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1. Introduction 

A graph G, referred to here is an undirected connected graph without loops or multiple 

edges. Let G1= (V1,E1) and G2=(V2,E2) be two graphs. The Tensor product G = G1∧G2 is 

defined as a graph with vertex set V1xV2. Edge set is defined as follows: If w1=(u1,v1) and 

w2= (u2,v2) are two vertices of G with ui∈V1 and vi∈V2(i=1,2) then w1w2∈E(G) if and only if 

u1u2∈E1 and v1v2∈E2. [4] The concept of Continuous Monotonic Decomposition of Graph 

was introduced by N.Gnana Dhas and J.Paulraj Joseph. [6] S.Asha, and R.kala discussed 

on Continuous Monotonic Decomposition of some special class of Graphs. Terms not 

defined here are used in the sense of Harary [1]. In this paper we proved some results on 

Triangular decomposition of Tensor product of simple graphs. 

Definition 1.1 A decomposition of a graph G is a collection of edge disjoint subgraphs   

{G1, G2,G3,…....,Gn} of  G such that every edge of G belongs to exactly one of the subgraph 

Gi. 

Abstract: Let G = (V, E) be a simple connected graph of order p and size q. If 

{G1,G2,……...,Gn} are edge disjoint subgraphs of G such that E(G) = E(G1) ∪ E(G2) ∪………...∪E(Gn) then  {G1,G2,…....,Gn} is said to be a Decomposition of a graph G. A 

graph of size q = (n + 23 ) is said to have a Triangular decomposition (TD) if G can be 

decomposed into n - subgraphs {G1,G2,…..,Gn}such that each  subgraphs Gi is 

connected and |E(Gi)| = (i + 12 )  for 1 ≤ i ≤ n.  In this paper we investigate Triangular 

decomposition of Tensor product of simple graphs. 
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Definition 1.2 A graph G of size q = (n + 23 )    is said to have a Triangular decomposition 

(TD) if G can be decomposed into n - subgraphs {G1,G2,G3,……..,Gn}such that each Gi is  

connected and |E(Gi)| = (i + 12 ) for 1≤ i ≤ n. 
Definition 1.3. The tensor product G × H of graphs G and H is a graph such that the 

vertex set of G × H is the Cartesian product V(G) × V(H); and vertices (g, h) and (g′, h′) are 

adjacent in  G × H if and only if  g is adjacent to g′ in G and h is adjacent to h′ in H. 

2. Triangular Decomposition of Tensor Product of Simple Graphs 

Lemma2.1.If k = 4s,  then every graph of size q = 
k(k+1)(k+2)6   can be decomposed into {G1, 

G2, G3,………,Gk}. 

Proof. We have k = 4s, s∈N.We prove this theorem by using induction method. 

When s =1, k = 4.Then q=  
k(k+1)(k+2)6  = 

4x5x 66  = 20 can be decomposed into 

{G1,G2,G3,G4}. Hence the result is true for s =1.Assume that the result is true for s-1. 

Then k = 4(s-1) = 4s-4 and q = 
(4s−4)(4s−3)(4s−2)6  can be decomposed into {G1, G2, 

G3,……,G4s-4}. Now to prove the result is true for s. Then k = 4s and q = 4s(4s+1)(4s+2)6 .We have to prove that 
4s(4s+1)(4s+2)6  can be decomposed into {G1, G2, 

G3,………,G4s}.  

      Now q = 
4s(4s+1)(4s+2)6  

= 
64s3+48 s2+8s6  

= 
(4s−4)(16s2−20s+6)6 + {(4s−2)(8s−4)2  + 

(4s)(8s)2 }  

= 
(4s−4)(16s2−8s−12s+6)6 + {(4s−2)(4s−3+4s−1)2  + 

(4s)(4s−1+4s+1)2 }  

= 
(4s−4)(4s−3)(4s−2)6  + {(4s−3)(4s−2)2  + 

(4s−2)(4s−1)2  + 
(4s−1)(4s)2  + 

4s(4s+1)2  }.  

