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1 Introduction 

The detection of COVID-19 at Wuhan, China, in 2019 marked the beginning of a 

significant global health crisis. The recent emergence of the Omicron variant of SARS-

CoV-2, has intensified concerns regarding disease management and control efforts. 

Designated as B.1.1.529 by the World Health Organization (WHO), the Omicron variant 

was first identified in South Africa in November 2021and has swiftly disseminated across 

various countries. The Centers for Disease Control and Prevention warns that individuals 

infected with Omicron can easily spread the virus, regardless of vaccination status or 

symptom presence [11,13]. Common symptoms whichincludes body pain, fatigue, runny 

nose, cough, and congestion. In response to its emergence, many countries have 

implemented travel restrictions to and from affected regions, aiming to curb further 

transmission.Its rapid spread has sparked widespread apprehension, prompting urgent 

investigations into its properties, including its potential impact on disease transmission, 

severity, and vaccine effectiveness. Earlyepidemio logical data suggest that the Omicron 

variant exhibits enhanced transmissibility compared toprior variants, with reports of 

exponential growth in cases in affected regions.  

Abstract : In this study, we propose a novel mathematical model to characterize the 

transmission dynamics of the Omicron variant of COVID-19, incorporating fractional 

calculus with Caputo-Fabrizio derivative to capture the complex behaviour of the 

epidemic. The proposed model extends traditional compartmental models by 

introducing fractional-order differential equations, which provide a more accurate 

representation of non-local and memory effects observed in infectious disease 

dynamics. Using Laplace transform and fixed point technique in Banach space, we 

study the stability results of Omicron variant in different populations, taking into 

account of various epidemiological parameters and control measures.  

Keywords: Caputo Fabrizio derivative, COVID-19 model, Laplace transform method, 

fixed point technique.  
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Mathematical modelling plays a crucial role in understanding and predictingthe 

spread of infectious diseases, providing valuable insights for public health interventions 

and policydecisions [10]. So, we create a deterministic model for COVID-19 infection that 

consist of the humanpopulation and the SARS-CoV-2 mutant variant Omicron (O) [9, 14 – 

16]. 

Fractional calculus, a branch of mathematical analysis, expands the realms of 

differentiation and integration to include non-integer orders. It encompasses the study of 

derivatives and integrals of arbitrary order, often referred to as fractional derivatives and 

fractional integrals, respectively. Widely applied across disciplines such as mechanics, 

biology, engineering, economics, and physics, fractional calculus enables the 

representation of diverse phenomena with precision. Since they possess memory effect, 

fractional models facilitate accurate predictions of physical systems and mathematical 

models. This field has gained prominence for its capacity to capture systems with memory, 

long-range interactions, and non-local behaviours, thus proving invaluable in numerous 

applications.Fractional differential equations (FDEs) have attracted considerable interest 

due to their capacity to represent complex phenomena [5]. These equations effectively 

capture non local relations in both space and time, incorporating crucial memory 

conditions [12].With FDEs finding widespread utility in engineering and scientific 

domains, researchers in this field have experienced substantial growth on a global scale. 

In recent decades, various types of fractional operators have been proposed to offer 

deeper insights into model dynamics. Among the commonly utilized operators are the 

Riemann–Liouville, Caputo, Caputo–Fabrizio, Katugampola, Atangana–Baleanu, 

Hadamard, and others. Each operator carries its own set of advantages and disadvantages. 

For instance, the Caputo fractional operator incorporates initial conditions with integer-

order derivatives, providing clear physical interpretations, but it may encounter 

singularities at certain points.To address such limitations, Caputo and Fabrizio recently 

recommended a unique fractional derivative operator featuring a nonsingular and 

exponential kernel [6]. Additionally, Losada and Nieto have examined the properties of a 

recently proposed fractional derivative [7]. This operator has a nonlocal and nonsingular 

kernel, making it particularly well-suited for describing and analysing the dynamics of 

phenomena like COVID-19.For further details on the Caputo–Fabrizio derivative operator, 

interested readers can refer to [1 – 4,8]. 

In this context, we propose a novel fractional mathematical model to characterize 

the transmissiondynamics of the Omicron variant, incorporating the Caputo-Fabrizio 

derivative to capture the memory effects observed in infectious disease dynamics. Here, 

the approximate solutions are obtained using Laplace transforms and iterative 

techniques.Further we analyse the model and investigateits stability. This model aims to 

provide a more accurate representation of the complex transmissiondynamics of the 

Omicron variant and facilitate evidence-based decisionmaking in the ongoing 

globalresponse to the COVID-19 pandemic. 
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The structure of this paper is organized as follows: Section 2 provides the basic 

definitions related to fractional derivative and transform technique. In Section 3, we 

providecompartmental model of Omicron virus. Section 4, deals with the fractional 

compartmental model using Caputo Fabrizio derivative. The stability analysis and its 

results of the model is discussed in Section 5.   

 

2 Preliminaries 

In this section, we produce the basic definitions related to fractional derivative and 

Laplace transform. 

 

Definition 2.1. [12]  

The Caputo fractional derivative of order β, is given as Dτeβ (v(τe)) = 1
Γ(m − β)∫(τe − s)m−β−1 dndtn v(s)ds,τe

0  

where m–1 ≤ β < m, m ∈ {Z+∪0}. 

