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I Introduction 

The study of flow over a stretching sheet has generated numerous interest in recent years in 

view of its numerous industrial applications such as the aerodynamic extrusion of plastic sheets,the boundary 

layer ,condensation process of metallic plate in cooling bath and also in polymer industries. The boundary 

layer flow over a stretching sheet was  studied by various researchers as mentioned in from [1] to [10],   The 

studies of thermal radiation and heat transfer plays an important role in electrical power 

generation,astrophysical flows ,solar power technology and other industries areas. 

In this paper,we investigate numerically the combined effect of magnetic field and thermal radiation on two 

dimensional boundary layer flow and heat transfer over an exponentially stretching sheet. By applying 

similarity transformation,the  boundary layer equations, which are PDE’s are converted into ODE’s and are 

solved by numerically using Runge-Kutta method 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

Numerical solution of MHD  momentum and thermal boundary layer flow and heat transfer over an 

exponentially stretching sheet, with combined effect of Magnetic Field and Thermal Radiation are considered 

for investigation. The influence of various flow and heat transfer  parameters are analysed with the usage of 

graphs. 

Key Words: Exponentially stretching sheet; heat source/sinkparameter; Runge-Kutta shooting method; 

Prandtl Number; Magnetic Field Parameter. 
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2. Mathematical formulation and solution 

 

 
 

 Fig 1. Schematic diagram of stretching sheet 

 

Let us consider the laminar flow of viscous incompressible fluid past a flat and impressible elastic sheet. By 

applying two equal and opposite forces along the x-axis the sheet is stretched with a speed  w
u x  

proportional to the distance from the origin x=0. The resulting motion of the otherwise quiescent fluid is 

caused by the moving sheet, and the flow is governed by steady two-dimensional flow. The viscous fluid is 

only partially adhering to the stretching sheet. Under the usual boundary layer approximations ,the flow and 

heat transfer with radiation effects are governed by following equations, 
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Where u and v are the velocities in the x and y –direction,respectively ,   is the fluid 

density,  is the kinametic viscocity ,   is the dynamic viscocity,T  is the temperature, k  is the thermal 

conductivity, p
C  is specific heat and 

rq  is the radiative heat flux.The boundary condition given by,  
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Where 
0 0,U T  and L  are the reference velocity,temperature and length 

respectively.The radiative heat flux 
rq is simplified by Rossnald approximation. 
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The approximation is valid at points optically far from the boundary surface and it is good 

for intensive  absorption,which  is for an optically thick boundary layer .It is assumed that the temperature 

difference with in ye flow such that the term 
4

T  may be expressed  as linear fuction of 

temperature.Hence,expanding 
4

T  by Taylor series about T   and neglecting  higher order terms gives  

4 3 44 3T T T  
(2.8) 

                                                                                              

The equation (1) is the continuity equation is identically satisfied  if we chose the stream 

fuction    

Such that, 
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The momentum and energy equations can be transformed  into the corresponding  

ordinary differential equations by including the following  similarity equations,   
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   The equations (2.1)-(2.5)  and are transformed into ordinary differential equation with 

the aid of equations (2.9)-(2.11). Thus the governing equations  are,                                                                  
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The boundary conditions (2.4) reduces to,
 

'f(0)=0,f (0) 1, (0) 1,                                                                    (2.14)  

'( ) 0, ( ) 0,f    
                                                                             (2.15)     

Where prime(‘) denote the differentiation with respect to   and dimensionless parameters 

are: 
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3. Numerical Solution 

In this study,an efficient Runge-Kutta fifth order method along with shooting technique 

has been employed to analyze the flow of model for the above coupled ordinary differential equations (2.12) 

& (2.13) for the different values of governing parameters viz.Prandtl number Pr, Etc.  

 

                

4.4. Results and Discussions 

 

Fig.(2). and Fig.(3).It is observed that increase in Grashof  number  enhances   velocity and 

temperature, in both momentum and thermal boundary layers respectively.  Additionally, it is pragmatic that 

this increase in velocity is because of velocity  difference between stretched sheet and the adjoining fluid. 

Grashof number leads to boost in velocity and further it leads to increase in thickness of  boundary layer  

 

Fig. (4) and Fig. (5) Represents the influence of Prandtl number  Pr  on transfer of heat in 

thermal boundary layer and is evident from these plots, that large values of Prandtl number consequences in 

decrease in temperature and Velocity of the flow field. Since it is allready known fact that, the thermal 

boundary layer thickness is inversely proportional to the square root of Prandtl number, The decrease of 

temperature profile with  Pr is clear-cut in both cases. 

 

Fig.(6). Shows the influence of  parameter Nr on velocity profile, and it is observed from 

this figure that, the velocity is an increasing function of  parameter Nr, which offers confrontation to the flow 

ensuing in decrease of velocity in momentum boundary layer,which concurs with the results of various 

authors.  

 

Fig.(7).    Shows the  influence of Nr in momentum boundary layer. From this figure it is 

observed that, the effect of Nr is to  enhance  the temperature profile  in  thermal boundary layer. 

 

Fig.(8).and Fig.(9). Explores the  influence of Eckert number Ec  on velocity  and 

temperature profiles respectively. Enhancement of values of Ec,  results in enhancement of both momentum 

and thermal boundary layer thicknesses respectively. In fig 8, Ec converges at 0.2. 
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Fig.(10). explores the variation of temperature profile with Prandtl number Pr.This graph 

de¦picts that Prandtl number is a decreasing function of  temperature.This is because of the fact  that a fluids 

with higher Prandtl number has comparatively low thermal conductivity ,which  reduces conduction and 

there by the thermal  boundary layer thickness decreases. 
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Fig.2.Velocity profile various values of Gr

Gr=0.0,0.1,0.5

A=0.2,Pr=1.0,Nr=1.0,Ec=0.2

f'()



 C

 E

 F

 

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig.3.Temperature profile for various values of Gr

Gr = 0.0,0.1, 0.5

A = 0.2,Pr = 1.0,Nr = 1.0,Ec = 0.2
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Fig.4.Velocity profile various values of Pr

Pr=0.0,0.5,1.0,2.0,5.0

A=0.2,Ec=0.2,Gr=1.0,Nr=1.0
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fig.5.Temperature profile various values Pr

A=0.2,Ec=0.2,Gr=1.0,Nr=1.0

Pr=0.0,0.5,1.0,2.0,5.0
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Fig.6.Velocity profile for various values of Nr
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Fig.7.Temperature profile for various values of Nr

Nr=0.0,0.1,0.5,1.0,2.0

A=0.2,Ec=0.2,Pr=1.0,Gr=1.0
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Fig.8.Velocity profile for various values of Ec

Pr=1.0,Gr=1.0,Nr=1.0,A=0.2

Ec=0.0,5.0,10.0,15,0
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Fig.9.Temperature profile for various values of Ec

Pr=1.0,Gr=1.0,Nr=1.0,A=0.2

Ec=0.0,5.0,10.0,15.0
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Fig.10.Temperature profile for various values of velocity ratio

Pr=1.0,Gr=1.0,Nr=1.0,Ec=0.5
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