

## Triangular Decomposition of Tensor Product of Simple Graphs

<sup>1</sup>S.Chandrakala; <sup>2</sup>S.Chitra Devi; <sup>3</sup>M.Subbulakshmi

<sup>1</sup>Associate Professor, Department of Mathematics, T.D.M.N.S College, T.Kallikulam

<sup>2</sup>Research Scholar, Reg. No. 19222052092002, G.Venkataswamy Naidu College, Kovilpatti

<sup>3</sup>Associate Professor, PG and Research Department of Mathematics, G.Venkataswamy Naidu College, Kovilpatti

Affiliated to Manonmaniam Sundaranar University, Tirunelveli

**Abstract:** Let  $G = (V, E)$  be a simple connected graph of order  $p$  and size  $q$ . If  $\{G_1, G_2, \dots, G_n\}$  are edge disjoint subgraphs of  $G$  such that  $E(G) = E(G_1) \cup E(G_2) \cup \dots \cup E(G_n)$  then  $\{G_1, G_2, \dots, G_n\}$  is said to be a Decomposition of a graph  $G$ . A graph of size  $q = \binom{n+2}{3}$  is said to have a Triangular decomposition (TD) if  $G$  can be decomposed into  $n$  - subgraphs  $\{G_1, G_2, \dots, G_n\}$  such that each subgraphs  $G_i$  is connected and  $|E(G_i)| = \binom{i+1}{2}$  for  $1 \leq i \leq n$ . In this paper we investigate Triangular decomposition of Tensor product of simple graphs.

**Keywords:** Triangular decomposition, Tensor product, Wheel Graph.

### 1. Introduction

A graph  $G$ , referred to here is an undirected connected graph without loops or multiple edges. Let  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  be two graphs. The Tensor product  $G = G_1 \wedge G_2$  is defined as a graph with vertex set  $V_1 \times V_2$ . Edge set is defined as follows: If  $w_1 = (u_1, v_1)$  and  $w_2 = (u_2, v_2)$  are two vertices of  $G$  with  $u_i \in V_1$  and  $v_i \in V_2$  ( $i=1,2$ ) then  $w_1 w_2 \in E(G)$  if and only if  $u_1 u_2 \in E_1$  and  $v_1 v_2 \in E_2$ . [4] The concept of Continuous Monotonic Decomposition of Graph was introduced by N.Gnana Dhas and J.Paulraj Joseph. [6] S.Asha, and R.kala discussed on Continuous Monotonic Decomposition of some special class of Graphs. Terms not defined here are used in the sense of Harary [1]. In this paper we proved some results on Triangular decomposition of Tensor product of simple graphs.

**Definition 1.1** A decomposition of a graph  $G$  is a collection of edge disjoint subgraphs  $\{G_1, G_2, G_3, \dots, G_n\}$  of  $G$  such that every edge of  $G$  belongs to exactly one of the subgraph  $G_i$ .

**Definition 1.2** A graph  $G$  of size  $q = \binom{n+2}{3}$  is said to have a Triangular decomposition (TD) if  $G$  can be decomposed into  $n$  - subgraphs  $\{G_1, G_2, G_3, \dots, G_n\}$  such that each  $G_i$  is connected and  $|E(G_i)| = \binom{i+1}{2}$  for  $1 \leq i \leq n$ .

**Definition 1.3.** The tensor product  $G \times H$  of graphs  $G$  and  $H$  is a graph such that the vertex set of  $G \times H$  is the Cartesian product  $V(G) \times V(H)$ ; and vertices  $(g, h)$  and  $(g', h')$  are adjacent in

$G \times H$  if and only if  $g$  is adjacent to  $g'$  in  $G$  and  $h$  is adjacent to  $h'$  in  $H$ .

## 2. Triangular Decomposition of Tensor Product of Simple Graphs

**Lemma 2.1.** If  $k = 4s$ , then every graph of size  $q = \frac{k(k+1)(k+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_k\}$ .