 

Definition 2.2. [6]  

Let v ∈H1(c, d), d > c, β ∈ (0, 1). The time fractional Caputo Fabrizio (CF)derivative is 

expressed as Dτeβ (v(τe))CF = N(β)(1 − β)∫ exp [− β(τe − s)1 − β
] v′(s)ds,    τe ≥ 0,   0 < β < 1,τe

0  

where N(β)denotes the normalisation function that depends on β, satisfying N(0) =N(1) = 
1. 

 

Definition 2.3. [6]  

The CF fractional integral of order β ∈ (0, 1) is defined as Iτeβ (v(τe))CF = 2(1 − β)(2 − β)N(β) v(τe) + 2β(2 − β)N(β)∫ v(s)ds,    τe ≥ 0,τe
0  

where Dτeβ (v(τe))CF = 0, when the function v is constant. 

 

Remark 2.1. [6] 

From the above definitions, for any given function, the fractional integral of order 0 < β ≤ 
1is an average of the respective functions and their integrals of order 1. It further gives (1 − β)(2 − β)N(β) v(τe) + β(2 − β)N(β) = 12 . 
From the above equation, it is obvious that N(β) = 2(2 − β) , 0 ≤ β ≤ 1. 
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Definition 2.3. [6]  

The Laplace transform for the CF derivative of order β ∈ (0, 1] for p ∈ Z+ isdefined by, L ( Dτep + βCF v(τe)) (x1) = 11 − β
L (v(p+1)(τe)) L(exp (− β1 − β

τe)) 

= 𝑥1𝑝+1𝐿(𝑣(𝜏𝑒)) − 𝑥1𝑝𝑣(0) − 𝑥1𝑝−1𝑣′(0) − ⋯− 𝑣(𝑝)(0)𝑥1 + 𝛽(1 − 𝑥1)  

 

Particularly, we have 𝐿 ( 𝐷𝜏𝑒 𝛽𝐶𝐹 𝑣(𝜏𝑒)) (𝑥1) = 𝑥1 𝐿(𝑣(𝜏𝑒))𝑥1 + 𝛽(1 − 𝑥1) ,                                                      𝑝 = 0,   
                  𝐿 ( 𝐷𝜏𝑒 𝛽+1𝐶𝐹 𝑣(𝜏e)) (𝑥1) = 𝑥12𝐿(𝑣(𝜏𝑒)) − 𝑥1 𝑣(0) − 𝑣′(0)𝑥1 + 𝛽(1 − 𝑥1) ,                 𝑝 = 1.          

 

3 Model Framework   

 

The human population (N) is divided into distinct classes like the Susceptible (S), 

Exposed (E), Asymptomatically infected (IA), Symptomatically infected (IS), Omicron 

infected (IO), Quarantined (Q), Hospitalized (H) and the Recovered (R). Here (M) 

indicates the viral load in the environment caused by the infected individuals. So, we have 

 𝑁(𝜏𝑒) = 𝑆(𝜏𝑒) + 𝐸(𝜏𝑒) + 𝐼𝐴(𝜏𝑒) + 𝐼𝑆(𝜏𝑒) + 𝐼𝑂(𝜏𝑒) + 𝑄(𝜏𝑒) + 𝐻(𝜏𝑒) + 𝑅(𝜏𝑒) 

 

at any time 𝜏𝑒 . From the assumptions, the model is expressed as 

 𝑑𝑆(𝜏𝑒)𝑑𝜏𝑒 = 𝛬 − 𝛽𝐼(𝐼𝐴 + 𝜅𝐼𝑆 + 𝜈𝐼𝑂)𝑆𝑁  −  𝜇𝑆,  𝑑𝐸(𝜏𝑒)𝑑𝜏𝑒 = 𝛽𝐼(𝐼𝐴 + 𝜅𝐼𝑆 + 𝜈𝐼𝑂)𝑆𝑁  − (𝜇 + 𝜏𝐼)𝐸, 𝑑𝐼𝐴(𝜏𝑒)𝑑𝜏𝑒 = 𝜏𝐼𝜓𝐸 − (𝛿1 + 𝜇)𝐼𝐴,                         𝑑𝐼𝑆(𝜏𝑒)𝑑𝜏𝑒 = (1 −  𝜓 −  𝜙)𝜏𝐼𝐸 − (𝛿2 + 𝜇)𝐼𝑆,        𝑑𝐼𝑂(𝜏𝑒)𝑑𝜏𝑒 = 𝜙𝜏𝐼𝐸 − (𝛿3 + 𝜇)𝐼𝑂,                        𝑑𝑄(𝜏𝑒)𝑑𝜏𝑒 = 𝜀1𝐸 − (𝜇 + 𝜀2 + 𝜂1)𝑄,                 𝑑𝐻(𝜏𝑒)𝑑𝜏𝑒 = 𝜀3𝐼𝑆  + ε4𝐼𝑂 + 𝜀2𝑄 + (𝜇 + 𝜂2)𝐻, 𝑑𝑀(𝜏𝑒)𝑑𝜏𝑒 = 𝑚1𝐼𝑆  +  𝑚2𝐼𝐴 + 𝑚3𝐼𝑂  −  𝑚4𝑀, 
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𝑑𝑅(𝜏𝑒)𝑑𝜏𝑒 = 𝛿1𝐼𝐴  +  𝛿2𝐼𝑆 + 𝛿3𝐼𝑂  + 𝜂1𝑄 + 𝜂2𝐻 −  𝜇𝑅,                                                  (3.1) 