Therefore q = 
4s(4s+1)(4s+2)6  can be decomposed into {G1, G2, G3,………,G4s}. Hence by 

induction hypothesis if k = 4s,  then every graph of size q = 
k(k+1)(k+2)6   can be decomposed 

into {G1, G2, G3,………,Gk}.This completes the proof. 

 

Lemma2.2.If k +1=4s,  then every graph of size q =  
k(k+1)(k+2)6   can be decomposed into 

{G1, G2, G3,………,Gk}. 
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Proof. We have k = 4s – 1, s ∈ N.We prove this theorem by using induction method. 

When s =1, k = 3.Then q =  
k(k+1)(k+2)6  = 

3x4x56  = 10 can be decomposed into {G1,G2,G3}. 

Hence the result is true for s =1.Assume that the result is true for s-1. Then k = 4(s-1)-1 

= 4s-5 and q =   
(4s−5)(4s−4)(4s−3)6  can be decomposed into {G1, G2, G3,………,G4s-5}. Now 

to prove the result is true for s. Then k = 4s-1 and q = 
(4s−1)(4s)(4s+1)6 .We have to prove 

that q = 
(4s−1)(4s)(4s+1)6  can be decomposed into {G1, G2, G3,………,G4s-1}.  

        Now q = 
(4s−1)(4s)(4s+1)6  

= 
64s3−4s6  

= 
(4s−5)(16s2−28s+12)6 + {(4s−3)(8s−6)2  + 

(4s−1)(8s−2)2 }  

= 
(4s−5)(16s2−12s−16s+12)6 + {(4s−3)(4s−4+4s−2)2  + 

(4s−1)(4s−2+4s)2 }  

= 
(4s−5)(4s−4)(4s−3)6  + { (4s−4)(4s−3)2 + (4s−3)(4s−2)2  + 

(4s−2)(4s−1)2  + 
(4s−1)4s2  }.  

Therefore q = 
(4s−1)(4s)(4s+1)6  can be decomposed into {G1, G2, G3,………,G4s-1}. Hence by 

induction hypothesis if k+1= 4s,  then every graph of size q = 
k(k+1)(k+2)6   can be 

decomposed into {G1, G2, G3,………,Gk}.This completes the proof. 

 

Lemma 2 .3 . If k+2 = 4s,  then every graph of size q =  
k(k+1)(k+2)6   can be decomposed 

into {G1, G2, G3,………,Gk} 

Proof. We have k = 4s-2, s ∈ N.We prove this theorem by using induction method. 

When s=1, k = 2.Then q =  
k(k+1)(k+2)6  = 

2x3x 46  = 4 can be decomposed into {G1, G2}. 

Hence the result is true for s =1.Assume that the result is true for s-1. Then k = 4(s-1)-2 

= 4s-6 and q = 
(4s−6)(4s−5)(4s−4)6  can be decomposed into {G1, G2, G3,…,G4s-6}. Now to 

prove the result is true for s. Then k = 4s-2 and q = 
(4s−2)(4s−1)(4s)6 .We have to prove 

that q = 
(4s−2)(4s−1)(4s)6  can be decomposed into {G1, G2, G3,…,G4s-2}.  

       Now q = 
(4s−2)(4s−1)(4s)6  = 

64s3− 48 s2+8s6  

= 
(4s−6)(16s2−16s−20s+20)6 + {(4s−4)(8s−8)2  + 

(4s−2)(8s−4)2 } 

= 
(4s−6)(4s−5)(4s−4)6  + {(4s−5)(4s−4)2  + 

(4s−4)(4s−3)2  + 
(4s−3)(4s−2)2  + 

(4s−2)(4s−1)2 }Therefore q = (4s−2)(4s−1)(4s)6  can be decomposed into {G1, G2, G3,………,G4s-2}. Hence by induction 

hypothesis if k+2 = 4s,  then every graph of size q =  
k(k+1)(k+2)6   can be decomposed into 

{G1, G2, G3,………,Gk}.This completes the proof. 
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Theorem 2.4.Foranyintegerm, the Path graph Pm∧ K2admitsaTriangular 

Decomposition {G1, G2, 

G3,………,Gk}ifandonlyifthereexistsanintegerksatisfyingthefollowingproperties: 

(i) k = 4r or k = 4r-1 or k = 4r-2, r ∈ N. 