**Proof.** We have  $k = 4s$ ,  $s \in \mathbb{N}$ . We prove this theorem by using induction method. When  $s = 1$ ,  $k = 4$ . Then  $q = \frac{k(k+1)(k+2)}{6} = \frac{4 \times 5 \times 6}{6} = 20$  can be decomposed into  $\{G_1, G_2, G_3, G_4\}$ . Hence the result is true for  $s = 1$ . Assume that the result is true for  $s-1$ . Then  $k = 4(s-1) = 4s-4$  and  $q = \frac{(4s-4)(4s-3)(4s-2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{4s-4}\}$ . Now to prove the result is true for  $s$ . Then  $k = 4s$  and  $q = \frac{4s(4s+1)(4s+2)}{6}$ . We have to prove that  $\frac{4s(4s+1)(4s+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{4s}\}$ .

$$\begin{aligned} \text{Now } q &= \frac{4s(4s+1)(4s+2)}{6} \\ &= \frac{64s^3 + 48s^2 + 8s}{6} \\ &= \frac{(4s-4)(16s^2 - 20s + 6)}{6} + \left\{ \frac{(4s-2)(8s-4)}{2} + \frac{(4s)(8s)}{2} \right\} \\ &= \frac{(4s-4)(16s^2 - 8s - 12s + 6)}{6} + \left\{ \frac{(4s-2)(4s-3+4s-1)}{2} + \frac{(4s)(4s-1+4s+1)}{2} \right\} \\ &= \frac{(4s-4)(4s-3)(4s-2)}{6} + \left\{ \frac{(4s-3)(4s-2)}{2} + \frac{(4s-2)(4s-1)}{2} + \frac{(4s-1)(4s)}{2} + \frac{4s(4s+1)}{2} \right\}. \end{aligned}$$

Therefore  $q = \frac{4s(4s+1)(4s+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{4s}\}$ . Hence by induction hypothesis if  $k = 4s$ , then every graph of size  $q = \frac{k(k+1)(k+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_k\}$ . This completes the proof.

**Lemma 2.2.** If  $k+1=4s$ , then every graph of size  $q = \frac{k(k+1)(k+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_k\}$ .

**Proof.** We have  $k = 4s - 1$ ,  $s \in \mathbb{N}$ . We prove this theorem by using induction method. When  $s = 1$ ,  $k = 3$ . Then  $q = \frac{k(k+1)(k+2)}{6} = \frac{3 \times 4 \times 5}{6} = 10$  can be decomposed into  $\{G_1, G_2, G_3\}$ . Hence the result is true for  $s = 1$ . Assume that the result is true for  $s-1$ . Then  $k = 4(s-1)-1 = 4s-5$  and  $q = \frac{(4s-5)(4s-4)(4s-3)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{4s-5}\}$ . Now to prove the result is true for  $s$ . Then  $k = 4s-1$  and  $q = \frac{(4s-1)(4s)(4s+1)}{6}$ . We have to prove that  $q = \frac{(4s-1)(4s)(4s+1)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{4s-1}\}$ .

$$\begin{aligned} \text{Now } q &= \frac{(4s-1)(4s)(4s+1)}{6} \\ &= \frac{64s^3 - 4s}{6} \\ &= \frac{(4s-5)(16s^2 - 28s + 12)}{6} + \left\{ \frac{(4s-3)(8s-6)}{2} + \frac{(4s-1)(8s-2)}{2} \right\} \\ &= \frac{(4s-5)(16s^2 - 12s - 16s + 12)}{6} + \left\{ \frac{(4s-3)(4s-4+4s-2)}{2} + \frac{(4s-1)(4s-2+4s)}{2} \right\} \\ &= \frac{(4s-5)(4s-4)(4s-3)}{6} + \left\{ \frac{(4s-4)(4s-3)}{2} + \frac{(4s-3)(4s-2)}{2} + \frac{(4s-2)(4s-1)}{2} + \frac{(4s-1)4s}{2} \right\}. \end{aligned}$$

Therefore  $q = \frac{(4s-1)(4s)(4s+1)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{4s-1}\}$ . Hence by induction hypothesis if  $k+1 = 4s$ , then every graph of size  $q = \frac{k(k+1)(k+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_k\}$ . This completes the proof.