subject to the non negative conditions: 𝑆(0)  =  𝑆0 ≥ 0, 𝐼𝑆(0)  =  𝐼𝑆0 ≥ 0, 𝐻(0)  =  𝐻0 ≥ 0,𝐸(0)  =  𝐸0 ≥ 0, 𝐼𝑂(0)  =  𝐼𝑂0 ≥ 0, 𝑅(0)  =  𝑅0 ≥ 0,𝐼𝐴(0)  =  𝐼𝐴0 ≥ 0, 𝑄(0)  =  𝑄0 ≥ 0, 𝑀(0)  =  𝑀0 ≥ 0.                                   (3.2) 

 

The description of the parameters for the Omicron virus is given in Table 1. 

 

Table 1: Description of the model parameters 

Parameter Description 

µ mortality rate 

Λ birth rate 

τI incubation period of infected class 

βI infected rate of healthy class  

κ probability of infectiousness by (IS) 

ν probability of infectiousness by (IO) 

τIψ joining rate to (IA) 

(1 − ψ − ϕ)τI joining rate to (IS) 

ϕτI joining rate to (IO) 

ψ proportion of (IA) 

ϕ proportion of (IO) 

δ1 recovery rate from (IA) class 

δ2 recovery rate from (IS) class 

δ3 recovery rate from (IO) class 

ε1 E class quarantine rate 

ε2 Q class hospitalized rate 

ε3 moving rate from IS to H 

ε4 moving rate from IO to H 

η1 Quarantine recovery rate 

η2 Hospitalized recovery rate 

m1 Viral contribution to M by (IS) 

m2 Viral contribution to M by (IA) 

m3 Viral contribution to M by (IO) 

m4 removal rate of virus from M 

 

4 Caputo - Fabrizio Model and its properties 

Based on the characteristic of the virus, we develop a Caputo - Fabrizio fractional 

model. In addition,we determine the conditions that minimizes and controls the spread of 

the virus in the community. Thismodel is given by 
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𝐷𝜏𝑒𝛽 (𝑆(𝜏𝑒))𝐶𝐹 = 𝛬 − 𝛽𝐼(𝐼𝐴 + 𝜅𝐼𝑆 + 𝜈𝐼𝑂)𝑆𝑁  −  𝜇𝑆,  𝐷𝜏𝑒𝛽 (𝐸(𝜏𝑒))𝐶𝐹 = 𝛽𝐼(𝐼𝐴 + 𝜅𝐼𝑆 + 𝜈𝐼𝑂)𝑆𝑁  − (𝜇 + 𝜏𝐼)𝐸, 𝐷𝜏𝑒𝛽 (𝐼𝐴(𝜏𝑒))𝐶𝐹 = 𝜏𝐼𝜓𝐸 − (𝛿1 + 𝜇)𝐼𝐴,                         𝐷𝜏𝑒𝛽 (𝐼𝑆(𝜏𝑒))𝐶F = (1 −  𝜓 −  𝜙)𝜏𝐼 𝐸 − (𝛿2 + 𝜇)𝐼𝑆,        𝐷𝜏𝑒𝛽 (𝐼𝑂(𝜏𝑒))𝐶𝐹 = 𝜙𝜏𝐼𝐸 − (𝛿3 + 𝜇)𝐼𝑂,                        𝐷𝜏𝑒𝛽 (𝑄(𝜏𝑒))𝐶𝐹 = 𝜀1𝐸 − (𝜇 + 𝜀2 + 𝜂1)𝑄,                 𝐷𝜏𝑒𝛽 (𝐻(𝜏𝑒))𝐶𝐹 = 𝜀3𝐼𝑆  +  𝜀4𝐼𝑂 + 𝜀2𝑄 + (𝜇 + 𝜂2)𝐻, 𝐷𝜏𝑒𝛽 (𝑀(𝜏𝑒))𝐶𝐹 = 𝑚1𝐼𝑆  +  𝑚2𝐼𝐴 + 𝑚3𝐼𝑂  −  𝑚4𝑀, 𝐷𝜏𝑒𝛽 (𝑅(𝜏𝑒))𝐶𝐹 = 𝛿1𝐼𝐴  +  𝛿2𝐼𝑆 + 𝛿3𝐼𝑂  + 𝜂1𝑄 + 𝜂2𝐻 −  𝜇𝑅,                                 (4.1) 

subject to the initial condition (3.2). Here α denotes the order of the derivative such that 

0<α≤1. 
 