(ii) 2m-2 = 
k(k+1)(k+2)6  

Proof. LetG=Pm∧ K2.Then q(G)= 2m - 2.AssumeGhasaTriangular 

Decomposition. By the definition Triangular Decomposition, q(G) = k(k+1)(k+2)6 .                   

 Hence 2m-2 = 
k(k+1)(k+2)6 .  

 m = 
k3+3k2+2k+1212 .  

Since m is an integer,k = 4r or k = 4r-1 or k = 4r-2, r ∈ N 

     Conversely assume (i) k = 4r or k = 4r-1 or k = 4r-2, r ∈ N. (ii) 2m-2 = 
k(k+1)(k+2)6 . Let 

G = Pm∧K2. Then q(G) = 2m-2. By lemma 2.1, 2.2 and 2.3,  
k(k+1)(k+2)6  can be decomposed 

into {G1, G2, G3,………,Gk}. Thus G admits Triangular Decomposition. 

 

Table 2.5: List of first 10 TD of Pm∧K2 

m q(G) Triangular Decomposition 

3 4 G1, G2. 

6 10 G1, G2, G3. 

11 20 G1, G2, G3,G4 

29 56 G1, G2, G3,………,G6 

43 84 G1, G2, G3,………,G7 

61 120 G1, G2, G3,………,G8 

111 220 G1, G2, G3,………,G10 

144 286 G1, G2, G3,………,G11 

183 364 G1, G2, G3,………,G12 

281 560 G1, G2, G3,………,G14 
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Illustration 2.6 

 

Lemma2.7If k+1=4s and s≡0(mod2) then every graph of size q =  
𝑘(𝑘+1)(𝑘+2)6   can be 

decomposed into {G1,G2,G3,………,Gk} 

Proof. We have k+1 = 4s and s≡0(mod2), s ∈ N.We prove this theorem by using 

induction method. When s = 2, k = 7.Then q = 
𝑘(𝑘+1)(𝑘+2)6  = 

7𝑥8𝑥 96  = 84 can be 

decomposed into {G1,G2,G3,……,G7}. Hence the result is true for s = 2. Assume that the 

result is true for 2s-2. Then k = 4(2s-2)-1 = 8s-9 and q = 
(8𝑠−9)(8𝑠−8)(8𝑠−7)6  can be 

decomposed into {G1,G2,G3,…,G8s--9}. Now to prove the result is true for 2s. Then k = 

8s-1 and q =   
(8𝑠−1)(8𝑠)(8𝑠+1)6 . We have to prove that 

(8𝑠−1)(8𝑠)(8𝑠+1)6  can be decomposed 

into {G1,G2,G3,…,G8s-1}.  

 Now q = 
(8𝑠−1)(8𝑠)(8𝑠+1)6  

= 
512𝑠3−8𝑠6  

= 
(8𝑠−9)(64𝑠2−120𝑠+56)6 + {(8s−7)(16s−14)2  + 

(8s−5)(16s−10)2  + 
(8s−3)(16s−6)2  + (8s−1)(16s−2)2 }  

= 
(8s−9)(8s−8)(8s−7)6  + { (8s−8)(8s−7)2  + 

(8s−7)(8s−6)2  + 
(8s−6)(8s−5)2  + 

(8s−5)(8s−4)2  + (8s−4)(8s−3)2  + 
(8s−3)(8s−2)2  + 

(8s−2)(8s−1)2 + (8s−1)(8s)2 }.  
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Therefore q =  
(8s−1)(8s)(8s+1)6  can be decomposed into {G1,G2,G3,…,G8s-1}. Hence by 

induction hypothesis if k+1 = 4s and s≡0(mod 2) then every graph of size q =  
k(k+1)(k+2)6   

can be decomposed into {G1,G2,G3,…,Gk}.This completes the proof. 