**Lemma 2.3.** If  $k+2 = 4s$ , then every graph of size  $q = \frac{k(k+1)(k+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_k\}$

**Proof.** We have  $k = 4s-2$ ,  $s \in \mathbb{N}$ . We prove this theorem by using induction method. When  $s=1$ ,  $k = 2$ . Then  $q = \frac{k(k+1)(k+2)}{6} = \frac{2 \times 3 \times 4}{6} = 4$  can be decomposed into  $\{G_1, G_2\}$ . Hence the result is true for  $s = 1$ . Assume that the result is true for  $s-1$ . Then  $k = 4(s-1)-2 = 4s-6$  and  $q = \frac{(4s-6)(4s-5)(4s-4)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{4s-6}\}$ . Now to prove the result is true for  $s$ . Then  $k = 4s-2$  and  $q = \frac{(4s-2)(4s-1)(4s)}{6}$ . We have to prove that  $q = \frac{(4s-2)(4s-1)(4s)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{4s-2}\}$ .

$$\begin{aligned} \text{Now } q &= \frac{(4s-2)(4s-1)(4s)}{6} = \frac{64s^3 - 48s^2 + 8s}{6} \\ &= \frac{(4s-6)(16s^2 - 16s - 20s + 20)}{6} + \left\{ \frac{(4s-4)(8s-8)}{2} + \frac{(4s-2)(8s-4)}{2} \right\} \\ &= \frac{(4s-6)(4s-5)(4s-4)}{6} + \left\{ \frac{(4s-5)(4s-4)}{2} + \frac{(4s-4)(4s-3)}{2} + \frac{(4s-3)(4s-2)}{2} + \frac{(4s-2)(4s-1)}{2} \right\} \end{aligned}$$

Therefore  $q = \frac{(4s-2)(4s-1)(4s)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{4s-2}\}$ . Hence by induction hypothesis if  $k+2 = 4s$ , then every graph of size  $q = \frac{k(k+1)(k+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_k\}$ . This completes the proof.

**Theorem 2.4.** For any integer  $m$ , the Path graph  $P_m \wedge K_2$  admits a Triangular Decomposition  $\{G_1, G_2, \dots, G_k\}$  if and only if there exists an integer  $k$  satisfying the following properties:

(i)  $k = 4r$  or  $k = 4r-1$  or  $k = 4r-2$ ,  $r \in \mathbb{N}$ .

(ii)  $2m-2 = \frac{k(k+1)(k+2)}{6}$

**Proof.** Let  $G = P_m \wedge K_2$ . Then  $q(G) = 2m - 2$ . Assume  $G$  has a Triangular Decomposition. By the definition of Triangular Decomposition,  $q(G) = \frac{k(k+1)(k+2)}{6}$ .

Hence  $2m-2 = \frac{k(k+1)(k+2)}{6}$ .

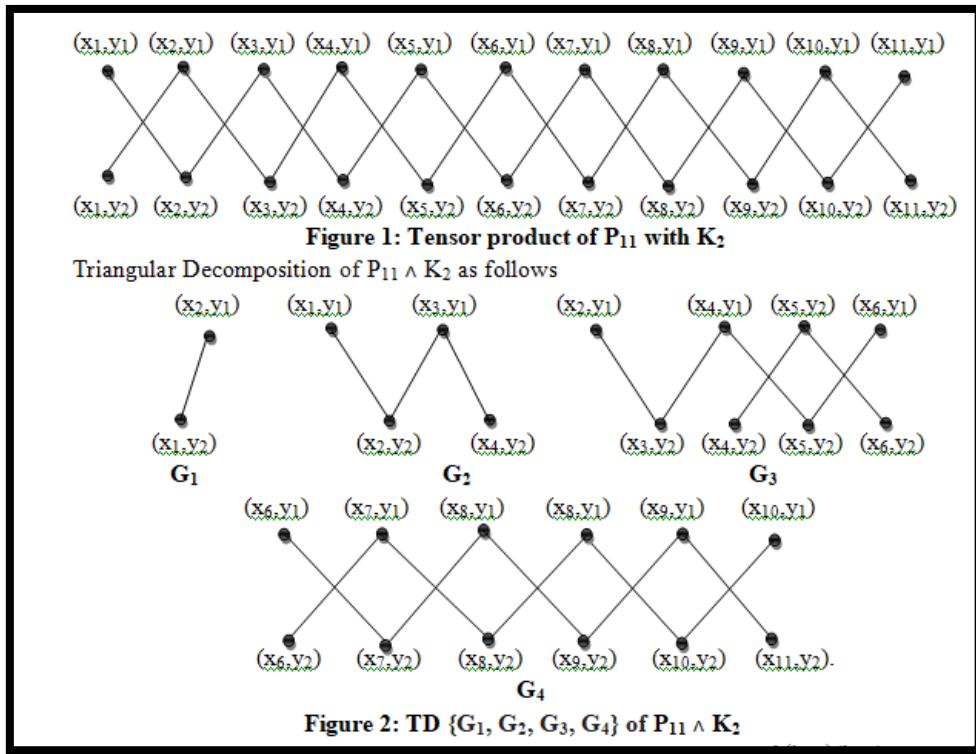
$$\Rightarrow m = \frac{k^3 + 3k^2 + 2k + 12}{12}.$$