5 Iterative Scheme   

 Let us consider the model (4.1) together with the initial conditions given in (3.2). It 

is obvious, that the expressions S×IA, S×IS, S×IO present in the system of equation are 

nonlinear. Now apply Laplace transformation to both sides of the model (4.1), we get 𝑥1 𝐿(𝑆(𝜏𝑒)) − 𝑆(0)𝑥1 + 𝛼(1 − 𝑥1) = 𝐿 (𝛬 − 𝛽𝐼(𝐼𝐴 + 𝜅𝐼𝑆 + 𝜈𝐼𝑂)𝑆𝑁  −  𝜇𝑆),  𝑥1 𝐿(𝐸(𝜏𝑒))  −  𝐸(0)𝑥1 + 𝛼(1 − 𝑥1) = 𝐿 (𝛽𝐼(𝐼𝐴 + 𝜅𝐼𝑆 + 𝜈𝐼𝑂)𝑆𝑁  − (𝜇 + 𝜏𝐼)𝐸), 𝑥1 𝐿(𝐼𝐴(𝜏𝑒))  − 𝐼𝐴(0)𝑥1 + 𝛼(1 − 𝑥1) = 𝐿(𝜏𝐼𝜓𝐸 − (𝛿1 + 𝜇)𝐼𝐴),                         𝑥1 𝐿(𝐼𝑆(𝜏𝑒))  − 𝐼𝑆(0)𝑥1 + 𝛼(1 − 𝑥1)  = 𝐿((1 −  𝜓 −  𝜙)𝜏𝐼𝐸 − (𝛿2 + 𝜇)𝐼𝑆),        𝑥1 𝐿(𝐼𝑂(𝜏𝑒))  − 𝐼𝑂(0)𝑥1 + 𝛼(1 − 𝑥1) = 𝐿(𝜙𝜏𝐼𝐸 − (𝛿3 + 𝜇)𝐼𝑂),                        𝑥1 𝐿(𝑄(𝜏𝑒))  −  𝑄(0)𝑥1 + 𝛼(1 − 𝑥1) = 𝐿(𝜀1𝐸 − (𝜇 + 𝜀2 + 𝜂1)𝑄),                 𝑥1 𝐿(𝐻(𝜏𝑒))  −  𝐻(0)𝑥1 + 𝛼(1 − 𝑥1) = 𝐿(𝜀3𝐼𝑆  +  𝜀4𝐼𝑂 + 𝜀2𝑄 + (𝜇 + 𝜂2)𝐻), 𝑥1 𝐿(𝑀(𝜏𝑒))  −  𝑀(0)𝑥1 + 𝛼(1 − 𝑥1) = 𝐿(𝑚1𝐼𝑆  +  𝑚2𝐼𝐴 + 𝑚3𝐼𝑂  −  𝑚4𝑀), 𝑥1 𝐿(𝑅(𝜏𝑒))  −  𝑅(0)𝑥1 + 𝛼(1 − 𝑥1)= 𝐿(𝛿1𝐼𝐴  +  𝛿2𝐼𝑆 + 𝛿3𝐼𝑂  + 𝜂1𝑄 + 𝜂2𝐻 −  𝜇𝑅).                        (5.1) 
On rearranging the first equation of (5.1), we get 
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𝐿(𝑆(𝜏𝑒)) = 𝑆(0)𝑥1 + (𝑥1 + 𝛼(1 − 𝑥1)𝑥1 ) 𝐿 (𝛬 − 𝛽𝐼(𝐼𝐴 + 𝜅𝐼𝑆 + 𝜈𝐼𝑂)𝑆𝑁  −  𝜇𝑆) (5.2) 

Applying inverse Laplace transformation to the equation (5.2), we get 𝑆(𝜏𝑒) = 𝑆(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 ) 𝐿 (𝛬 − 𝛽𝐼(𝐼𝐴 + 𝜅𝐼𝑆 + 𝜈𝐼𝑂)𝑆𝑁  −  𝜇𝑆)] (5.3) 

By applying the initial conditions, we obtain the recursive formula 𝑆𝑝+1(𝜏𝑒) = 𝑆𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 ) 𝐿 (𝛬 − 𝛽𝐼 (𝐼𝐴𝑝 + 𝜅𝐼𝑆𝑝 + 𝜈𝐼𝑂𝑝) 𝑆𝑝𝑁 −  𝜇𝑆𝑝)] (5.4) 

Similarly, on proceeding for the rest of the equations in (5.1), we get 𝐸𝑝+1(𝜏𝑒) = 𝐸𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝛽𝐼 (𝐼𝐴𝑝 + 𝜅𝐼𝑆𝑝 + 𝜈𝐼𝑂𝑝) 𝑆𝑝𝑁  − (𝜇 + 𝜏𝐼)𝐸𝑝)] , 
𝐼𝐴𝑝+1(𝜏𝑒) = 𝐼𝐴𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝜏𝐼𝜓𝐸𝑝  −  (𝛿1 + 𝜇)𝐼𝐴𝑝)],          
𝐼𝑆𝑝+1(𝜏𝑒) = 𝐼𝑆𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 ((1 −  𝜓 −  𝜙)𝜏𝐼𝐸𝑝 − (𝛿2 + 𝜇)𝐼𝑆𝑝)], 
𝐼𝑂𝑝+1(𝜏𝑒) = 𝐼𝑂𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝜙𝜏I𝐸𝑝 − (𝛿3 + 𝜇)𝐼𝑂𝑝)], 
𝑄𝑝+1(𝜏𝑒) = 𝑄𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿(𝜀1𝐸𝑝 − (𝜇 + 𝜀2 + 𝜂1)𝑄𝑝)], 𝐻𝑝+1(𝜏𝑒) = 𝐻𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝜀3𝐼𝑆𝑝 + 𝜀4𝐼𝑂𝑝 + 𝜀2𝑄𝑝 + (𝜇 + 𝜂2)𝐻𝑝)], 
𝑀𝑝+1(𝜏𝑒) = 𝑀𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝑚1𝐼𝑆𝑝  +  𝑚2𝐼𝐴𝑝 + 𝑚3𝐼𝑂𝑝  −  𝑚4𝑀𝑝)], 𝑅𝑝+1(𝜏𝑒) = 𝑅𝑝(0)+ 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝛿1𝐼𝐴𝑝  +  𝛿2𝐼𝑆𝑝 + 𝛿3𝐼𝑂𝑝  + 𝜂1𝑄𝑝 + 𝜂2𝐻𝑝 −  𝜇𝑅𝑝)] 
(5.5) 