 

Theorem 2.8. For any integer m, the wheel graph Wm+1∧K2 has a Triangular 

Decomposition {G1,G2,G3,………,Gk} iff there exists an integer k satisfying the following 

properties. 

i) k = 4r or k = 4r-1, r≡0(mod2) or k = 4r-2, r ∈ N.  

ii) 
k(k+1)(k+2)6  = 4m. 

Proof. Let G = Wm+1∧K2. Then q(G) = 4m. Assume Wm+1∧K2 has a Triangular 

Decomposition. By the definition of Triangular decomposition, q(G) = (k + 23 ).  

  Hence 4m = (k + 23 ) = 
k(k+1)(k+2)6 .  

 m = 
k(k+1)(k+2)24 . 

Since m is an integer, k = 4ror k = 4r-1, r≡0(mod2) or k = 4r-2, r ∈ N. 

Conversely assume (i) k = 4ror k = 4r-1, r≡0(mod2) or k = 4r-2, r ∈ N            

 (ii) 
k(k+1)(k+2)6  = 4m. Let G = Wm+1∧K2. Then q(G) = 4m. By lemma 2.1, 2.7 and 2.3,  k(k+1)(k+2)6  can be decomposed into {G1,G2,G3,…,Gk}. Thus G admits Triangular 

Decomposition. 

Table 2.9: List of first 10, TD of Wm+1∧K2. 

 m q(G) Triangular Decomposition 

5 20 G1, G2, G3, G4. 

14 56 G1, G2, G3,………,G6 

21 84 G1, G2, G3,………,G7 

30 120 G1, G2, G3,………,G8 

55 220 G1, G2, G3,………,G10 

91 364 G1, G2, G3,………,G12 

140 560 G1, G2, G3,………,G14 

170 680 G1, G2, G3,………,G15 

204 816 G1, G2, G3,………,G16 

285 1140 G1, G2, G3,………,G18 
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Illustration 2.10 

 
Theorem 2.11. For any integer m, the cycle graph Cm∧K2 has a Triangular Decomposition 

{G1,G2,G3,…,Gk} iff there exists an integer k satisfying the following properties. 

i) k = 4r or k = 4r-1 or k = 4r-2, r ∈ N. 

ii) 
k(k+1)(k+2)6  = 2m 

Proof. Let G = Cm∧K2. Then q(G) = 2m. Assume Cm∧K2 has a Triangular Decomposition 

{G1,G2,G3,…,Gk}. By the definition of Triangular Decomposition, q(G) = (k + 23 ).  

  Hence 2m = (k + 23 ) = 
k(k+1)(k+2)6 .  

 m = 
k(k+1)(k+2)12 .   

Since m is an integer, k = 4r or k = 4r-1 or k = 4r-2, r ∈ N. 

Conversely assume (i) k = 4r or k = 4r-1 or k = 4r-2, r ∈ N   (ii)  
k(k+1)(k+2)6  = 2m. 

Let G = Cm∧K2. Then q(G) = 2m. By lemma 2.1, 2.2 and 2.3,  
k(k+1)(k+2)6  can be 

decomposed into {G1,G2,G3,………,Gk}. Thus G admits Triangular Decomposition. 
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Table 2.12: List of first 10 TD of Cm∧ K2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 2.13 

 

 
 

 

m q(G) Triangular Decomposition 

5 10 G1, G2, G3 

10 20 G1, G2, G3, G4 

28 56 G1, G2, G3,………,G6 

42 84 G1, G2, G3,………,G7 

60 120 G1, G2, G3,………,G8 

110 220 G1, G2, G3,………,G10 

143 286 G1, G2, G3,………,G11 

182 364 G1, G2, G3,………,G12 

280 560 G1, G2, G3,………,G14 

340 680 G1, G2, G3,………,G15 
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