Since  $m$  is an integer,  $k = 4r$  or  $k = 4r-1$  or  $k = 4r-2$ ,  $r \in \mathbb{N}$ .

Conversely assume (i)  $k = 4r$  or  $k = 4r-1$  or  $k = 4r-2$ ,  $r \in \mathbb{N}$ . (ii)  $2m-2 = \frac{k(k+1)(k+2)}{6}$ . Let  $G = P_m \wedge K_2$ . Then  $q(G) = 2m-2$ . By lemma 2.1, 2.2 and 2.3,  $\frac{k(k+1)(k+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_k\}$ . Thus  $G$  admits Triangular Decomposition.

**Table 2.5: List of first 10 TD of  $P_m \wedge K_2$**

| <b>m</b> | <b>q(G)</b> | <b>Triangular Decomposition</b> |
|----------|-------------|---------------------------------|
| 3        | 4           | $G_1, G_2$ .                    |
| 6        | 10          | $G_1, G_2, G_3$ .               |
| 11       | 20          | $G_1, G_2, G_3, G_4$            |
| 29       | 56          | $G_1, G_2, G_3, \dots, G_6$     |
| 43       | 84          | $G_1, G_2, G_3, \dots, G_7$     |
| 61       | 120         | $G_1, G_2, G_3, \dots, G_8$     |
| 111      | 220         | $G_1, G_2, G_3, \dots, G_{10}$  |
| 144      | 286         | $G_1, G_2, G_3, \dots, G_{11}$  |
| 183      | 364         | $G_1, G_2, G_3, \dots, G_{12}$  |
| 281      | 560         | $G_1, G_2, G_3, \dots, G_{14}$  |

**Illustration 2.6**

**Lemma 2.7** If  $k+1=4s$  and  $s \equiv 0 \pmod{2}$  then every graph of size  $q = \frac{k(k+1)(k+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_k\}$

**Proof.** We have  $k+1 = 4s$  and  $s \equiv 0 \pmod{2}$ ,  $s \in \mathbb{N}$ . We prove this theorem by using induction method. When  $s = 2$ ,  $k = 7$ . Then  $q = \frac{k(k+1)(k+2)}{6} = \frac{7 \times 8 \times 9}{6} = 84$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_7\}$ . Hence the result is true for  $s = 2$ . Assume that the result is true for  $2s-2$ . Then  $k = 4(2s-2)-1 = 8s-9$  and  $q = \frac{(8s-9)(8s-8)(8s-7)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{8s-9}\}$ . Now to prove the result is true for  $2s$ . Then  $k = 8s-1$  and  $q = \frac{(8s-1)(8s)(8s+1)}{6}$ . We have to prove that  $\frac{(8s-1)(8s)(8s+1)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{8s-1}\}$ .