The series solutions achieved by the method are given by,  

 𝑆 =  ∑ 𝑆𝑝∞

𝑝=0                       𝐸 =  ∑ 𝐸𝑝∞

𝑝=0 𝐼𝐴 =  ∑ 𝐼𝐴𝑝∞

𝑝=0  

𝑄 =  ∑ 𝑄𝑝∞

𝑝=0 𝐼𝐴  =  ∑ 𝐼𝐴𝑝∞

𝑝=0 𝐼𝑂  =  ∑ 𝐼𝑂𝑝∞

𝑝=0  

𝐻 =  ∑ 𝐻𝑝∞

𝑝=0                     𝑀 =  ∑ 𝑀𝑝∞

𝑝=0                           𝑅 =   ∑ 𝑅𝑝∞

𝑝=0  

The nonlinear terms S×IS, S×IA and S×IO can be represented as 
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𝑆 × 𝐼𝑆  =  ∑ 𝑊𝑝∞

𝑝=0 𝑆 × 𝐼𝐴  =  ∑ 𝑈𝑝∞

𝑝=0 𝑆 × 𝐼𝑂 =  ∑ 𝑉𝑝∞

𝑝=0  

Here Wp, Up and Vp are further decomposed into: 𝑊𝑝  =  ∑𝑆𝑖𝑝
𝑖=0 ∑𝐼𝑆𝑖

𝑝
𝑖=0 − ∑ 𝑆𝑖𝑝−1

𝑖=0 ∑ 𝐼𝑆𝑖
𝑝−1
𝑖=0  

𝑈𝑝  =  ∑𝑆𝑖𝑝
𝑖=0 ∑𝐼𝐴𝑖

𝑝
𝑖=0 − ∑ 𝑆𝑖𝑝−1

𝑖=0 ∑ 𝐼𝐴𝑖
𝑝−1
𝑖=0  

                                                     𝑉𝑝  =  ∑𝑆𝑖𝑝
𝑖=0 ∑𝐼𝑂𝑖

𝑝
𝑖=0 − ∑ 𝑆𝑖𝑝−1

𝑖=0 ∑ 𝐼𝑂𝑖
𝑝−1
𝑖=0  

By applying the initial conditions (3.2) in the equations (5.4) and (5.5), we obtain the 

recursive formula, 𝑆𝑝+1(𝜏𝑒) = 𝑆𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 ) 𝐿 (𝛬 − 𝛽𝐼 (𝐼𝐴𝑝 + 𝜅𝐼𝑆𝑝 + 𝜈𝐼𝑂𝑝) 𝑆𝑝𝑁 −  𝜇𝑆𝑝)], 
𝐸𝑝+1(𝜏𝑒) = 𝐸𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 ) 𝐿 (𝛽𝐼 (𝐼𝐴𝑝 + 𝜅𝐼𝑆𝑝 + 𝜈𝐼𝑂𝑝) 𝑆𝑝𝑁  − (𝜇 + 𝜏𝐼)𝐸𝑝)], 

𝐼𝐴𝑝+1(𝜏𝑒) = 𝐼𝐴𝑝(0) + L−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 ) 𝐿 (𝜏𝐼𝜓𝐸𝑝  −  (𝛿1 + 𝜇)𝐼𝐴𝑝)], 
𝐼𝑆𝑝+1(𝜏𝑒) = 𝐼𝑆𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 ((1 −  𝜓 −  𝜙)𝜏𝐼𝐸𝑝 − (𝛿2 + 𝜇)𝐼𝑆𝑝)], 
𝐼𝑂𝑝+1(𝜏𝑒) = 𝐼𝑂𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝜙𝜏𝐼𝐸𝑝 − (𝛿3 + 𝜇)𝐼𝑂𝑝)], 
𝑄𝑝+1(𝜏𝑒) = 𝑄𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿(𝜀1𝐸𝑝 − (𝜇 + 𝜀2 + 𝜂1)𝑄𝑝)], 𝐻𝑝+1(𝜏𝑒) = 𝐻𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝜀3𝐼𝑆𝑝 + 𝜀4𝐼𝑂𝑝 + 𝜀2𝑄𝑝 + (𝜇 + 𝜂2)𝐻𝑝)], 
𝑀𝑝+1(𝜏𝑒) = 𝑀𝑝(0) + 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝑚1𝐼𝑆𝑝  +  𝑚2𝐼𝐴𝑝 + 𝑚3𝐼𝑂𝑝  −  𝑚4𝑀𝑝)], 𝑅𝑝+1(𝜏𝑒) = 𝑅𝑝(0)+ 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝛿1𝐼𝐴𝑝  + 𝛿2𝐼𝑆𝑝 + 𝛿3𝐼𝑂𝑝  + 𝜂1𝑄𝑝 + 𝜂2𝐻𝑝 −  𝜇𝑅𝑝)].      
(5.6) 

