate positive correlation (.68o) between groups 3A and 3B.Twosided p value for group 2A vs 2B is 0.023 which is <0.05. Hence this is statistically significant. The correlation for groups 1A vs 1B and 3A vs 3B is not statistically significant, as the pvalue is much higher than 0.05.

In all comparative groups, the confidence intervals lie entirely above or below zero, indicating a statistically significant difference (Table-6). Consistently low p-values (p < 0.05) across all comparisons further confirm that the variables in each group differ significantly.

Tables Table 1: Group-wise Means, Standard deviations, Standard errors and Coefficient of Variation

Groups	Mean in	SD	SE	Coefficient of variation
	μm			(%)
ıA- 25μm precast	26.8500	2.3	0.94190	8.59
1B- 25µmpostcast	43.2000	2.77	1.13284	5.86
2A- 40µm precast	45.0000	4.84	2.16564	10.76
2B- 40µmpostcast	72.7667	4.77	1.94862	6.56
3A- 55μm precast	56.3500	3.09	1.26141	5.48
3B- 55μmpostcast	81.3333	3.9	1.59346	4.80
TOTAL = 36	54.2500	19.03297	3.17216	

 $SD = Standard\ deviation,\ SE = Standard\ error,\ \mu m = micrometre,\ \% = Percentage$

Table 2: Comparison of measured internal gap values to the programmed cement space values in the resin and metal copings

		Significance		95% CI of the Difference	
Groups	t	Two-sided	Mean	Lower	Upper
		p	Difference		
Group 1A	1.964	.107	1.85000	5712	4.2712
Group 2A	2.309	.069	5.00000	5670	10.5670
Group 3A	1.070	.333	1.35000	-1.8926	4.5926
Group 1B	16.066	<.001	18.20000	15.2879	21.1121
Group 2B	16.815	<.001	32.76667	27.7576	37.7757
Group 3B	16.526	<.001	26.33333	22.2372	30.4294

CI = Confidence Interval; t = t-statistic; % = percentage

Table 3: Intergroup and Intra group comparison with ANOVA

	Sum of Squares	Mean Square	F	Sig.
Between Groups	12235.253	2447.051	165.677	<.001
Within Groups	443.637	14.788		
Total	12678.890			

Table 4: Tukey HSD Post-hoc pairwise comparisons

Group Pair	Mean Difference (I-J)	Std. Error	p-value (Sig.)	
ıA vs ıB	-16.3500	2.22020	<.001	
1A vs 2A	-18.1500	2.22020	<.001	
1A vs 2B	-45.9167	2.22020	<.001	
ıA vs 3A	-29.5000	2.22020	<.001	
ıA vs 3B	-54.4833	2.22020	<.001	
1B vs 2A	-1.80000	2.22020	.963	
1B vs 2B	-29.56667	2.22020	<.001	
1B vs 3A	-13.15000	2.22020	<.001	
1B vs 3B	-38.33333	2.22020	<.001	
2A vs 2B	-27.76667	2.22020	<.001	
2A vs 3A	-11.35000	2.22020	<.001	
2A vs 3B	-36.33333	2.22020	<.001	
2B vs 3A	-16.41667	2.22020	<.001	
2B vs 3B	-8.56667	2.22020	.007	
3A vs 3B	-24.98333	2.22020	<.001	

Std. Error = Standard error of mean; Sig. = significance level

Table 5: Pearson's Correlation of pre-cast and post-cast groups

		Significance
Groups	Corelation	Two-Sided p-value
1A and 1B	192	.718
2A and 2B	.873	.023
3A and 3B	.680	.137

				95% CI Difference	of the		Significance
Groups	Mean	Std.	Std.	Lower	Upper	t	Two-Sided p
		Deviation	Error				
			Mean				
ıA and ıB	-16.35000	3.93434	1.60619	-20.47883	-12.22117	-10.179	<.001
2A and 2B	-27.76667	2.59281	1.05851	-30.48765	-25.04568	-26.232	<.001
3A and 3B	-24.98333	2.89511	1.18192	-28.02157	-21.94510	-21.138	<.001

Table 6: Paired t-test results for intergroup comparisons

CI = Confidence Interval; t = t-statistic; Std. Error = Standard Error of the Mean; Std. *Deviation = Standard Deviation;* % = percentage

Discussion:

Null hypothesis was accepted in the case of resin copings manufactured by 3D printing, as the measured internal gaps closely resembled the programmed cement space thickness. Conversely, the null hypothesis was rejected for the casted resin copings, since their measured internal gaps did not correspond to the programmed cement space thickness.