$$\begin{aligned}
 \text{Now } q &= \frac{(8s-1)(8s)(8s+1)}{6} \\
 &= \frac{512s^3 - 8s}{6} \\
 &= \frac{(8s-9)(64s^2 - 120s + 56)}{6} + \left\{ \frac{(8s-7)(16s-14)}{2} \right\} + \left\{ \frac{(8s-5)(16s-10)}{2} \right\} + \left\{ \frac{(8s-3)(16s-6)}{2} \right\} + \\
 &\quad \left\{ \frac{(8s-1)(16s-2)}{2} \right\} \\
 &= \frac{(8s-9)(8s-8)(8s-7)}{6} + \left\{ \frac{(8s-8)(8s-7)}{2} + \frac{(8s-7)(8s-6)}{2} + \frac{(8s-6)(8s-5)}{2} + \frac{(8s-5)(8s-4)}{2} \right\} + \\
 &\quad \left\{ \frac{(8s-4)(8s-3)}{2} + \frac{(8s-3)(8s-2)}{2} + \frac{(8s-2)(8s-1)}{2} + \frac{(8s-1)(8s)}{2} \right\}.
 \end{aligned}$$

Therefore  $q = \frac{(8s-1)(8s)(8s+1)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_{8s-1}\}$ . Hence by induction hypothesis if  $k+1 = 4s$  and  $s \equiv 0 \pmod{2}$  then every graph of size  $q = \frac{k(k+1)(k+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_k\}$ . This completes the proof.

**Theorem 2.8.** For any integer  $m$ , the wheel graph  $W_{m+1} \wedge K_2$  has a Triangular Decomposition  $\{G_1, G_2, G_3, \dots, G_k\}$  iff there exists an integer  $k$  satisfying the following properties.

i)  $k = 4r$  or  $k = 4r-1$ ,  $r \equiv 0 \pmod{2}$  or  $k = 4r-2$ ,  $r \in \mathbb{N}$ .

ii)  $\frac{k(k+1)(k+2)}{6} = 4m$ .

**Proof.** Let  $G = W_{m+1} \wedge K_2$ . Then  $q(G) = 4m$ . Assume  $W_{m+1} \wedge K_2$  has a Triangular Decomposition. By the definition of Triangular decomposition,  $q(G) = \binom{k+2}{3}$ .

$$\text{Hence } 4m = \binom{k+2}{3} = \frac{k(k+1)(k+2)}{6}.$$

$$\Rightarrow m = \frac{k(k+1)(k+2)}{24}.$$

Since  $m$  is an integer,  $k = 4r$  or  $k = 4r-1$ ,  $r \equiv 0 \pmod{2}$  or  $k = 4r-2$ ,  $r \in \mathbb{N}$ .

Conversely assume (i)  $k = 4r$  or  $k = 4r-1$ ,  $r \equiv 0 \pmod{2}$  or  $k = 4r-2$ ,  $r \in \mathbb{N}$

(ii)  $\frac{k(k+1)(k+2)}{6} = 4m$ . Let  $G = W_{m+1} \wedge K_2$ . Then  $q(G) = 4m$ . By lemma 2.1, 2.7 and 2.3,  $\frac{k(k+1)(k+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_k\}$ . Thus  $G$  admits Triangular Decomposition.

**Table 2.9: List of first 10, TD of  $W_{m+1} \wedge K_2$ .**

| <b>m</b> | <b>q(G)</b> | <b>Triangular Decomposition</b> |
|----------|-------------|---------------------------------|
| 5        | 20          | $G_1, G_2, G_3, G_4$            |
| 14       | 56          | $G_1, G_2, G_3, \dots, G_6$     |
| 21       | 84          | $G_1, G_2, G_3, \dots, G_7$     |
| 30       | 120         | $G_1, G_2, G_3, \dots, G_8$     |
| 55       | 220         | $G_1, G_2, G_3, \dots, G_{10}$  |
| 91       | 364         | $G_1, G_2, G_3, \dots, G_{12}$  |
| 140      | 560         | $G_1, G_2, G_3, \dots, G_{14}$  |
| 170      | 680         | $G_1, G_2, G_3, \dots, G_{15}$  |
| 204      | 816         | $G_1, G_2, G_3, \dots, G_{16}$  |
| 285      | 1140        | $G_1, G_2, G_3, \dots, G_{18}$  |