6 Stability Analysis and its results 

Let (𝐵, || . ||)denote the Banach space, and T be an operator such that T: B → B. The 

exactrecurrence formula be denoted by wp+1 = r(T, wp) and F(T) denote the fixed-point set 

of T. In addition,there exists at least a xp∈ T, that converges to x ∈ F(T). Let yp∈ B and 

define jp = ∥yp+1 − r(T, yp)∥.𝑙𝑖𝑚𝑝→∞ 𝑗𝑝 = 0 ⟹𝑙𝑖𝑚𝑝→∞ 𝑦𝑝 = 𝑥,then the given iteration xp+1 = 

r(T,xp) is known as T stable. Basedon this approach, this sequence yp is bounded above, 
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and the iteration is called as Picard’s iteration. Inaddition, if all of the above conditions are 

satisfied for xp+1 = Txp, then ypis T stable. 

 

Theorem 6.1.   

Let (𝐵, || . ||)denote a Banach space and let T denote an operator such that T: B → 

Bsatisfying the condition ∥Tc– Td∥ ≤ Γ∥c − Tc∥ + ε∥c − d∥ 

for all c,d∈ B where 0 ≤ Γ, 0 ≤ ε < 1. Then T is Picard T - stable.  

 

Theorem 6.2. 

Consider the system of equation(5.6) related to the system (4.1) and also consider a 

self-map T defined as 𝑇 (𝑆𝑝(𝜏𝑒))  =  𝑆𝑝+1(𝜏𝑒) 𝑇 (𝐸𝑝(𝜏𝑒))  =  𝐸𝑝+1(𝜏𝑒) 𝑇 (𝐼𝐴𝑝(𝜏𝑒))  =  𝐼𝐴𝑝+1(𝜏𝑒) 𝑇 (𝐼𝑆𝑝(𝜏𝑒))  =  𝐼𝑆𝑝+1(𝜏𝑒) 𝑇 (𝐼𝑂𝑝(𝜏𝑒))  =  𝐼𝑂𝑝+1(𝜏𝑒) 𝑇 (𝑄𝑝(𝜏𝑒))  =  𝑄𝑝+1(𝜏𝑒) 𝑇 (𝐻𝑝(𝜏𝑒))  =  𝐻𝑝+1(𝜏𝑒) 𝑇 (𝑀𝑝(𝜏𝑒))  =  𝑀𝑝+1(𝜏𝑒) 

 𝑇 (𝑅𝑝(𝜏𝑒))  =  𝑅𝑝+1(𝜏𝑒) 

where (𝑥1+𝛼(1−𝑥1)𝑥1 )is a Lagrange’s multiplier in fractional form. It is T - stable in L1(c, d) if 

the following relations 1 − 𝛽𝐼𝑁 [𝑘2𝐹(𝛼) − 𝑘1(1 + 𝑘)𝐺1(𝛼)+𝑘4𝜈𝐺2(𝛼) + 𝑘. 𝑘3𝐻(𝛼)] <  1,     1 − (𝜇 + 𝜏𝐼)𝐽2(𝛼) + 𝛽𝐼𝑁 [𝑘2𝐹(𝛼) − 𝑘1(1 + 𝑘 + 𝜈)𝐺1(𝛼)+𝑘4𝜈𝐺2(𝛼) + 𝑘. 𝑘3𝐻(𝛼)] <  1,     1 − 𝜏𝐼𝜓𝐽3(𝛼) − (𝛿1 + 𝜇)𝐽4(𝛼) <  1, 1 + (1 −  𝜓 −  𝜙)𝜏𝐼𝐽5(𝛼)  − (𝛿2 + 𝜇)𝐽6(𝛼) <  1,   1 + 𝜙𝜏𝐼𝐽7(𝛼)  − (𝛿3 + 𝜇)𝐽8(𝛼) <  1, 1 + 𝜀1𝐽13(𝛼)  −  (𝜇 + 𝜀2 + 𝜂1)𝐽14(𝛼) <  1, 1 + 𝜀3𝐽15(𝛼)  + 𝜀2𝐽16(𝛼) + 𝜀4𝐽17(𝛼)  − (𝜇 + 𝜂2)𝐽18(𝛼) < 1, 1 + 𝑚1𝐽19(𝛼)  + 𝑚2𝐽20(𝛼) + 𝑚3𝐽21(𝛼)  − 𝑚4𝐽22(𝛼) <  1,  1 + 𝛿1𝐽9(𝛼)  + 𝛿2𝐽10(𝛼) + 𝛿3𝐽11(𝛼)  −  𝜇𝐽12(𝛼) < 1. 
   (6.1) 

are satisfied. 
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Proof:  

Let us consider (p,q)∈ Z+×Z+, we compute, 𝑇 (𝑆𝑝(𝜏𝑒)) − 𝑇 (𝑆𝑞(𝜏𝑒)) = 𝑆𝑝(𝜏𝑒)  −  𝑆𝑞(𝜏𝑒)
+ 𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝛬 − 𝛽𝐼 (𝐼𝐴𝑝 + 𝜅𝐼𝑆𝑝 + 𝜈𝐼𝑂𝑝) 𝑆𝑝𝑁 −  𝜇𝑆𝑝)] 