Previous studies evaluating the internal gaps of 3DPT resin copings in relation to the programmed spacer thickness are sparse, thereby limiting the direct comparison with the findings of the current study challenging. Nevertheless, the outcomes of this study may be compared with prior studies focusing on alternative techniques, materials, and the marginal/internal fit of 3D-printed resin crowns. 2,10,11,12,17

Accuracy describes the closeness of a measurement to the true value, while precision refers to how consistently the same measurement is obtained under unchanged conditions, regardless of whether it's close to the true value. This precision is calculated with the help of coefficient of variation and CV values of <10% was considered acceptable.² In the present study, the consistent performance in maintaining cement thickness uniformity highlights the printer's capacity to reproduce internal gaps effectively within each group.

Previous investigations have evaluated the internal gaps associated with CAD/milling technologies. Kokubo et al. reported that In-Ceram crowns with a programmed spacer of 50 μm exhibited internal gaps of 165.9–200.3 μm, about three to four times the intended value. 18 Similarly, Moldovan et al. found internal gaps of 100-130 μm for CAD/Cercon (10-20 μm spacer) and 60-70 μm for CAD/Cerec (-100 μm), indicating system-dependent variations in fit. 19 Shin et al. investigated how different cement space parameters influence the marginal and internal adaptation of 3D-printed definitive resin crowns and suggested a 70 µm cement space as the most suitable value for achieving optimal adaptation.10 While opinions differ regarding whether thinner or thicker spacers enhance retention, there is general consensus that increasing the cement space thickness leads to better marginal adaptation.^{2,4,5} Additionally, ceramic crowns showed enhanced fracture resistance when the average internal gap at the axial wall was around 73µm.²⁰

Direct comparison of resin and metal copings showed that casted copings had greater cement thickness, indicating poor correspondence between programmed and reproduced values. Bhaskaran et al. found Co-Cr copings from 3D-printed resin had smaller marginal (27.22 µm) and internal gaps (36.15 µm) than conventional castings, though slightly higher than DMLS copings (10.52 μm and 41.22 μm). 11 Arora et al. reported better marginal fit for resin copings than PMMA copings after casting.¹⁷ Kale et al. demonstrated that increasing the cement space from 30 to 50 µm reduced marginal discrepancy, improving fit.15 In the present study, a direct relation couldn't be established between the programmed value and the internal fit as the mean internal gap with the 25µm and 55µm were closer to the programmed value than the 45µm group. However, it was not statistically significant.

Various techniques measure internal gaps, including Micro-CT, optical or digital microscopy, and the replica technique (silicone impression).^{2,10,21} In this study, a scanning electron microscope was used for its high resolution, magnification, depth of field, accuracy, reliability, and accessibility.

The limitations of this include the small sample size and the inability to fully replicate clinical conditions. This study variables like the point of measurement, material and technology used might affect the results. Potential inaccuracies might have occurred during the scanning and printing stages. Additionally, the study was limited to only 10 measurements per specimen, and the findings are specific to the particular CAD and 3D printing system used. Therefore, the outcomes may not necessarily extend to alternative software or hardware setups. Routine dimensional changes caused by lost wax technique of casting were also not considered.

Further research is needed to assess the accuracy of additive technologies, which exhibit shrinkage errors and resolution limits. In digital dentistry, subtractive methods are considered more accurate and have stronger literature support due to longer market presence. Studies should focus on addressing additive manufacturing shortcomings to improve clinical performance.

Conclusion:

Taking into consideration the limitations of this in vitro investigation, the following conclusions were reached:

- 1. There was no significant difference between the programmed cement space thickness values and the acquired internal gap means in the 3D printed resin copings.
- 2. There was a significant difference between the programmed cement space thickness values and the acquired internal gap means in the post cast copings.
- 3. There was a significant difference when comparing the pre-cast and post-cast cement space thickness values.
- 4. The printer consistently maintained uniform cement thickness, demonstrating reliable internal gap reproduction within each group.