**Illustration 2.10**

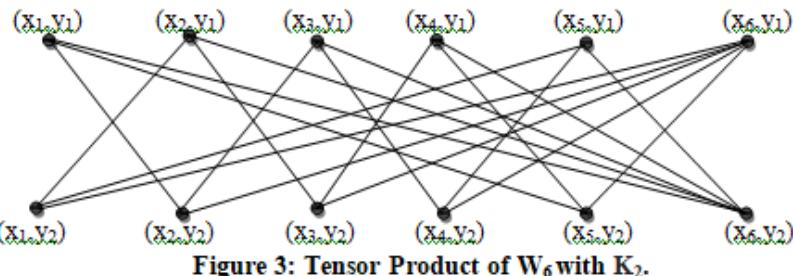


Figure 3: Tensor Product of  $W_6 \wedge K_2$ .

Triangular Decomposition of  $W_6 \wedge K_2$  as follows.

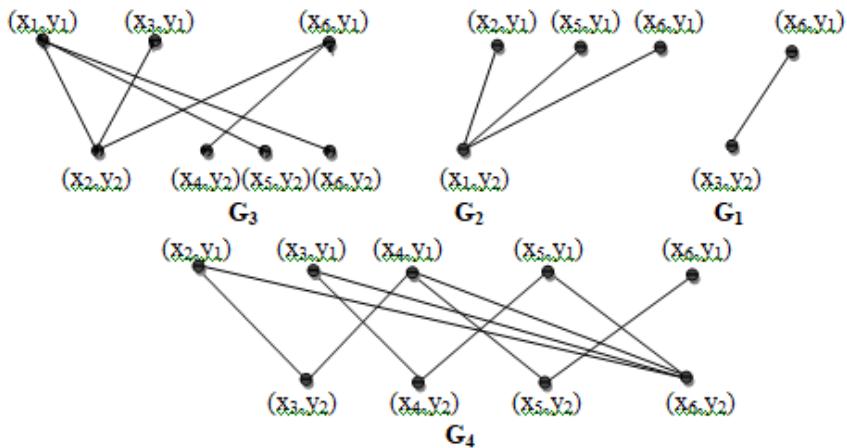


Figure 4: TD  $\{G_1, G_2, G_3, G_4\}$  of  $W_6 \wedge K_2$ .

**Theorem 2.11.** For any integer  $m$ , the cycle graph  $C_m \wedge K_2$  has a Triangular Decomposition  $\{G_1, G_2, G_3, \dots, G_k\}$  iff there exists an integer  $k$  satisfying the following properties.

- i)  $k = 4r$  or  $k = 4r-1$  or  $k = 4r-2$ ,  $r \in \mathbb{N}$ .
- ii)  $\frac{k(k+1)(k+2)}{6} = 2m$

**Proof.** Let  $G = C_m \wedge K_2$ . Then  $q(G) = 2m$ . Assume  $C_m \wedge K_2$  has a Triangular Decomposition  $\{G_1, G_2, G_3, \dots, G_k\}$ . By the definition of Triangular Decomposition,  $q(G) = \binom{k+2}{3}$ .

$$\text{Hence } 2m = \binom{k+2}{3} = \frac{k(k+1)(k+2)}{6}.$$

$$\Rightarrow m = \frac{k(k+1)(k+2)}{12}.$$

Since  $m$  is an integer,  $k = 4r$  or  $k = 4r-1$  or  $k = 4r-2$ ,  $r \in \mathbb{N}$ .

Conversely assume (i)  $k = 4r$  or  $k = 4r-1$  or  $k = 4r-2$ ,  $r \in \mathbb{N}$  (ii)  $\frac{k(k+1)(k+2)}{6} = 2m$ .

Let  $G = C_m \wedge K_2$ . Then  $q(G) = 2m$ . By lemma 2.1, 2.2 and 2.3,  $\frac{k(k+1)(k+2)}{6}$  can be decomposed into  $\{G_1, G_2, G_3, \dots, G_k\}$ . Thus  $G$  admits Triangular Decomposition.