                                −𝐿−1 [(𝑥1 + 𝛼(1 − 𝑥1)𝑥1 )𝐿 (𝛬 − 𝛽𝐼 (𝐼𝐴𝑞 + 𝜅𝐼𝑆𝑞 + 𝜈𝐼𝑂𝑞) 𝑆𝑞𝑁 −  𝜇𝑆𝑞)] 

Taking the norm on both sides, using triangular inequality and the concept ofbounded 

convergent sequence of Sq, we obtain ||𝑇 (𝑆𝑝(𝜏𝑒)) − 𝑇 (𝑆𝑞(𝜏𝑒))|| ≤ (1 − 𝛽𝐼𝑁 [𝑘2𝐹(𝛼) − 𝑘1(1 + 𝑘)𝐺1(𝛼)+𝑘4𝜈𝐺2(𝛼) + 𝑘. 𝑘3𝐻(𝛼)]) ||𝑆𝑝 − 𝑆𝑞 ||   (6.2) 

Similarly on proceeding the above steps for the rest of the equations ||𝑇 (𝐸𝑝(𝜏𝑒)) − 𝑇 (𝐸𝑞(𝜏𝑒)) ||  ≤ (𝛽𝐼𝑁 [𝑘2𝐹(𝛼) − 𝑘1(1 + 𝑘 + 𝜈)𝐺1(𝛼)+𝑘4𝜈𝐺2(𝛼) + 𝑘. 𝑘3𝐻(𝛼)]  + 1
− (𝜇 + 𝜏𝐼)𝐽2(𝛼)) ||𝐸𝑝 − 𝐸𝑞 ||, ||𝑇 (𝐼𝐴𝑝(𝜏𝑒)) − 𝑇 (𝐼𝐴𝑞(𝜏𝑒)) ||  ≤ (1 − 𝜏𝐼𝜓𝐽3(𝛼) − (𝛿1 + 𝜇)𝐽4(𝛼))||𝐼𝐴𝑝 − 𝐼𝐴𝑞 ||, ||𝑇 (𝐼𝑆𝑝(𝜏𝑒)) − 𝑇 (𝐼𝑆𝑞(𝜏𝑒)) ||  ≤ (1 + (1 −  𝜓 −  𝜙)𝜏𝐼𝐽5(𝛼)  −  (𝛿2 + 𝜇)𝐽6(𝛼))||𝐼𝑆𝑝 − 𝐼𝑆𝑞 ||, ||𝑇 (𝐼𝑂𝑝(𝜏𝑒)) − 𝑇 (𝐼𝑂𝑞(𝜏𝑒)) ||  ≤ (1 + 𝜙𝜏𝐼𝐽7(𝛼)  − (𝛿3 + 𝜇)𝐽8(𝛼))||𝐼𝑂𝑝 − 𝐼𝑂𝑞 ||, ||𝑇 (𝑄𝑝(𝜏𝑒)) − 𝑇 (𝑄𝑞(𝜏𝑒)) ||  ≤ (1 + 𝜀1𝐽13(𝛼) − (𝜇 + 𝜀2 + 𝜂1)𝐽14(𝛼))||𝑄𝑝 − 𝑄𝑞 ||, ||𝑇 (𝐻𝑝(𝜏𝑒)) − 𝑇 (𝐻𝑞(𝜏𝑒)) ||  ≤ (1 + 𝜀3𝐽15(𝛼)  + 𝜀2𝐽16(𝛼) + 𝜀4𝐽17(𝛼)  − (𝜇 + 𝜂2)𝐽18(𝛼))||𝐻𝑝 − 𝐻𝑞 ||, ||𝑇 (𝑀𝑝(𝜏𝑒)) − 𝑇 (𝑀𝑞(𝜏𝑒)) ||  ≤ (1 + 𝑚1𝐽19(𝛼)  + 𝑚2𝐽20(𝛼) + 𝑚3𝐽21(𝛼)  − 𝑚4𝐽22(𝛼))||𝑀𝑝 − 𝑀𝑞  ||, ||𝑇 (𝑅𝑝(𝜏𝑒)) − 𝑇 (𝑅𝑞(𝜏𝑒)) ||  ≤ (1 + 𝛿1𝐽9(𝛼)  + 𝛿2𝐽10(𝛼) + 𝛿3𝐽11(𝛼)  −  𝜇𝐽12(𝛼))||𝑅𝑝 − 𝑅𝑞 ||.          (6.3) 

 

Hence for all (p,q)∈ Z+×Z+and the equation (6.1), there exist a fixed point for T. 