References:

- Dawood A, Marti BM, Sauret-Jackson V, Darwood A. (2015) Br Dent J. 3D printing in dentistry 219(11):521-9.
- 2. Hoang LN, Thompson GA, Cho S, Berzins DW, Ahn KW. (2015) The Journal of Prosthetic Dentistry. Die spacer thickness reproduction for central incisor crown fabrication with combined computer-aided design and 3D printing technology: An in vitro study.113 (5):398-404.
- 3. Vermilyea SG, Kuffler MJ, Huget EF. (1983) J Prosthet Dent. The effects of die relief agent on the retention of full coverage castings.50:207-10.
- 4. Carter SM, Wilson PR. (1997) Aust Dental J. The effects of die-Spacing on postcementation crown elevation and retention.42:192-8.
- 5. Eames WB, O'Neal SJ, Monteiro J, Miller C, Roan JD Jr, Cohen KS. (1978) J Am Dent Assoc. Techniques to improve the seating of castings. 96:432-7.
- 6. Grajower R, Zuberi Y, Lewinstein I. (1989) J Prosthet Dent. Improving the fit of crowns with die spacers.61:555-63.
- 7. Hollenback GM. (1943) J Am Dent Assoc. Precision gold inlays made by a simple technic. 30:99-109.
- 8. Campagni WV, Preston JD, Reisbick MH. (1982) J Prosthet Dent. Measurement of paint-on die spacers used for casting relief. 47:606-11.

- 9. Campbell SD. (1990) J Prosthet Dent. Comparison of conventional paint-on die spacers and those used with the all-ceramic restorations. 63:151-5.
- 10. Shin H, Kang Y, Kim H, Kim J. (2025) The Journal of Prosthetic Dentistry. Effect of cement space settings on the marginal and internal fit of 3D printed definitive resin crowns.133:821-6.
- 11. Bhaskaran E, Azhagarasan NS, Miglani S, Ilango T, Krishna GP, Gajapathi B. (2013) J Indian Prosthodont Soc. Comparative evaluation of marginal and internal gap of Co-Cr copings fabricated from conventional wax pattern, 3D printed resin pattern and DMLS Tech: an in vitro study. 13:189-95
- 12. Yadav A, Arora A, Upadhyaya V, Jain P, Verma M. (2018) J Indian Prosthodont Soc. Comparison of marginal and internal adaptation of copings fabricated from three different fabrication techniques: An in vitro study. 18:102.
- 13. Mead R. 1998. The design of experiments. Cambridge, New York: Cambridge University Press. 620 p.
- 14. Wang CJ, Millstein PL, Nathanson D. (1992) J Prosthet Dent. Effects of cement, cement space, marginal design, seating aid materials, and seating force on crown cementation. 67:786-90.
- 15. Kale E, Seker E, Yilmaz B, Özcelik TB. (2016) The Journal of Prosthetic Dentistry. Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. 116:890-5.
- 16. Holmes JR, Bayne SC, Holland GA, Sulik WD. (1989) J Prosthet Dent. Considerations in measurement of marginal fit. 62:405-8.
- 17. Arora O, Ahmed N, Maiti S. (2022) Journal of Advanced Pharmaceutical Technology & Research. Comparison of the marginal accuracy of metal copings fabricated by 3D-printed resin and milled polymethyl methacrylate - An in vitro study. 13(Suppl 1):S238-S242.
- 18. Kokubo Y, Nagayama Y, Tsumita M, Ohkubo C, Fukushima S, von Steyern PV. (2005) J of Oral Rehabilitation. Clinical marginal and internal gaps of In-Ceram crowns fabricated using the GN-I system. 32:753-8.
- 19. Moldovan O, Luthardt RG, Corcodel N, Rudolph H. (2011) Dental Materials. Threedimensional fit of CAD/CAM-made zirconia copings. 27:1273-8.
- 20. Grajower R, Zuberi Y, Lewinstein I. (1989) J Prosthet Dent. Improving the fit of crowns with die spacers. 61:555-63.
- 21. ArRejaie A, Alalawi H, Al-Harbi F, Abualsaud R, Thobity A. (2018) Int J Periodontics Restorative Dent.Internal Fit and Marginal Gap Evaluation of Zirconia Copings Using Microcomputed Tomography: An In Vitro Analysis. 38:857-63.