Table 2.12: List of first 10 TD of  $C_m \wedge K_2$

| <b>m</b> | <b>q(G)</b> | <b>Triangular Decomposition</b> |
|----------|-------------|---------------------------------|
| 5        | 10          | $G_1, G_2, G_3$                 |
| 10       | 20          | $G_1, G_2, G_3, G_4$            |
| 28       | 56          | $G_1, G_2, G_3, \dots, G_6$     |
| 42       | 84          | $G_1, G_2, G_3, \dots, G_7$     |
| 60       | 120         | $G_1, G_2, G_3, \dots, G_8$     |
| 110      | 220         | $G_1, G_2, G_3, \dots, G_{10}$  |
| 143      | 286         | $G_1, G_2, G_3, \dots, G_{11}$  |
| 182      | 364         | $G_1, G_2, G_3, \dots, G_{12}$  |
| 280      | 560         | $G_1, G_2, G_3, \dots, G_{14}$  |
| 340      | 680         | $G_1, G_2, G_3, \dots, G_{15}$  |

Illustration 2.13

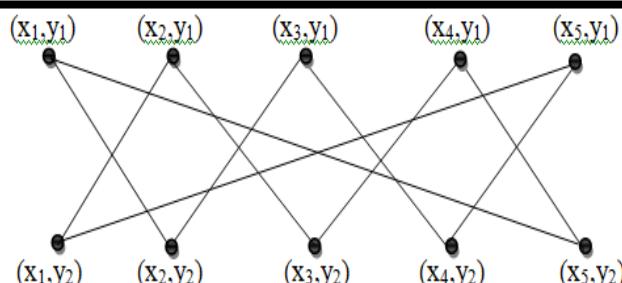


Figure 5: Tensor Product of  $C_5 \wedge K_2$

Triangular Decomposition of  $C_5 \wedge K_2$  as follows

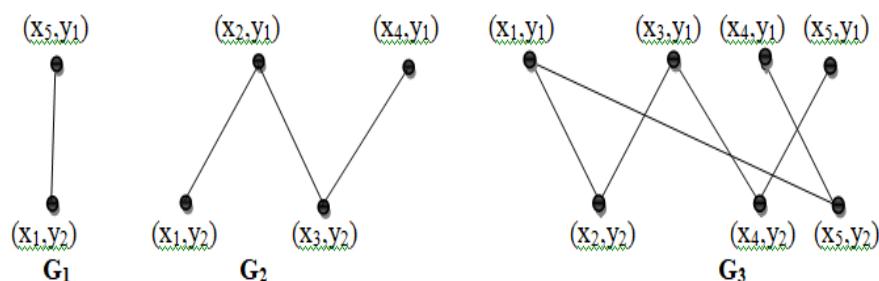


Figure 6: TD { $G_1, G_2, G_3$ } of  $C_5 \wedge K_2$

**Reference**

1. Frank Harary, Graph theory, Addition- Wesley Publishing House, USA, (1969).
2. Joseph Varghese and A. Antonysamy, "On the Continuous Monotonic Decomposition of some Complete Tripartite Graphs", Mapana Journal of Sciences, 8, 2, pp.7-19. 2009.
3. Joseph Varghese and A. Antonysamy, "On Double Continuous Monotonic Decomposition of Graphs", Journal of Computer and Mathematical Sciences, vol.1(2), pp. 217-222, 2010
4. N.Gnanadhas and J. Paulraj Joseph, "Continuous Monotonic Decomposition of Graphs", International Journal of Management and Systems, 16(2000), No.3, Page 333-334.
5. Joseph Varghese and A. Antonysamy, "On Modified Continuous Monotonic Decomposition of Tensor Product of Graphs", Int. J. Contemp. Math. Sciences, vol.5, 2010, no.33, 1609-1614.
6. S.Asha, and R.kala, "Continuous Monotonic Decomposition of some special class of Graphs", International Journal of Mathematics and Analysis, 4(2010), No.51, Page 2535-2546.