Assumingthe equations (6.2) and (6.3) hold, letε = (0, 0, 0, 0, 0, 0, 0, 0, 0) and let 𝛤 = 1 − 𝛽𝐼𝑁 [𝑘2𝐹(𝛼) − 𝑘1(1 + 𝑘)𝐺1(𝛼)+𝑘4𝜈𝐺2(𝛼) + 𝑘. 𝑘3𝐻(𝛼)], 
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        1 − (𝜇 + 𝜏𝐼)𝐽2(𝛼) + β𝐼𝑁 [𝑘2𝐹(𝛼) − 𝑘1(1 + 𝑘 + 𝜈)𝐺1(𝛼)+𝑘4𝜈𝐺2(𝛼) + 𝑘. 𝑘3𝐻(𝛼)],         1 − 𝜏𝐼𝜓𝐽3(𝛼) − (𝛿1 + 𝜇)𝐽4(𝛼),         1 + (1 −  𝜓 −  𝜙)𝜏𝐼𝐽5(𝛼)  − (𝛿2 + 𝜇)𝐽6(𝛼),         1 + 𝜙𝜏𝐼𝐽7(𝛼)  − (𝛿3 + 𝜇)𝐽8(𝛼),         1 + 𝜀1𝐽13(𝛼)  −  (𝜇 + 𝜀2 + 𝜂1)𝐽14(𝛼),         1 + 𝜀3𝐽15(𝛼)  +  𝜀2𝐽16(𝛼) + 𝜀4𝐽17(𝛼)  − (𝜇 + 𝜂2)𝐽18(𝛼),         1 + 𝑚1𝐽19(𝛼)  + 𝑚2𝐽20(𝛼) + 𝑚3𝐽21(𝛼)  − 𝑚4𝐽22(𝛼), 1 + 𝛿1𝐽9(𝛼)  + 𝛿2𝐽10(𝛼) + 𝛿3𝐽11(𝛼)  −  𝜇𝐽12(𝛼) 

Thus, the map T fulfils all conditions of Theorem 6.1. Hence, T is Picard T-Stable. 

 

6.1 Disease Free Equilibrium 

To determine the basic reproduction number R0, we start from the disease-free 

equilibrium state byassuming all the classes and rate of change to be zero, except for S = S0. 

The feasible area of the model(4.1) is 𝜒 = (𝑆(𝜏𝑒), 𝐸(𝜏𝑒), 𝐼𝐴(𝜏𝑒), 𝐼𝑆(𝜏𝑒), 𝐼𝑂(𝜏𝑒), 𝑄(𝜏𝑒),𝐻(𝜏𝑒),𝑀(𝜏𝑒), 𝑅(𝜏𝑒) ∈ 𝑅9+|𝑁 ≤ 𝛬𝜇). 
According to the explanation in [14], the disease-free equilibrium (DFE) of the system (4.1) 

is                                         𝐷𝐹𝐸 = (𝑆0, 0,0,0,0,0,0,0) = (𝛬𝜇 , 0,0,0,0,0,0,0). 
We use linear stability analysis, to study about the equilibriumand we observe stability of 

theequilibrium and the controllability of the outbreak. The dynamics of the model (4.1) 

near the DFEis analysed with the help of the following results. 

 

Theorem 6.3. [14] The DFE of the model (4.1) is locally asymptotically stable when R0< 1. 

 

Inaddition, the basic reproduction number R0 significantly changes in time and the 

estimation isbased on a more realistic situation. To calculate the R0of our model (4.1), we 

use the calculative partgiven in [14]. The matrices F and V are evaluated as 

F =  
[  
   
 0 βI κβI0 0 000000

00000
00000

νβI 0 00 0 000000
00000

00000
0000000]  
   
 ; 

V =  
[  
   
 τI + μ 0 0− τIψ δ1 + μ 0 ψ +  ϕ −  1− ϕτI− ε100

0000− m2
δ2 + μ + d100− ε3− m1

0 0 00 0 00
δ3 + μ0− ε4− m3

00
μ + ε2 + η1− ε20

000
μ + η20

000000− m4]  
   
 
. 
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Using spectral radius, the required R0 is R0 = βIτI(δ2 + μ + d1)[μ(δ3 + μ) + ϕν(μ + d1)] + κ(1 −  ψ −  ϕ)(δ1 + μ)(δ3 + μ)(τI + μ)(δ1 + μ)(δ3 + μ)(δ2 + μ + d1) . 
 

Through detailed analysis, it was determined that an outbreak threshold, indicated by R0< 

1, dictates whether the disease will propagate further in India. Notably, infectionfree 

steadystate solutions were identified as locally asymptotically stable when R0< 1, 

suggesting containment of the virus within the community. 

 

8 Conclusion 

This paper introduces innovative fractional delayed mathematical models to 

characterize the dynamics of the Omicron B.1.1.529 SARS-CoV-2 Variant. Our study has 

demonstrated the effectiveness of using a fractional differential equationwith the Caputo-

Fabrizio derivative to model the dynamics of the Omicron variant of COVID-19. 

Byincorporating fractional calculus, we were able to capture the non-local and memory 

effects inherentin infectious disease dynamics, providing a more accurate representation of 

the transmission dynamicsobserved during the spread of the Omicron variant.The stability 

of these models has been rigorously assessed and verified, focusing on epidemiological 

parameters such as the reproduction number (R0). For R0> 1, the derived solutions indicate 

local instability, emphasizing the persistent threat of transmission. The findings 

underscore the importance of isolation, recovery, and vaccination efforts in safeguarding 

the host community against the Omicron variant. Moreover, strict adherence to 

interventions significantly curtails the spread of the second wave of the Omicron variant, 

as evidenced by the observed data. This research holds relevance for medical scientists and 

can serve as a foundational framework for further exploration, including the generalization 

of fractional derivative models to encompass broader epidemiological scenarios. 
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